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Abstract: Sensing technologies using optical fibers have been studied and applied since the 1970s
in oil and gas, industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves
through fiber-optic hydrophone (FOH) sensors can be one solution for continuous measurement
of volumes inside production tanks used by these industries. This work presents an FOH system
composed of two optical fiber coils made with commercial single mode fiber (SMF) working in the
sensor head of a Michelson’s interferometer (MI) supported by an active stabilization mechanism
that drives another optical coil wound around a piezoelectric actuator (PZT) in the reference arm to
mitigate external mechanical and thermal noise from the environment. A 1000 mL glass graduated
cylinder filled with water is used as a test tank, inside which the sensor head and an ultrasound source
are placed. For detection, amplitudes and phases are measured, and machine learning algorithms
predict their respective liquid volumes. The acoustic waves create patterns electronically detected
with resolution of 1 mL and sensitivity of 340 mrad/mL and 70 mvolts/mL. The nonlinear behavior
of both measurands requires classification, distance metrics, and regression algorithms to define
an adequate model. The results show the system can determine liquid volumes with an accuracy
of 99.4% using a k-nearest neighbors (k-NN) classification with one neighbor and Manhattan’s
distance. Moreover, Gaussian process regression using rational quadratic metrics presented a root
mean squared error (RMSE) of 0.211 mL.

Keywords: liquid volume measurement; fiber-optic hydrophone; Michelson’s interferometer;
ultrasound acoustics; active stabilization; machine learning

1. Introduction

Optical fibers have been used worldwide over long distances for ultra-high bitrates in
telecommunication systems [1] and for sensor applications [2], including sensing acoustic
waves through light modulation [3]. The use of optical fibers as acoustic sensors was first
demonstrated in 1977 [4]. Optical fiber sensors (OFSs) have been studied and applied in the
industries of petroleum exploration, fuel storage and transportation, industrial manufac-
turing, military, chemical processing, medical, aerospace, food and civil engineering [5–7].

The oil and gas industry requires control techniques for their vessels, with the aim
of increasing production rates, avoiding environmental contamination, mitigating human
labor risks, and reducing the costs of plant setup investments (CAPEX), operations, and
maintenance (OPEX) [8]. A problem in these industries is the need for continuous monitor-
ing of liquid volumes inside separation vessels working under the presence of dynamic
emulsion and foam layers, accumulation of unwanted solids, sand in the bottom and sludge
on the walls, turbulence caused by fluid injections, corrosive substances, and explosive
atmospheres [9,10].

Ultrasound-based sensors employ acoustic transmitters and receivers immersed in
liquids to calculate the acoustic impedance between adjacent layers of fluids [11]. For
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reception, piezoelectric hydrophones can be constructed with polymers, such as polyvinyle-
dine fluoride (PVDF), that enable them to provide an output voltage that varies according
to acoustic pressure [12]. Besides PVDF, there are ultrasound sensors made with optical
fibers [13–22].

Compared to other sensing technologies, optical fiber sensors (OFSs) offer advantages
as they are electrically (galvanically) isolated, immune to electromagnetic interference
(EMI), intrinsically safe, resistant to chemical corrosion, useable at elevated temperatures,
have a wide bandwidth, are capable of multiplexing, are minimally invasive, have good
accuracy and resolution, have reduced sizes and weights, their interrogator systems can
be installed far from the remotely monitored points, and they do not require any electrical
power at the measuring points [8,23,24]. OFSs are precise in measuring pressure, tempera-
ture, acoustic fields, strain, torsion, deformation, curvature, force, vibration, acceleration,
rotation, humidity, viscosity, and chemical parameters [7,25,26].

In 1977, the authors of [4] first demonstrated the possibility of a direct acousto–optic
interaction between an ultrasound field and an optical fiber coil working as an acoustic
sensor. The acousto–optic effect is based on the physics principle that a propagating
acoustic wave modifies the refractive index of a fluid through pressure variations and
densities [20] as a function of time and space. The authors of [4] used 4 m of an SMF optical
fiber section length to build a coil of 10 turns and 3.3 cm diameter and submerged it into
water so that its optical beam was phase modulated by ultrasound waves ranging from 40
to 400 kHz. The optical fiber coil sensitivity was characterized by light phase shifts whose
intensity depended on the acoustic pressure incident on the optical fiber length, with which
an MI has been employed [27–29].

A fiber-optic hydrophone (FOH) is an acoustic sensor that uses optical fibers as the
sensing element, and can be applied in fields such as oil and gas exploration, earthquake
inspection, and underwater object detection [15,30]. FOH is typically implemented based
on optical interferometry, which offers greater sensitivity than piezoelectric hydrophones,
and they are classed as phase-modulated sensors [7,31,32]. An FOH system measures
the light phase changes induced by a particular measurand [7], in which an ultrasound
piezoelectric source (UT) works as the transmitter, and an optical fiber sensor works as the
receiver [11,33].

Interferometric schemes can be mounted by using commercially available optical
components [34]. Four interferometer configurations are usually cited in the literature:
Fabry–Perot, Mach–Zehnder, Michelson’s, and Sagnac, as they provide good sensitivity,
accuracy, large dynamic ranges, and may cover long distances of monitored points [32].
The latter three types are also known as two-beam interferometers [35].

Publications about FOHs have demonstrated their working principles, showing them
as an alternative technology to replace piezoelectric hydrophones [36]. FOHs do not
need recalibration [37] and present higher bandwidths than conventional piezoelectric
hydrophones [38]. Interferometric techniques can be used to improve their sensitivity [39],
resolution, bandwidth, dynamic range, and signal-to-noise ratio [40]. A twisted pair
made with single-mode fibers has been recently published as a high-sensitivity, broadband
ultrasound sensor able to work from 20 kHz to 94.4 MHz [41]. These publications are
focused on the technological aspects of FOH.

Other papers present applications and proof of concepts using FOH sensors. As
examples, the largest array of FOHs in the world (16,000 sensor elements) is used undersea
to permanently monitor oil reservoirs in the North Sea [15], an FOH is used to precisely
detect cavitation bubbles under high ultrasound emissions [42], two 32-element line arrays
were deployed off the San Diego’s coast for object recognition underseas [43], an FOH was
used to measure the power of hyperthermia transducers without being damaged [44], and
a 50 MHz wideband FOH was developed to measure medical ultrasound fields [45].

To the best of our knowledge, there are no published works describing laboratory
prototypes of an FOH system to measure liquid volumes and presenting results of ac-
curacies and RMSE derived from machine-learning algorithms. There are publications
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describing the behavior of underwater optical coils, but they do not present results of using
these coils to measure liquid volumes [16–19,46–49]. Ultrasound methods to determine
multilayers of oil, emulsion, and water in oil tanks are demonstrated in [10,46,50] and
show the advantages of FOH, such as contactless distance measurement, low costs, high
precision, simple setup, and imperviousness to dusty and smoky environment. However,
there were not results regarding liquid volume measurements.

Considering an FOH system as a new generation [15] and a primary application [40]
for underwater acoustic sensors and underwater detection [19], the objective of this work is
to present a prototype composed of optical fiber coils in the MI’s sensor head, with an active
stabilization mechanism driving another optical coil wound around a piezoelectric actuator
in the MI’s reference arm, and a software application that uses amplitudes and phases of
detected acoustic signals to predict liquid volume by machine learning algorithms.

Although the isolated functions of the purposed system have been already studied
and applied in known applications, the novelty of this proposal is the bringing together
of those functions, such as: underwater acoustic wave detection; optical coils as sensing
elements; an optical interferometry scheme; an electronic circuit for homodyne detection
and active stabilization of noise; another optical coil wound around a piezoelectric actuator;
the use of electric phase differences between the acoustic signals inputted and outputted by
the sensor; and the definition, testing and comparison of several data models processed by
machine learning algorithms, offering new insights and results with high accuracies and
low errors for liquid volume measurement.

Section 1 introduces fiber-optic sensors, hydrophones, and related applications. Section 2
presents a theoretical background of acoustic detection, and Section 3 describes the materials
and methods employed in the experimental setup. Then, Section 4 presents the results and
discussion. Finally, Section 5 ends the paper with conclusions and future work suggestions.

2. Theoretical Background

The MI has been chosen for this work due to its simple configuration and the need for
fewer fiber splices and one beam splitter [32,40]. Besides, it accepts flexible geometries and
has lower component costs compared to other schemes [7,51]. These characteristics were
taken into consideration to choose the MI as the sensor head for this work.

2.1. Michelson’s Interferometer

An MI, whose picture is adapted from [7] (p. 371), is presented in Figure 1, in which
a 3 dB beam splitter (BS) divides the power of an input coherent laser [31] between two
arms defined as optical paths, which end in mirrors that reflect the optical beams back. The
optical paths can be free-space air, tubes with gases, vacuum, or optical fibers. The two
beams are then recombined by the BS, and a photodetector outputs the phase changes from
the interferometric resulting signal.
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Considering an MI fed with power PIN, the light wavelength in the medium λ, a
wave number k = 2π/λ, and a lossless beam splitter with a division rate of 0.5, the
relation between the output power POUT and the interferometer’s optical path differences
∆L = LS − LR can be expressed by [35]:

POUT =
PIN

2

[
1 + cos

(
4π∆L
λ

)]
(1)

The first MI arm is called the “sensor head” or “wet arm”; it has a length LS and is
exposed to measurands, such as sound, pressure, temperature, strain, and mechanical
vibrations. The other arm is known as the “reference arm” or “dry arm”; it has a length LR
and should be isolated from environment disturbances [7].

A desired measurand induces changes on the sensor head that dynamically change its
physical fiber length LS, leading to a path difference ∆L among the two arms that induces
phase differences ∆φ between their light beams, resulting in phase variations that are
electronically expressed by a photodetector [7].

Linear polarization of a light beam in one MI arm can be expressed by [31]:

→
E(z, t) = E0 cos

[
ω0t−

(
2π
λ

)
z
]

, (2)

where
→
E is the electrical field of the optical electromagnetic wave, E0 is its maximum

amplitude,ω0 is the optical wave frequency in radians per seconds, z is the longitudinal
space point, and t is time.

Equation (2) shows amplitudes that might be present on the transverse
→
x or on the

→
y

space coordinates, propagating through the longitudinal
→
z coordinate. Considering the

fiber’s physical length L, the light speed in vacuum c0, the vacuum wavelength λ0, the
fiber refraction index n, the wave group velocity v = c0/n, which leads to 1/λ = n/λ0, the
electrical field can be expressed by:

→
E = E0 cos

[
ω0t−

(
2πn
λ0

)
L
]

, (3)

and Equation (4) shows the fixed phase angle φ0 (in radians) of the light beam. The term
“nL” is defined as the “optical path length” [52].

φ0 =
2πnL
λ0

, (4)

and changes in L or n lead to phase variations, expressed by:

φ0 + ∆φ =
2π
λ0

[n·L + n·∆L + ∆n·L], (5)

where ∆φ are the incremental phase changes due to incremental length changes ∆L, which
induce refraction index variations ∆n due to the optical fiber’s photo–elastic effect. Further,
frequency variations (jitter) from the laser source may also contribute to phase drifts, and
Equation (5) can be expressed as a sum of derivatives of the terms involved in the phase
drifts [52]:

dφ
φ

=
dL
L

+
dn
n

+
dk
k

(6)

Current optical detection systems estimate the average power per unit area and unit
time as a measure of intensity or irradiance IOUT, which is proportional to the squared
amplitude of the electrical field [53]:

IOUT ≈ E0
2 (7)
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The summation of both arms’ light waves (
→
ET =

→
ER +

→
E s) results in an irradiance

perceived by the photodetector [31] that can be expressed by:

IOUT = 2E0
2[1 + cos(∆φ)], (8)

where ∆φ = φR −φS is the phase difference of both light waves’ summation.
In another view, this phase difference can also be represented by ∆φ = φe − dφm,

in which φe is the bias phase standing for the external disturbances with low frequency
and slow drifts with time, affecting both interferometer arms (sensor and reference). The
second term dφm represents the pure physical measurand variations of interest, whose
value represents the interferometer’s sensor arm [40].

When the interferometer is forced to keep its bias phase φe around (2n + 1)∗π/2
radians points, it reaches a condition called quadrature state, in which it supplies a better
response to the measurand dφm. The nature of sinusoidal waves at the quadrature point
limits the two-beam interferometers to work under the largest optical phase displacements
of half a wavelength. Moreover, when the bias phase φe is located around zero or on
multiple integers of ±π radians, the resulting interferometric pattern jumps between zero
and maximum peak values, representing the worst sensitivity points, as the derivatives of
intensity to phase are zero at them [31,35,40,54].

Although ∆φ may appear to be a stable measurand, the noise present on φe can
be so elevated that the measurand dφM may become impossible to read [31,40]. More
details about the MI working as an optical hydrophone for signal intensity (irradiance)
and phase (homodyne or heterodyne) measurand detection can be obtained from other
studies: [7,15,18,19,25,31,32,40,52,54–56].

2.2. Michelson’s Interferometer for Acoustic Wave Detection

Taking into consideration the equations and terms already presented, an MI whose
sensor arm is composed of a single-mode optical fiber coil immersed in liquid, within which
propagates an acoustic field of pressure Pa and angular frequency ωa, the interferometer’s
resulting light beam is expressed by [4]:

→
E = E0 exp i(ωot) + E0 exp i(ωot + Ka sin(ωat) + ∆φ), (9)

where Ka is the modulation index that defines the acoustic influence on the phase drifts,
and ∆φ are the dynamic optical phase differences between both MI arms. For a uniform
acoustic field, Ka is expressed below, and Lc is the physical length of the optical fiber coil
interacting with the acoustic wave [4]:

Ka =
2π
λ0

∂n
∂Pa

PanLc (10)

Bucaro et al. [4] also define Sd as constant that defines the detector’s sensitivity,
which depends on the photodetector’s gain G, quantum efficiency q, electron charge
e = 1.602× 10−19 c, Planck’s constant h = 6.626× 10−34 m2kg/s, and on other terms
already presented, as expressed by:

Sd =
2πGqe
hc0k

(11)

Finally, [4,57] have shown that small values of modulation index Ka will result in the
following irradiance equation as perceived by the MI hydrophone:

IOUT = 4E0
2Sd

[
1 + cos(∆φ)− Ka

2
sin(∆φ) sin(ωat)

]
(12)
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2.3. Active Stabilization for Homodyne Detection

The phase instabilities inherent to optical interferometers represent a challenge that
requires countermeasures to mitigate [35]. In an ideal scenario, the MI works properly when
its arms are equal in length (balanced condition) and the reference arm is isolated from
external noise [18,54–56]. Thus, MI measurement noise needs to be controlled by adjustment
mechanisms [6–8], such as Pockels cells [58], rubber and springs for anti-vibration [28],
optical tables, hermetic boxes, thermal baths [56], piezoelectric actuators [18,55], sensing
information encoded in a carrier signal, phase generated carriers, and active homodyne
demodulation [40]. Despite the solutions aiming to achieve MI stabilization, they are not
always continuously stable over time, and, as reported by [28], sometimes noise isolation is
“still an art rather than a science”.

3. Materials and Methods

This system works based on physics principles in which acoustic wave behavior
depends on liquid density, reflections from internal tank walls and other components, and
on changes to the acoustic path characterized by changes in the volume of liquid [46].

3.1. Experimental Setup

The experiment setup in Figure 2 shows an FOH system for liquid volume measure-
ment, based on the MI, with an electronic feedback (EF) circuit loop to compensate for
external noise from the sensor’s measurands. The system outputs a sinusoidal signal
from which two values are extracted: amplitude and phase. The phase is the difference
between the acoustic field delivered to the UT and the acoustic field detected by two optical
coils S1 and S2 placed at the sensor head. For each differential volume of water added
to or extracted from the tank, the length of the water (acoustic path) changes, and the
internal water surface dislocates. Thus, a new profile of internal sound reflections and
backscattering inside the tank creates an interferometric and stationary pattern, knowing
that internal water interface works as a mirror to the acoustic waves. Then, the optical coils
capture the ultrasound intensities present at their fixed positions, modulating light beams
through their photo–elastic (acousto–optic) effects, creating an output signal from which
the amplitudes and phases are extracted.

It is not trivial to mathematically equate the components of this setup to reach an
expression that infers the water’s liquid volume by using the system’s output. This setup
involves optical and acoustic phenomena taking place simultaneously by an unbalanced
MI composed of two optical coils in the same sensor arm with noise stabilized by an EF
circuit driving a piezoelectric actuator in the reference arm. The coils are not multiplexed.

3.2. Hardware Components

The setup worked for seven days in an air-conditioned room and water temperatures
varying from 22 ◦C to 24 ◦C. The test tank was a 1000 mL glass graduated measuring
cylinder with 10 mL grading divisions filled with water one milliliter at a time from 440 mL
to 1000 mL (561 liquid volume points) with a syringe graduated at 1 mL. The measurements
started at 440 mL due to setup arrangements and positioning of the UT inside and in the
bottom of the tank. The irradiating face of the UT was positioned at 300 mL volume due to
its mechanical size, and the distance of 140 mL between the UT’s face and first coil S1 was
due to the near field of Fresnel’s zone.

A coherent laser light source TN Laser (Teraxion Narrow Linewidth Laser) was tuned
at 1550 nm, and its wavelength drift was negligible as it implements internal hardware
for electronic current and temperature stabilization. The TNL laser injected 12.5 dBm of
light power in the system. The isolator IS (Thorlabs, Newton, NJ, USA) protected the
laser source port against undesired returning power. After passing through circulator C1,
polarization controller PC1 and the 3 dB beam splitter BS, the light power was equally
injected in both MI arms, which ended in Faraday-rotator mirrors M1 and M2. The MI’s
reference arm was composed of an optical coil of 11 m [55] made with SMF fiber (Corning
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SMF-125/9, only with acrylate protection) wound around a piezoelectric actuator PZT
(Thorlabs APF705) responsible for stabilization. The sensor arm’s coils S1 and S2 were both
identical and made of the same fiber type, with an outer diameter of 2.4 cm, and 25 fiber
turns, resulting in 188.5 cm of total fiber length per coil. In total, considering all fibers
used, component connections, installation arrangements and coils, each MI arm achieved a
length of around 15 m. Single mode fibers were used because the behavior and analysis of
multimode interferometers are difficult to control [56].
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Figure 2. Fiber-optic hydrophone (FOH) system setup. TNL Laser at 1550 nm; IS—optical isolator;
C1 and C2—optical circulators; BS—beam splitter; PC1 and PC2—polarization controllers; PD1, PD2
and PD3—photodetectors; M1 and M2—Faraday’s mirrors; PZT—piezoelectric actuator wound by
an optical fiber coil; S1 and S2—optical fiber coil sensors; UT—ultrasound transducer; EF—electronic
feedback loop circuit; OP—oscilloscope; SG—signal generator; A—3 dB amplifier; Application is
software developed in MATLAB; liquid volume measurement tank.

All optical components, such as the isolator, circulators, beam splitter, Faraday mir-
rors and PZT with its optical coil, were installed inside boxes (non-hermetic) with the
goal of mitigating external influences, such as temperature variations, random pressure
fluctuations, sounds, air flows, or mechanical stress on fibers and connectors. The optical
components and photodetectors were mounted over an optical bread board with a rubber
foot to mitigate mechanical vibration and vibration on the table where the components
were situated. These disturbances were controlled as they could decrease measurand
accuracy [18,55,56].

The polarization controller PC1 was placed at the MI input to adjust the polarization
and improve the contrast [56]. Following the same idea, PC2 was installed at the MI output,
which delivers the sensor’s measurand signal to the photodetector PD3. The two circulators
C1 and C2 provided the required optical paths [55] to photodetectors PD1, PD2, and PD3
(Thorlabs PDA30B-EC). This optical arrangement guaranteed that the optical signals input
to PD1 and PD2 were 180◦ out of phase. While both photodetectors PD1 and PD2 were
only working for the stabilization mechanism, PD3 was uniquely responsible for supplying
the sensor system’s output signal. The EF circuit was fed by PD1 and PD2, and its output
drove the PZT, which stretched the optical coil of the MI’s reference arm, keeping the
interferometer locked in quadrature state and providing a final sensing signal with less
interference through PD3.
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On the electronic side, the Signal Generator SG (BK Precision 4053) was set to provide a
100 kHz continuous sinusoidal wave (CW) on both its output channels, CH1 and CH2, with
the same phases but different peak-to-peak voltages of 10 Vpp and 1.8 Vpp, respectively.
During the preliminary tests, a range of UT frequencies were evaluated from 50 kHz
to 1 MHz, and an adequate response range of voltage and phase variations occurred at
100 kHz. The lower UT (Precision Acoustics Unfocussed 1 MHz, 23 mm diameter and
75 mm focal distance) frequency was used to create higher wavelength sounds in the water,
supplying a better response to the volume variations of 1 mL.

The SG-CH1 signal was amplified by the Juntek DPA-2698 (BW 10 MHz and 3 dB gain)
amplifier (A), which output a 20 Vpp sinusoidal CW signal of 5 W to the UT. The second
port of signal generator SG-CH2 was connected to the CH1 input of the Oscilloscope OP
(Tektronix Open Choice MDO 3012) to work as a reference for FOH system phase recovery.
The UT was positioned in such a way that the ultrasound waves were irradiated upwards
through the liquid, and their wavefronts were parallel to the plane of the optical coils S1
and S2. The FOH output was injected into the second oscilloscope port (OP-CH2).

Both OP ports (CH1 and CH2) were configured to supply AC coupling and BW of
20 MHz, making them more adequate for the involved frequencies and to cut DC power.
The OP’s Fourier-transform function allowed seeing one channel in both time and frequency
domains simultaneously, and the signal amplitude of 1.8 Vpp from SG-CH2 was chosen
to help with adjustment during setup. Last, the MATLAB application (MA) [59] read
the signals from both oscilloscope ports and extracted two measurands: amplitude in
volts and phase in degrees. This phase value was calculated by MA and stood for the
difference between the original signal injected into the UT (interferometer input) and the
resulting signal delivered by PD3 (main MI output). This output was then digitalized by the
oscilloscope at a sample rate of 100 MS/s, the samples were read in vectors of 10 thousand
points of double type variables, which were passed through a software band-pass filter
and then to a Fourier transformation, from which the values of amplitude and phase were
registered in a database.

3.3. Fresnel’s Acoustic near Field

A Fresnel’s near field was kept free between the UT surface and the first coil S1.
The acoustic’s near field was a Fresnel’s space that should not have been obstructed by
any object so that the acoustic field [12] emitted by the UT would not be destroyed or
severely attenuated, which would have compromised the acoustic detection by the optical
coils in the MI’s sensor head. The calculation of this field considered the UT’s diameter
(D = 23 mm), the ultrasound frequency (f = 100 kHz), and the wave speed in water [60].
At lower temperatures, the larger the near field; the worst case of T = 22 ◦C was used to
calculate the water’s sound speed swa [60] and the near field distance Fnf [12] as follows:

swa = 1404.3 + 4.7× T− 0.04× T2 = 1488.34 m/s (13)

The near field for a cylindrical UT is expressed by:

Fnf =

(
D
2

)2

λwa
=

(
23 × 10−3

2

)2

λwa
∴ λwa =

swa

f
=

1488.34
100× 103 ∴ Fnf = 8.9 mm (14)

For the test tank of this experiment and λwa = 14.9 [mm], the distance Fnf = 8.9 [mm]
is equivalent to the volume range Fnf = 26.3 mL. Considering that the UT surface was
placed at the volume of 300 mL, the near field for f = 100 kHz and T = 22 ◦C is found in
the range from 300 mL to 326.3 mL and, therefore no objects, not even an optical coil sensor,
should be put in this region.

As higher ultrasound frequencies were also used during the preliminary tests, the free
water volume of 140 mL purposely left between the UT surface and the first S1 coil allowed
the use of a maximum frequency of 520 kHz without obstructing the near field.
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3.4. Electronic Feedback Loop Circuit

In this work, an active and self-compensate mechanism for the MI was adopted to con-
trol the environment disturbances and offer better stability to the measurand data perceived
by the sensor head. It was based on the work developed by [18,55], who implemented the
electronic feedback (EF) loop circuit shown in Figure 3.
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Figure 3. Schematic of electronic feedback (EF) loop circuit for Michelson’s stabilization.

The EF was composed of four operational amplifier chips (U1 to U4), a dual com-
parator chip U5, a dual flip-flop chip U6 (CD4013BC), one four-electronic keys chip U7
(CD4016BCN), and other discrete components such as resistors (18 units), capacitors
(2 units), and diodes (3 units). This EF circuit has two inputs, whose signals are received
from the photodetectors PD1 and PD2, and one signal output, which drives the PZT. The
output values of PD1 and PD2 were matched through dB gain adjustment knobs of the
photodetector’s hardware (Thorlabs PDA30B-EC).

Some minor changes were made to the original author’s electronics and optical
schemes published by [55] to simplify the setup, but without affecting any original func-
tionality of the circuit. Both input low pass filters were not electronically implemented,
as they were provided by the oscilloscope input ports and by a software high-pass filter
implemented in MATLAB. Furthermore, the DC power supplies were simplified to use
the values of +10 and −10 volts, cutting the need for +5/−5 and +15/−15 VDC inputs.
Finally, the four U7 electronic switches were connected in parallel to decrease their internal
resistance and to allow proper PZT operation.

The active stabilization’s EF loop acts as a homodyne demodulator that nullifies as
much as possible the output of the differential amplifier U3, locking the MI operation
around the vicinities of the quadrature point [40]. The interferometric signals output by
PD1 and PD2 (electronic currents) were 180◦ out of phase and input to the EF circuit for
differential detection.

IPD1 = I0[1 + K0 cos(φs +φd)], (15)

IPD2 = I0[1 + K0 cos(φs +φd + π)], (16)

where I0 relates to the system input power, K0 is related to the interferometric fringe
visibility, φs is the static differential phase, and φd is the disturbances’ differential phase.

After PD1 output is inverted by U1, and, together with PD2 output, both signals are
differentially combined by the converter U2, the following signal is seen on the U2 output,
where K2 if the conversion gain of U2:

U2OUT = K2 × cos(φs +φd) (17)

After U2OUT is integrated by U3, the new output signal is presented below, where K3
is the conversion gain of U3:

U3OUT = K3 × sin(φs +φd − π/2) (18)
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As the perfect quadrature point is defined by φs +φd = π/2, and the interferometer
is forced to be kept around the quadrature state, then U3OUT will tend to zero, knowing
that, the differential phase will be:

∆φ = φs +φd − π/2 ∴ ∆φ ∼= 0 (19)

However, this absolute zero is not supported, and in the vicinity of the quadrature
point, differential phase ∆φ drifts assume small values, allowing the approximation below,
considering that sin(∆φ) ∼= ∆φ for small values of the angle ∆φ:

U3OUT = K3 × sin(∆φ) ∴ U3OUT ∼= K3 × ∆φ, (20)

This simplification represents a practical assumption when a sine or cosine math func-
tion falls inside a cosine or sine formula, such as the term “exp i(ωot + Ka sin(ωat) +φ0)”
in Equation (9). This assumption is considered valid for ∆φ � 1 and ∆φ ≤ 0.1 radians
as described as acceptable by [52]. In fact, it avoids the need to consider many terms of
Bessel’s functions of the first kind, as the first two terms of their coefficient family, J0(∆φ)
and J1(∆φ), represent 98% of the homodyne power spectrum energy [52].

Therefore, U3OUT is quasi-linear at the quadrature state [18]. It is used as the correction
signal that drives the PZT, making displacements and strain changes in the optical fiber
coil wound around it, keeping the interferometer working close to the quadrature state.

The EF circuit also tracks the external noise through an equivalent voltage in capacitor
C1. The circuits U5.1 and U5.2 compare C1 with the reference voltage defined by the
potentiometer POT (R18), and, when they are equal, the EF switches the C1 voltage to zero
by an up-pulse to flip-flop U6 that keeps the four U7 switches closed and discharging by
the time τ = R19× C2 = 0.47 ms. The reference value of +5 volts is selected with R18
(potentiometer) so that the limits of +5/−5 volts of accumulated phase drift errors are
enough to protect the PZT and other electronic components, respecting their technical
datasheets [18]. In general, the EF circuit can be regarded as a high-pass filter with a cutoff
angular frequency fEF in hertz, as expressed by [55]:

fEF =
KpKd

2π× R8×C1
(21)

The voltage-phase coefficient Kp rad/V for the PZT actuator and its optical fiber
coil and the phase-voltage coefficient Kd V/rad for photodetectors have been experimen-
tally measured by driving the PZT with a low-frequency triangular wave [55], allowing
calculation of fEF Hz, and are further presented in the results section.

3.5. Sensitivity, Resolution, Bandwidth and Other Technical Characteristics

The purposed setup is composed of different elements, both optical and electric, each
with specific technical parameters for power, frequency, bandwidth, sensitivity, resolution,
internal noise sources, and others [40]. The proposed FOH system’s sensitivity, resolution,
and bandwidth are dependent on the setup’s arrangement and on its components’ intrinsic
characteristics, whose values are examined in the results section, following collected data
series and their derivatives of phases and amplitudes.

Although it has not been the scope of this work to measure isolated parameters of
the optical coils built for the MI’s sensor head, other studies have already demonstrated
a sensitivity of −116 dB re rad/µPa in the bandwidth of 10 Hz to 2 kHz, phase noise of
−102 dB re rad/

√
Hz, and pressure noise of 14 dB re µPa/

√
Hz [15]. Another study shows

a sensitivity of −170 dB re rad/µPa and noise floor of 50 dB re µPa/
√

Hz below 1 kHz [40].
These parameters vary with the type and length of fibers exposed to the acoustic waves,
coil sizes and their layout, number of fiber layers, acoustic wave frequency and direction,
mechanical and elasto–optic properties of fibers, and other parameters [51,61–63].
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3.6. Data Collection and Database Structure

The MA developed for this experiment was connected online to all setup equipment
and took twenty measurements of amplitude and phase per each milliliter of liquid volume,
for a total of 11,220 readings (20× 561) that were stored in a database. Values of amplitudes
(volts) were rounded to 2 digits, and phases (degrees) were rounded to zero digits to the
right of the decimal point to allow the system to calculate the modes (most frequent values)
of both measurands.

Each reading was registered as a tuple of data object (lines) having 64 attribute fields
(columns) of information. Among these fields, the tuple had point values of amplitude and
phase, along with modes, means, standard deviations, and outlier indicators. A tuple also
carried fields for both intermediate and final values of modes and means. Twenty measures
composed a group, and the intermediate values were calculated based on the measurements
taken until the moment of a point collection. For example, the 12th measurement of a group
registered intermediate values of mean and mode for the twelve measures taken until
that moment. The last measure of a group was calculated after removing the interquartile
outliers. In this work, these outliers were values greater than 1.5 times the interquartile
size, above the upper quartile (75%) and below the lower quartile (25%), for a measurement
group. The interquartile method was applicable for data both normally distributed or not.
The database also registered a field to show outliers that were less than 10 or above 90
percentile ranges. These two strategies are referred to in this text as “interquartile” and
“percentile” outliers, respectively.

As temperature changes acoustic properties of liquids, each object tuple also had a field
that registered water temperature, which was provided by an electronic sensor installed
inside the test tank and connected to the MA. This field was used by the machine learning
algorithms with the action of merely adding it or not among the columns of attributes
selected to compose a data model to be assessed.

Further, no phase or amplitude values from repetitive cycles of increasing and decreas-
ing volumes were registered in the database, despite the fact that this repeatability was
seen during the setup tests.

3.7. Phase and Amplitude Data Series Analyses

This work presents data series analyses of amplitudes and phases, including their
derivatives in relation to liquid volumes. Standard deviations and small linear intervals
of these series were evaluated. All graphs show results before and after the S2 coil was
submerged. The data series include the mode values of each measurand. First, the phase
and amplitude were individually analyzed, and further both were put together in a two-
dimensional Cartesian space. A specific phase analysis included three adjustment actions,
after which an unwrapped phase characterization was obtained for the FOH system.

A limitation in the arctangent function executed by homodyne detectors, where sine
and cosine signals are converted to phase, is that the phase can change a maximum of π
radians between samples. So changes greater than π represent ambiguity as to whether the
signal travelled a full clockwise or counterclockwise lap around the four quadrants [64].
Therefore, an absolute change higher than 180◦ between two adjacent milliliters may be a
discontinuity caused by a new wrap cycle in the domain of 360◦, influenced not only by
the intrinsic nature of the system but also by noise that was still present in the measured
data despite the stabilization mechanism. Under this condition, predictive algorithms
were used to improve the π limitation [40] as performed by other publications about phase
measurands from optical interferometers [30,64,65].

3.8. Three Actions of Phase Series Adjustments

Taking into consideration the aspects of phase detection reported in the earlier topic,
three actions were applied on the phase data collected in this work.

Action (a)—Fixing Phase Discontinuities with 360◦ Rotations
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In action (a), all absolute variations above 180◦ between two adjacent milliliters were
rotated by 360◦. For example, if a liquid volume point is −270◦ and the earlier point was
+45◦, then a 315◦ absolute variation is detected and, therefore, the −270◦ point is changed
to +90◦ after a 360◦ rotation. If this new value also caused new further absolute variations
above 180◦, the respective liquid volumes were rotated as well.

Action (b)—Unwrapping the Phase Series

In action (b), the phase data series was unwrapped, in which the angles were rotated
by ±180◦ based on the following thresholds vector: (−180◦ −90◦ −60◦ −30◦). The minus
signal of a threshold value works only on up–down variations, and the plus signal on down–
up variations. The algorithm ran on each phase difference between two adjacent milliliters,
and if it was higher than the threshold value and was in the signal direction of the threshold
signal, the point and the remaining series were rotated by 180◦. Up–down movements
were rotated by +180◦ and down–up by −180◦. In the end, these rotations performed an
unwrap operation in the whole phase series, respecting the arctangent function properties
as the earlier and the updated angles still kept the same tangent values. Different values
of this vector were assessed, and it was found that positive thresholds (high down–up
movements) did not affect the unwrapping process.

Action (c)—Excluding Phase Points with Deviations Above 60◦

In action (c), as a strategy for phase noise treatment, a phase point was excluded when
the standard deviation in the measurements group of liquid volumes was greater than 60◦

during data collection.

3.9. Fitting Model for Phase Characterization

After performing the three actions of phase adjustments, the best result was selected
based on the greater R-squared (R2) and minor root mean square error (RMSE) according to
the fitting model assessed for the final series of the unwrapped phase. Among the models
evaluated, there were polynomials, exponentials, Fourier series, Gaussians, power series,
and sums of sines.

RMSE and RMSE% are calculated by Equations (22) and (23), respectively, where YTi
and YPi are the true and predicted values, respectively, of the ith term in the phase series
composed by N terms.

RMSE =

√√√√ 1
N

N

∑
i=1

(YTi − YPi)
2, (22)

RMSE% =

√√√√ 1
N

N

∑
i=1

(
YTi − YPi

YTi

)2
× 100%, (23)

3.10. Machine Learning Algorithms

This work employed machine-learning algorithms under supervised learning to pre-
dict liquid volumes from amplitudes and phases of acoustic waves. Two distance-based
techniques were tested, Rocchio and k-NN [66], with five distance metrics: Euclidean, Ma-
halanobis, cosine distance, cosine similarity, and Manhattan. Rocchio is a classifier based
on the nearest centroid defined by the training data, and k-NN is based on the k-nearest
neighbors to the training data.

In total, six scenarios were evaluated, and each scenario was defined by a specific
choice of object tuples (lines) and attributes (columns) from the 11,220 × 64 matrix of
collected data. A group of selected tuples defines a dataset, and the group of selected
attributes defines a data model. In this case, a data model can include, for example, water
temperature, so as to see the influence of this field in the results. Further, each scenario has
its own criteria to separate the training from the testing datasets. As an example, a training
dataset can be composed only of the twentieth object tuple of the liquid volume points
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(mode centroids), and the testing dataset by the remaining objects, or the training set can
be composed of a random selection of 75% of all tuples, and the testing dataset includes the
remaining 25%. In addition, other characteristics, such as distance metrics used and the “k”
number of neighbors in k-NN were assessed.

When the training dataset is composed of one tuple standing for the centroid of a
milliliter, both Rocchio and 1-NN reach the same accuracy. So, in these cases, the 3-NN is
presented, while other cases used 1-NN as it delivered better accuracy. For all scenarios
evaluated, both training and testing datasets were normalized to avoid distortions caused
by the scales of the attributes. Each liquid volume point was defined as a class (label)
with which a new aleatory sample of phase and amplitude was processed to obtain the
respective liquid volume. The data were balanced, as the classes have the same number of
samples, although they can vary a little with scenarios that excluded outliers.

3.11. Gaussian Process Regression

In addition to the use of classification algorithms, this work also assessed machine-
learning regression versions based on the same fitting models used to characterize un-
wrapped phase data series. However, instead of testing only the mode values of amplitudes
and phases, the regression models with machine-learning were applied to all database
points with the same random selection of 75%/25% to define the training and the test-
ing datasets, respectively. The best result in terms of R2 and RMSE was obtained from
Gaussian process regression (GPR), whose values are presented in the result section of this
paper. GPR assumes that the target variables are Gaussian distributions and makes use of
covariance matrices derived from data attributes to predict a fitting model [66].

4. Results and Discussion
4.1. Sensitivity, Resolution, Bandwidth, and Other Technical Characteristics

Regarding acoustic bandwidth, the system was designed to operate at the fixed fre-
quency of 100 kHz with the ultrasound transducer able to work at the maximum frequency
of 1.5 MHz, and Figure 4 shows an experimental result of a 6 dB bandwidth at 700 kHz,
ranging from around 30 kHz to 730 kHz, inside which specific frequencies of 80 kHz,
220 kHz, and 340 kHz presented high peak values in the response curve. This response
was computed under a fixed liquid volume, as different volumes present different voltage
amplitudes for a fixed frequency. The choice of the FOH system’s fixed operation frequency
took into consideration experimental bandwidth, the Fresnel’s zone restrictions, and the
longest possible acoustic wavelength in the water.
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The EF loop circuit cutoff bandwidth was calculated following [55], and Figure 5 shows
the oscilloscope graphical results used to obtain the sensitivity Kp = 31.5π

4.24 = 23.34 rad/V
and Kd = 1.06

π/2 = 0.67 V/rad after driving the PZT with a 50 Hz and Vpp = 4.24 V triangular
wave. The only requirement to choose the triangular wave’s frequency was to make it as
small as possible in order to allow counting the number of cycles in the resulting sinus
modulated wave. Therefore, the experimental high cutoff frequency of the EF circuit loop
resulted in fEF = 23.34×0.67

2π×100×103×4.7×10−6 = 5.33 Hz, which was enough to mitigate most
environmental noise. A replacement of capacitor C1 from 4.7 µF to 1 µF raised this value to
25.07 Hz, which is close to the value experimentally found by [55].
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4.2. Original Amplitude and Phase Data Series Collected

The original collected values of amplitudes and phases per each liquid volume point
are plotted in Figure 6. As a homodyne detector (phasemeter), each amplitude in volts
stands for the optical phase displacement between the signals from the MI’s arms, related
to a specific liquid volume, and each phase point is the electronic acoustic phase difference
between the input and the output signals from the FOH system. Phasemeters recover the
phases from the four-quadrant arctangent according to the ratio between two quadrature
signals (a sine and a cosine). The relationship between the expected phase and the phase
effectively measured should be linear, but there are often distortions caused by spurious
effects in the optics or in the signal processing that result in the nonlinearities and periodic
errors [35] seen in Figure 6.

Specific characteristics can be noted from the originally collected data. Both amplitude
and phase series are nonlinear with liquid volumes; they are not intrinsically correlated to
each other; there are different peaks and valleys when only S1 is under water than when
both S1 and S2 are submerged; below S2, the phase varies around the limits of −45◦ to
+45◦, covering a range of 90◦ as limited by the quadrature; above S2, the phase measurand
shows maximum and minimum values that touch the limits of −270◦ and +90◦, covering
a range of 360◦; above S2, the amplitude window of peaks and valleys dislocates down;
both series present limited linearity intervals with liquid volumes, as seen in Figure 7; the
amplitude shows quadratic behavior at volumes of 820, 890, 920, 940, and 970 mL; the
phase measures show discontinuity jumps near the volumes of 650, 690 to 710, 740, 860,
920, 940, and 990 mL; and the first measured phase at 440 mL presented a value smaller
than −180◦.
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Figure 7. Phase measurand with correction of discontinuity jumps ≥180◦.

These results confirm nonlinearities, differences in using one or two optical coils as
sensing elements, attenuation of acoustic fields as the volume of water increases, and that
phase differences between the optical signals in the MI arms are not related to the phase
differences between the acoustic signal input and output from the system.

4.3. Phase Measurand Analysis

Three actions were applied to the collected phase data in order to: (a) fix the disconti-
nuities; (b) unwrap the data series; and (c) mitigate the noise.

In action (a), after all rotations, the new phase profile is shown in Figure 7, from which
it is noted the effect of dislocating the whole data series from the limits of −270◦/+90◦ to a
new range of −180◦/+180◦.

For comparison with the original data presented before, Figure 8 shows the original
amplitudes and the new phase series corrected with the 360◦ rotations.
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A derivative analysis of both amplitude and phase measurands is presented in Figure 9,
with common phase sensitivities reaching 20◦ degrees/mL (349 milliradian/mL) and
amplitudes in 70 mV/mL. The dashed lines are one standard deviation over means for
both measurands, separated by liquid volumes below and above the S2 coil. Comparing
variations due to the influence of the S2 coil, the amplitude deviation decreased from 44 mV
to 31 mV, while the phase increased from 24◦ to 37◦.
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Figure 9. Derivatives of amplitudes and corrected phases.

That is, the presence of S2 decreased the sensitivity of amplitude (homodyne detection
related to the optical phase differences between the signals inside the MI arms) but increased
the sensitivity of the acoustic phases (related to the electrical phase differences between the
signal input to the UT and the measurand signal delivered by PD3). Based on that result,
future analysis would take S2 out of the system and verify if coil S1 alone could detect
different series of amplitudes and phases, including their derivatives.

Figure 10 shows plain linear intervals, with numbers at the ends of straight lines being
the first and final liquid volume of each interval. This figure also shows that the majority
of phase points have their mode values (“x”) close to their mean values (“+”), which is a
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characteristic of normal distributions, although neither normal fitting test was performed
over the data, as it was not a goal of this work.
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Figure 9 shows that after executing action (a), the phase derivative series are mostly
confined in the limits of −20◦/20◦ with one standard deviation of 37◦. So, a maximum
admissible standard deviation error of 60◦ for a point in action (c) is a conservative value,
although other values have been evaluated. So, action (c) caused the elimination of 4% of
collected data, and Figure 11 shows the resulting series after each one of the three phase
actions were executed. The bottom of Figure 11 also shows room and water temperatures,
both measured during data collection days represented by small circles on the graph.
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Figure 11. Three actions of phase series adjustments.

According to Figure 12, while the original phase derivatives reached a six-standard
deviation of 290◦, the final adjusted phase series ended with a six-sigma deviation of 82◦.
This result was achieved after the execution of three sequenced steps of phase adjustments,
whose algorithms improved upon the π constraints of angle measurands [40]. In fact,
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those steps detected and cleaned phase jumpers between adjacent milliliters with absolute
values higher than 180◦ and unwrapped the phase series after removing phase points with
deviations equal to or higher than 60◦ from the original data.
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Derivative analysis showed the improvements achieved by these proposed phase
adjustment algorithms, which had the goal of finding a final phase characterization for the
FOH system. Those actions were based on parameters that could be previously configured,
allowing the MA to apply them as long as new data were collected online.

Finally, Figure 13 shows the phase characterization after fitting the unwrapped phase
with a sum-of-sines of nine terms, resulting in R2 of 0.9994 and RMSE% of 4.15%. The model
was configured to run with least absolute residual method and nonlinear least squares.
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The sum-of-sines fitting function is expressed by:

Lml =
9

∑
i=1

ai ∗ sin(bi ∗ ∆∅s + ci), (24)

where Lml is the predicted liquid volume in milliliters, and ∆∅s is the angle detected and
processed by the FOH system’s application after the three phase treatments are applied.
The coefficients ai, bi, and ci of the adjusted function are listed in Table 1.

Table 1. Coefficients of sum-of-sines fitting function.

i ai bi ci

1 2419 0.7729 0.7455

2 1087 1.66 −2.039

3 288.9 3.401 0.8193

4 102.6 5.768 −0.8964

5 29.65 9.122 −2.307

6 5518 18.81 −1.821

7 5517 18.81 1.317

8 −4.334 13.82 9.008

9 13.23 45.2 −0.7065

4.4. Amplitude Measurand Analysis

The amplitude and its derivative series have already been presented in the earlier
section to allow their comparison with the phase series. So, a next analysis is to show
the presence of linear intervals, as shown in Figure 14. This figure also shows that most
amplitude points have mode values quasi-equal to mean values, what is also a characteristic
of normal distributions.
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Figure 15 shows the derivatives of amplitude to liquid volumes, with limited ranges
of linear behavior.
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Figure 15. Liquid volumes with linear intervals on the derivative of amplitude series.

The amplitude analysis shows that the collected data are nonlinear, and it is not
obvious how to derive a math function to fit these data. In this sense, the next section
presents an analysis using both phase and amplitude mode points.

4.5. Phase and Amplitude Analysis

This topic evaluates both amplitude and phase as coordinates of a 2D Cartesian space.
Figure 16 uses the corrected phases previously presented in Figure 7, and Figure 17 uses the
unwrapped phases presented in Figure 13. Both graphs have the phase measurand in the
x-axis and the amplitude measurand in the y-axis, with point coordinates defined by their
mode values. The integer numbers plotted over the sequenced points are the respective
liquid volumes in milliliters. Considering the substantial number of measured points, not
all values were plotted to preserve an adequate graphical visualization by the reader.
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Figure 17. The 2D grade of amplitudes and unwrapped phases (after action “c” is applied).

Figure 16 shows points standing for a linear sequence of liquid volumes, but with the
evolute as curves of amplitude and phase coordinates making clockwise turns as long as
the liquid volume increases linearly, forming patterns like “snail paths” that are overlapped
by other paths, showing nonlinear behavior of the FOH system. This pattern also shows
spaces with a high concentration of liquid volume points and empty spaces in the vicinity.
There is also a difference in space point occupation when S1 is submerged (liquid volumes
below S2) compared to when both S1 and S2 are underwater. In fact, the unwrapped phases
are seen only with measurements above S2.

4.6. Rocchio and k-NN with Different Distance Metrics

This topic presents six scenarios of data analysis. Scenarios one to four used the phase
adjusted to the range of −180◦/+180◦. Scenario five used the unwrapped phase, and
scenario six used the original phase without any adjustments.

Figure 18 shows the results of first scenario that evaluated the mode values of phase
and amplitude related to a liquid volume point. The mode values were used as the training
dataset, and they were evaluated against themselves as testing data. In this scenario, an
accuracy of 100% was expected, but the accuracy of 96.8% shows that 3.2% of the centroids
overlap; that is, although they stand for different liquid volumes, they have the same
coordinates of amplitude and phase. This result corroborates the behavior of Figure 16
in which the “snail paths” overlap each other more than one time. This also shows that
Rocchio is not applicable if data are composed of centroids of mode values. Additionally,
k-NN can be seen as useless with an accuracy of 31.2%. The small circles in the graphs
supply a visual notion of the wrongly classified points.



Sensors 2022, 22, 4404 22 of 30Sensors 2022, 22, x FOR PEER REVIEW 23 of 31 
 

 

  

Figure 18. Rocchio and k-NN accuracies with centroids of mode values. 

A second scenario used the same data model as the first one, but with modes replaced 
by means, and Figure 19 shows an accuracy of 100% for Rocchio and 29.8% for 3-NN. 

  

Figure 19. Rocchio and k-NN accuracies with centroids of mean values. 

If both modes and means are used in the data model as a third scenario, the Rocchio 
and 3-NN accuracies are 100% and 31.4%, respectively. A partial conclusion here is that 
both training and testing datasets, besides the data models, still need to be improved. 
Figure 20 shows a fourth scenario in which the training data are the centroids of modes 
and means of phase and amplitude, and the testing data are all the remaining points 
collected by the experimental setup excluding the centroids and the interquartile outliers. 

  

Figure 20. Rocchio and k-NN accuracies with complete datasets excluding outliers. 

Figure 18. Rocchio and k-NN accuracies with centroids of mode values.

This first Rocchio result shows a trade-off in which the need to round numbers to
allow the use of mode values has the collateral effect of increasing the probability of
centroids overlapping. So, the number of digits to the right of the decimal points is an input
parameter to the system. The fewer digits, the higher probability of overlapping. Based on
the results of this first scenario, new data models and new selections of training and testing
data were defined to improve analysis.

A second scenario used the same data model as the first one, but with modes replaced
by means, and Figure 19 shows an accuracy of 100% for Rocchio and 29.8% for 3-NN.
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Figure 19. Rocchio and k-NN accuracies with centroids of mean values.

If both modes and means are used in the data model as a third scenario, the Rocchio
and 3-NN accuracies are 100% and 31.4%, respectively. A partial conclusion here is that
both training and testing datasets, besides the data models, still need to be improved.
Figure 20 shows a fourth scenario in which the training data are the centroids of modes and
means of phase and amplitude, and the testing data are all the remaining points collected
by the experimental setup excluding the centroids and the interquartile outliers.

The fourth scenario is more data intensive than the third, as it used more tuples as
testing data, resulting in an accuracy of 57.8% for Rocchio and 25.0% for 3-NN. Additionally,
5-NN’s accuracy is 15.8%. In this sense, it is possible to note that training datasets composed
only of centroids are poor data models, as their low distances and overlapping points are
not adequate for distance-based algorithms.

Therefore, a fifth scenario was defined, in which the data model was improved, and
its attributes were composed of point values, means, and modes (intermediate and finals)
for both amplitude and phase, complemented by the water temperature. The fifth scenario
considered the unwrapped and characterized phase data presented in Figure 13.
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The choice of object tuples (lines) was aleatory to define the training and the testing
datasets with the respective proportion of 75%/25%. Initially, no outliers were excluded.
The k-NN was defined to one nearest neighborhood (1-NN) as it presented better results
than when using three or more neighbors for all distance metrics.

As a result, for Euclidean distance, 1-NN reached an accuracy of 91.6%, and other k-
NNs with three or more neighbors presented lower accuracies (3-NN = 87.9%; 5-NN = 85.3%;
9-NN = 80.2%; 15-NN = 71.6%; and 20-NN = 64.0%), reinforcing that 1-NN is always better.

Figure 21 shows the resulting accuracies for different distance metrics used with
Rocchio and k-NN, in which 1-NN with Manhattan distance reached an accuracy of 97.0%.
The cosine similarity metrics resulted in accuracy of 0% (zero) for both algorithms and for
all scenarios evaluated so far.
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tested samples.

These distance-based analyses could have stopped with the fifth scenario, as an
accuracy above 95% was found. However, perceiving the result of Manhattan’s distance
metrics in the fifth scenario, a sixth and last scenario was proposed with the goal of
testing new attribute models and data sources only using that metric. The data sources
were differentiated according to the three phase adjustment actions previously presented.
A phase series could be (i) original; (ii) adjusted to −180◦/+180◦; (iii) unwrapped; or
(iv) unwrapped with exclusions of deviations above 60◦.

Testing revealed the best accuracy found for the sixth scenario occurred when the data
model attributes and data tuple selection were performed the same as for the fifth scenario,
but with the original phases as collected from the experiment without any adjustments. Fine-
tuning of the data model was also applied, in which different combinations of interquartiles
and percentiles were evaluated using the fields of outlier indicators originally registered
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by the FOH’s MA application. As there are four variables, sixteen combinations of two
outliers and two measurands were evaluated, and their results are presented in Table 2.
When an outlier exclusion is applied, it is shown by an “x” in the table. Figure 22 shows
the best graphic results derived from theses analyses.

Table 2. Sixth scenario results for Rocchio and 1-NN with Manhattan and outlier selections.

Amplitude Phase Manhattan

Test Quartile Percentile Quartile Percentile Samples Rocchio 1-NN

1 x x x x 1799 96.1% 99.1%

2 x x x 2170 97.3% 99.4%

3 x x x 1801 96.3% 98.7%

4 x x 2226 96.0% 99.3%

5 x x x 2120 96.9% 99.1%

6 x x 2551 96.7% 99.0%

7 x x 2122 96.3% 99.2%

8 x 2622 95.9% 99.2%

9 x x x 1811 96.3% 99.0%

10 x x 2186 96.1% 98.9%

11 x x 1814 95.9% 99.0%

12 x 2244 96.1% 98.8%

13 x x 2240 96.1% 98.8%

14 x 2697 95.9% 98.5%

15 x 2244 95.8% 98.6%

16 2805 92.3% 98.0%
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Although Test 2 of Table 2 presented the greatest accuracy of 99.4% among the 16 tests,
Figure 22 shows that Test 1 also has a high accuracy of 99.1% but a cleaner graph, in which
the distances between the correctly and the wrongly predicted liquid volumes are shorter.
This result shows that the simultaneous application of both outlier exclusion strategies,
interquartile and percentile on both amplitude and phase series, on Test 1 eliminated more
noisy values than on Test 2. Therefore, although Test 1 (99.1%) has a slightly lower accuracy
than Test 2 (99.4%), Test 1 is preferable as a model as it has classification errors with smaller
deviations around the right liquid volumes.

The use of distance-based machine learning algorithms was prominent in this work, as
the results achieved accuracies of 99.4% for 1-NN and 97.3% for Rocchio, with both using
Manhattan distance metrics. Values of 3-NN = 99.1% and 5-NN = 98.5% were calculated,
proving that one-neighborhood models have better accuracy. The accuracies for Euclidean
distance in sixth scenario were 88.5% for Rocchio and 98.0% for 1-NN.

Manhattan metrics represent the distance between two points measured along axes
at right angles of 90◦ degrees, following a grid approach instead of the straight lines
of Euclidean distance [67]. When comparing measured and reference signals, similarity
methods based on Manhattan metrics can be used to minimize the distances between
signals [68,69]. Besides the better accuracy, Manhattan metrics are more preferable than
Euclidean in terms of resource consumption, as Euclidean requires square-root operations,
and Manhattan needs only the absolute value of a subtraction [70].

4.7. Gaussian Process Regression

A Gaussian Process Regression (GPR) algorithm was configured with the method of
rational quadratic type, and the resulting R2 of 1.00 and the RMSE of 0.21164 are shown in
Figure 23. An error of 0.2 over supervised data collected with the steps of 1.0 mL shows a
great fit of the GPR over the nature of physics involved in this experiment.
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Therefore, ending the results and discussion, different machine learning algorithms
were evaluated, in which two were of classification and one was of regression type. A
model fit to the unwrapped phase was also shown. The classification algorithms were
assessed considering five different distance metrics.

After all analyses, the best results are presented in Table 3.

Table 3. Results of machine learning algorithms used for liquid volume predictions.

Machine Learning Algorithms Distance/Type Metrics Value

Classification

k-NN 1 Manhattan

Accuracy

99.4%

Rocchio Manhattan 97.3%

k-NN 1 Euclidean 93.1%

Rocchio Euclidean 75.1%
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Table 3. Cont.

Machine Learning Algorithms Distance/Type Metrics Value

k-NN 1 Mahalanobis 90.6%

Rocchio Mahalanobis 76.1%

k-NN 1 Cosine Distance 90.9%

Rocchio Cosine Distance 64.6%

Regression

Sum of Sines Nine terms
RMSE% 4.15%

R2 0.9994

Gaussian Process Rational Quadratic
RMSE 0.21164 mL

R2 1.00

5. Conclusions and Future Work

In this work, a fiber-optic hydrophone (FOH) based on Michelson’s interferometer
(MI) is actively stabilized by an electronic feedback (EF) loop circuit to mitigate mechanical
and thermal noise coming from the external environment. The FOH system is employed as
a hardware and software application to perform liquid volume measurements of a 1000 mL
glass graduated cylinder filled with water with volumes ranging from 440 mL to 1000 mL.
This range limitation is due to the setup and positioning of the ultrasound source inside the
cylinder. The sensing elements are composed of two optical fiber coils placed at the sensor
head and a third optical fiber coil placed at the MI’s reference arm. The coils are made of
readily available and common SMF fiber. The reference coil is wound around a piezoelectric
actuator to stabilize the system at the quadrature point of π/2, and the two sensor coils are
submerged in water to detect acoustic wave patterns formed by a particular liquid volume,
supplying distinct values of amplitudes (volts) and phases (degrees) as output measurands.
Finally, due to the nonlinear behavior of theses measurands, machine-learning algorithms
are employed under supervised learning to predict the liquid volumes.

The accuracy of 99.4% achieved by this work is a prominent result in liquid volume
predictions for a system that employs acoustic detection through optical fiber sensors.
Further, an RMSE of 0.21164 mL shows the feasibility of the FOH system. For the test tank
used, the value of 0.21 mL is equivalent to 0.0714 mm of error in the height of the water
column. An added contribution of this work is the characterization of the unwrapped
phase measurand, in which a sum-of-sines fitting function reached an R2 of 0.9994 and an
RMSE% of 4.15%.

Another contribution of this work is a practical demonstration of the homodyne
demodulation approach working with an active stabilization mechanism over a Michelson’s
interferometer, as [40] mentions that it is a challenge to stabilize such systems for sensing
applications, and it is useful for laboratory analysis. The advantages and drawbacks of
quadrature stabilization methods are related to the resolution of the interferometer, which
is the smallest physical quantity that a sensor can measure, defined by the noise of the
measurand. Multiple reflections in optical arms improve the resolution of a homodyne
interferometer but can induce phase jumps and loss of laser coherence. Therefore, a
compromise must be found between increasing resolution and losing coherence [35].

As a limitation, this first version of the FOH system was used to measured only one
type of liquid (water), although the two optical coils in MI’s sensor head were intentionally
constructed to find different fluids around them (e.g., water and oil), which will be done in
future tests. Another limitation is the medium time of three seconds to collect and process
one data sample. As a milliliter requires twenty samples, the FOH system takes a minute
to predict liquid volume.

As suggestions, the system can be improved to detect different fluids and multifluid
interfaces. This stabilized FOH can also be used with a few adaptations to perform ul-
trasound piezoelectric transducer calibration [18,58]. Third, the FBG structure purposed
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by [23,71] could include an optical coil inside the polymer diaphragms as an additional
sensing mechanism to detect vibration patterns of liquids inside a production vessel. Finally,
a long short-term memory (LSTM) neural network could be considered as a prediction
model, as its recursive behavior would be capable of detecting a sequence of points in the
“snail paths” shown in the 2D plane of modal amplitude and phase patterns.
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