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Abstract: In this study, to further improve the prediction accuracy of coal mine gas concentration and
thereby preventing gas accidents and improving coal mine safety management, the standard whale
optimisation algorithm’s (WOA) susceptibility to falling into local optima, slow convergence speed,
and low prediction accuracy of the single-factor long short-term memory (LSTM) neural network
residual correction model are addressed. A new IWOA-LSTM-CEEMDAN model is constructed
based on the improved whale optimisation algorithm (IWOA) to improve the IWOA-LSTM one-factor
residual correction model through the use of the complete ensemble empirical model decomposition
with adaptive noise (CEEMDAN) method. The population diversity of the WOA is enhanced through
multiple strategies and its ability to exit local optima and perform global search is improved. In
addition, the optimal weight combination model for subsequence is determined by analysing the
prediction error of the intrinsic mode function (IMF) of the residual sequence. The experimental
results show that the prediction accuracy of the IWOA-LSTM-CEEMDAN model is higher than that
of the BP neural network and the GRU, LSTM, WOA-LSTM, and IWOA-LSTM residual correction
models by 47.48%, 36.48%, 30.71%, 27.38%, and 12.96%, respectively. The IWOA-LSTM-CEEMDAN
model also achieves the highest prediction accuracy in multi-step prediction.

Keywords: coal mine safety; whale optimisation algorithm; LSTM; CEEMDAN decomposition and
reconstruction; gas concentration prediction

1. Introduction

Coal resources have long played an important role in economic development and
the livelihood of people in China and will remain as the main source of energy in China
for quite some time. However, coal production is a typical high-risk industry [1]. This
is especially so, as the coal resources in Chinese mines continues to extend to greater
depths at which the complex geological conditions under the mines result in frequent
coal mine accidents. Coal mine accidents are the most frequently occurring and deadly
disasters among the various types of mine accidents. Because the occurrence of coal mine
gas accidents and changes in gas concentration are closely related, accurate predictions of
changes in gas concentration are important for preventing gas accidents [2].

To date, many researchers have conducted extensive research on coal mine gas concen-
tration prediction. Some results have been achieved and a number of prediction methods
have been proposed, including methods based on mathematical models of gas geology as
well as those based on deep learning. However, the accuracy and applicability of existing
prediction methods requires further optimisation, as changes in gas concentrations in
underground coal mines are influenced by a variety of complex factors, the variation trends
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are more complex and exhibit extreme instability and non-linearity, making it difficult to
describe and predict gas transformation trends through linear relationships.

The basic principles of predicting gas concentration based on gas mathematical models
are as follows: the geological rules of gas, analysis of the change rule of gas concentration,
and screening of the main factors affecting the change of gas concentration. Based on these
principles, according to the measured data collected in the working face and relevant geo-
logical data and considering various influencing factors comprehensively, a multi-variable
mathematical model is established to predict the gas concentration in the unexploited
working face of the mining area by a mathematical method. For example, based on the
theory of gas geology, Lang [3] constructed a mathematical model of gas concentration
from geological factors and mining factors. Liu [4] deduced the dynamic model equation of
porosity and permeability from the definition of porosity, and obtained the mathematical
model of coal and gas outburst by establishing the central equation of gas pressure field.
Zhang [5] established a multi-variable mathematical model of gas concentration using the
measured data of gas emissions in the mined area of the mine, considering various influ-
encing factors such as the geological conditions and mining depth. However, when using
the gas concentration prediction method, it is difficult to obtain the necessary input data;
therefore, it is unable to realize real-time prediction. In addition, in the process of building
the mathematical model, gas concentration time sequence correlation is not considered and
the prediction equation requires artificial adjustment according to experience; therefore, the
demand on related professional knowledge is higher. It is difficult to meet the requirements
of accuracy and real-time prediction in practical production applications.

With the application of machine learning in many fields, machine learning has been
applied to gas concentration prediction. For example, Lei [6] used the back propagation (BP)
algorithm to construct a gas concentration prediction model based on the analysis of the
nonlinear characteristics of the various factors affecting gas concentration. Peng et al. [7]
used sliding Lagrange interpolation to fill in missing values and then applied the ARIMA
model to predict gas concentration in real time. Cong et al. [8] used collected multidimen-
sional gas data and environmental parameters as input features to obtain a dataset of gas
data based on a sampling strategy for the construction of a feature-aware long short-term
memory (LSTM) model to predict gas concentration. Dey et al. [9] predicted the gas con-
centration by recovering the internal features of low-dimensional data and constructing
a Bi-LSTM model. Cheng [10] used a deep learning algorithm in combined with a fully
connected neural network to construct an LSTM-FC gas concentration prediction model for
spatiotemporal sequences using the spatiotemporal properties of gas data. Although these
algorithms improve the prediction accuracy, the structure and parameters of the models can
only be set artificially using empirical laws without considering the temporal correlation of
the input data during the construction and training of the models.

Some intelligent optimisation algorithms have also been applied to gas concentration
prediction. Liu et al. [11] constructed a hybrid GA-BP model to predict the gas concentra-
tion by exploiting the global search capability of the genetic algorithm and optimising the
weights and thresholds of a BP neural network. Wang [12] et al. improved the global opti-
misation capability of the locust optimisation algorithm by combining multiple strategies,
such as linear reduction factor reconstruction and optimal neighbourhood perturbation to
optimise the relevant parameters of the LSTM model in the construction of a gas concentra-
tion prediction model. Ma [13] used the particle swarm optimization algorithm and the
Adam algorithm to optimize the hyperparameters of a GRU model, so as to build a gas
concentration prediction model based on PSO-Adam-GRU, which improved the prediction
accuracy and robustness of the model. Fu [14] used the artificial bee colony algorithm to
optimize the grid parameters of the generalized regression neural network and established
a gas concentration prediction model which improved the overall generalization ability
of the model. However, the above models have long hyperparameter iteration times and
low convergence accuracy. They may also suffer from insufficient fitting ability when
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the hyperparameters are not set accurately. This will also result in insufficient prediction
accuracy to meet the safety needs of underground coal mines.

To address the shortcomings of the above models, an improved whale optimisation
algorithm (IWOA) is proposed in this study to optimise the LSTM residual correction
model. Data processing is first performed on the gas multiparameter time series to obtain
the input variables. To address the susceptibility of the whale optimisation algorithm
(WOA) algorithm to local optima and slow convergence [15], the WOA algorithm is next
optimised jointly through four strategies: applying a Gaussian mapping to the initial
population, an elite backward learning mechanism, a reconstructed nonlinear convergence
factor, and a Levy flight strategy for position updating [16]. The IWOA is then used to
optimise the LSTM hyperparameters and the residual dataset of the IWOA-LSTM gas
concentration prediction model is multimodally decomposed using the complete ensemble
empirical model decomposition with adaptive noise (CEEMDAN) method [17]. The IWOA-
LSTM model is finally used to predict the multidimensional eigenmodal components of
the residual series. The optimal weights of each eigenmodal component are determined
through residual assignment to construct the IWOA-LSTM-CEEMDAN residual correction
model to further improve the gas concentration prediction accuracy. This model can
provide strong technical support for subsequent gas risk assessment and gas accident early
warning, cultivate effective safety risk analyses, enhance the reliability and efficiency of
early warning, and is of great significance to improving the safety management of coal
mine enterprises and reduction of the occurrence of gas accidents.

2. Date Source

The working face of a gas mine generates a large amount of gas during production.
With reference to the sample sizes in previous gas concentration prediction studies [18,19],
data were selected from 11 different measurement points at the working face of a coal mine
in Guizhou from 18 March 2021 to 27 March 2021. Approximately 20,000 sets of data were
obtained for short-term prediction over the next 12 h. The data attributes are summarized
in Table 1.

Table 1. Data attributes of each measurement point at the working face.

Measurement
Point Name Measurement Point Description Unit Max Value Min Value

MGas Mixed methane concentration in air entry %CH4 0.7 0
EGas Methane concentration of back air in air inlet drift %CH4 0.7 0
Gas1 Methane concentration in downwind side of tunnel %CH4 0.79 0.16
Gas2 Methane concentration in working face of air entry %CH4 0.4 0
YCO1 Concentration of carbon monoxide in downwind side of tunnel drilling ppm 6 0
YCO2 Concentration of carbon monoxide at head of belt conveyor in air inlet lane ppm 6 0

WS Back air speed in air entry m/s 1.2 0.2
FC Dust on working face of air entry mg/m3 0 0
ET Back air temperature in air entry ◦C 13.3 10.8
GD Mixed instantaneous flow in air inlet pipeline m3 19.29 0
SM Smoke on downwind side of belt head belt driven into air entry mg/m3 0 0

The acquisition of high-quality underground monitoring data from coal mines has
always been a concern in gas concentration prediction models. Despite the large improve-
ments to the performance of current data collection equipment, data transmission reliability,
and data storage security, a series of problems such as missing and redundant data still
remain. These problems, if left unaddressed, will impact the accuracy of the subsequent
gas concentration prediction models.

2.1. Missing Data Processing

Missing data bring serious obstacles to subsequent model training and prediction.
Therefore, the Lagrange interpolation method is adopted in this paper to fill the missing
data. The interpolation formula is shown as follows:
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Find the nth degree polynomial such that all interpolation nodes xi satisfy the condi-
tions of Formula (1).

Pn(xi) = yi = f (xi), i = 1, 2 . . . , n− 1 (1)

To solve Pn(x), we construct the interpolation basis function hk(x)(k = 0, 1, . . . , n),
which is polynomial to the nth degree and satisfies Formula (2).{

0, j 6= k
1, j = k

(2)

This means that all nodes are zeros of hk(x) (except xk).

hk(x) = c
n

∏
j=0
j 6=k

(
x− xj

)
(3)

Then, determine the coefficient c in Formula (3) according to Formula (2).

hk(x) =
n

∏
j=0
j 6=k

x− xj

xk − xj
(4)

The solution of Pn(x) can be obtained by using Formula (4):

Pn(x) =
n

∑
k=0

ykhk(x) =
n

∑
k=0

 n

∏
j=0
j 6=k

x− xj

xk−xj

yk (5)

2.2. PCA Data Dimensionality Reduction

With the increasing dimensionality of the data collected, the sparsity of the data
become increasingly higher. Therefore, principal component analysis (PCA) was used in
this study to eliminate the redundant features of the original data set. The specific steps are
detailed in the following sections.

2.2.1. Dataset Standardization Processing

First, assume that the data matrix composed of n-dimensional variables of m group is:

X =


x11 x12
x21 x22

· · ·
. . .

x1n
x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (6)

where xij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the n-dimensional vector for the mth sample. xij
is normalized to obtain Formula (7):

x∗ij =
xij − xj

Vj
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (7)

where x∗ij is the normalized value of xij, xj is the average value of the j-dimensional variables,
and Vj is the variance of the j-dimensional variables.
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2.2.2. Computation of the Coefficient Matrix R

R =
(
rij
)

m∗m (8)

where rij =
∑n

t=1 xtixtj
n−1 ,

(
i = 1, 2, . . . , m; j = 1, 2, . . . , m, rij

)
is the correlation coefficient be-

tween variable xi and variable xj.

2.2.3. Calculation of the Cumulative Contribution Rate

∂i =
k

∑
i=1

θi

∑n
i=1 θi

(9)

where θi is the eigenvalue corresponding to the eigenmatrix. The data after dimensionality
reduction should contain the main content of the original dataset. The value of ∂i is
generally set to more than 95%.

2.3. Data Normalization

In order to eliminate the dimensional influence between the gas multi-parameter time
series, the data need to be normalized. The original time series is processed with the
min-max standardized method, and the formula is as follows:

yi =
xi −min1≤j≤n

{
xj
}

max1≤j≤n
{

xj
}
−min1≤j≤n

{
xj
} (10)

where x1, x2, . . . , xn is the original data, and the normalized data is y1, y2, . . . , yn ∈ [0,1]
and is dimensionless.

3. Research Methodology
3.1. Whale Optimisation Algorithm

The WOA is a new intelligent population optimisation algorithm proposed by Mir-
jalili et al., in 2016 [20]. The algorithm is widely used because of its various advantages,
which include its few adjustment parameters and simple operation. The WOA is an intelli-
gent optimisation algorithm that simulates the predation behaviour of humpback whales.
Humpback whales only hunt their prey using bubble nets. Each humpback whale position
represents a feasible solution, and the principles of the algorithm are as follows:

3.1.1. Surrounding the Prey

Humpback whales need to surround their prey when hunting, but the globally optimal
position in the search space in practical problems is unknown. Therefore, in WOA, the
initial optimal solution is set as the position of the individual whale with the highest current
fitness. The other individuals will then try to approach the optimal solution and update
their positions. This behaviour is described mathematically by:

→
D =

∣∣∣∣→C · →X∗(t)−→X(t)
∣∣∣∣ (11)

→
X(t + 1) =

→
X∗(t)−

→
A·
→
D (12)

where t is the current number of iterations,
→
A and

→
C are the coefficient vectors,

→
X∗(t) is the

current position vector of the best individual whale, and
→

X(t) is the current position vector

of the whale.
→
A and

→
C are given by:

→
A = 2

→
a ·→r1 −

→
a (13)
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→
C = 2

→
r2 (14)

→
a = 2− 2t

Tmax
(15)

where
→
r1 and

→
r2 are random vectors within [0,1] and

→
a decreases linearly from 2 to 0 during

the iteration process.

3.1.2. Hunting Behaviour

Whales hunt their prey by travelling in a spiral as they contract the envelope around
the prey. This behaviour of prey enclosure by the whale is realized by decreasing the value

of
→
a over the iterations. As

→
a decreases, the value of

→
A is taken as a random value within

[−→a ,
→
a ]. When

→
A is restricted to [−1,1], the new position vector

→
X(t + 1) will be at the

initial position
→
X(t) and the current optimal position at

→
X∗(t), and the encircling behaviour

of the prey is realized. The spiral behaviour of the whale as it hunts and swims towards
the prey is mathematically represented as:

→
X(t + 1) =

→
D∗·ebl · cos(2πl)

→
X∗(t) (16)

where
→
D∗ =

∣∣∣∣ →X∗(t)−→X(t)
∣∣∣∣ denotes the distance between the whale and its prey, b is a

constant used to define the logarithmic spiral motion, and l is a random number within
[−1,1].

To simulate the behaviour of a whale shrinking its envelope as it travels in a spiral,
it is assumed that there is a random choice between the two equally probable options of
shrinking the envelope and travelling in a spiral. This manner in which the whale updates
its position is mathematically represented as:

→
X(t + 1) =


→
X∗(t)−

→
A·
→
D, i f p < 0.5

→
D∗·ebl · cos(2πl)

→
X∗(t), i f p� 0.5

(17)

where p is a randomly generated random number within [0,1].

3.1.3. Searching for Prey

In addition to approaching a known prey, the whales will also search randomly for a

new location based the positions of other whales. When
∣∣∣∣→A∣∣∣∣ is set to more than 1 in the

algorithm, the whales are forced to move away from the prey and find a more suitable prey,
which enhances the global search capability of the algorithm. This behaviour is represented
in mathematically as:

→
D =

∣∣∣∣→C · →Xrand −
→
X(t)

∣∣∣∣ (18)

→
X(t + 1) =

→
Xrand −

→
A·
→
D (19)

where
→

Xrand represents the position vector of a randomly selected individual whale.

3.2. Improved Whale Optimisation Algorithm

Although WOA has achieved good results in many practical applications, the com-
mon WOA still has problems with local optimization and a low convergence accuracy.
Therefore, in order to further improve the performance of the WOA algorithm, four im-
provement strategies are introduced, and an improved whale optimization algorithm
(IWOA) is proposed.
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3.2.1. Gaussian Mapping

The global convergence speed and quality of the WOA optimal solution are influenced
by the quality of the initial population. A population with a higher degree of diversity
can improve the overall performance of the algorithm in finding the optimal solution. A
Gaussian mapping is therefore used in this study to generate a more uniformly distributed
initial population to improve the performance of the algorithm [21]. The Gaussian mapping
is defined as:

xn+1 =

{
0 xn = 0

1
xnmod(1) xn 6= 0

(20)

The Gaussian mapping allows the states within a certain range of the search space to
be maximally traversed without repetition. This ensures the diversity of the population and
makes it easier for the improved algorithm to avoid local optima and therefore improving
the ability of the algorithm to find the best solution.

3.2.2. Elite Reverse Learning Strategy

To avoid the problem of the algorithm entering early maturity as the population
diversity is increased, the elite reverse learning strategy is adopted in this study to optimise
the global search ability of the algorithm. An elite group of individuals with larger fitness
values among the original solution and its reverse solution are selected. The reverse solution
of the elite group is solved to increase the population diversity. The best individuals from
the current population and the reverse population of the elite group are then selected as
the child individuals for the next iteration round [22].

Suppose εi = (εi,1, εi,2, . . . , εi,N)(i = 1, 2, . . . , M) is an elite individual in the N-dimen-
sional search space. The reverse solution ε̃i of this individual is defined as:

ε̃i = (ε̃i,1,ε̃i,2, . . . , ε̃i,N) (21)

ε̃i,j = δ
(
αbj + βbj

)
− si,j (22)

where ε̃i,j represents the j-dimensional vector of the elite solution ε̃i, δ is a random value in
the interval [0,1], and αbj = max

(
εi,j
)

and βbj = min
(
εi,j
)

define the dynamic boundary.
The dynamic boundary not only overcomes the difficulties of preserving search experience
with the fixed boundary, but also locates the elite reverse solution in the search space, which
is conducive to the convergence of the algorithm. If ε̃i,j crosses the boundary, it needs to
be reset:

ε̃i,j = rand
(
αbj, βbj

)
, i f ε̃i,j

〈
βbj or ε̃i,j

〉
αbj (23)

where rand
(
αbj, βbj

)
represents a random value within the interval [αbj, βbj].

3.2.3. Nonlinear Adaptive Weights

Because the WOA shows a nonlinear trend in the overall optimisation process, the use
of a linear inertia weight descent strategy in WOA does not provide a good representation
of the actual situation during the iterative process of the algorithm. Inspired by the use of
inertia weights to optimise the particle swarm optimisation (PSO) algorithm in a previous
study [23], this idea is adapted for WOA by introducing a nonlinearly varying inertia
weight in this study:

ω(t) = ωmax − (ωmax −ωmin) ∗ arcsin
t

tmax
∗ 2

π
(24)

In the equation, ωmaxand ωmin represent the maximum and minimum values of ω,
respectively, t is the current number of iterations, and tmax is the maximum number of
iterations. When t is small at the beginning of the iterations, the value of ω is large, and the
rate of decrease of ω is slow, thereby ensuring the global search ability of the algorithm
in the first iteration. As the number of iterations increases, the value of ω decreases in a
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nonlinear manner and the rate of decrease of ω increases rapidly, thereby ensuring good
local search ability in the later stages. The use of the nonlinear varying inertia weight
therefore allows the algorithm to flexibly adjust its global and local search abilities.

Substituting Equation (24) into Equations (17) and (19), the improved mathematical
model for updating the position of the whale is obtained as:

→
X(t + 1) =


ω(t)

→
X∗(t)−

→
A·
→
D, i f p < 0.5

ω(t)
→
D∗·ebl · cos(2πl)

→
X∗(t), i f p� 0.5

ω(t)
→

Xrand −
→
A·
→
D, i f p < 0.5 and

∣∣∣∣→A∣∣∣∣ ≥ 1

(25)

3.2.4. Levy Flight Strategy

To prevent the diversity of the WOA algorithm from decaying too quickly, which
causes the algorithm to tend towards local optima, the Levy flight strategy is applied in the
updating of the whale position [24]. This allows the algorithm to exit the local optima to
improve its global search ability. The strategy is mathematically expressed as:

L(s, γ, µ) =

{ √
γ

2π exp
[
− r

2(s−µ)

]
1

(s−µ)3/2 0 < µ < s < ∞

0 s ≤ 0
(26)

where µ is the minimum jump step and γ is a parameter greater than 0. However, the
actual process for actually calculating the search path of a Levy flight is very complicated.
Yang et al. [25] simplified and applied the Fourier transform to the Levy distribution func-
tion to obtain its probability density function in power form and then used the Mantegna
algorithm to model the flight path as:

→
X(t + 1) =

→
X(t)τL(s)

→
X(t) (27)

L(s) ∼ |s|−1−β, 0 < β ≤ 2 (28)

where
→
X(t) is the current position of the individual whale,

→
X(t + 1) the updated position,

and τ is the step scaling factor. s is the random step size of the Levy flight, which is
expressed as:

s =
u
|v|1/β

(29)

where both u and v obey the normal distribution, u ∼ N
(
0, σ2

u
)
, v ∼ N

(
0, σ2

v
)
. σu and σv

are defined as: {
σu =

{
Γ(1+β) sin(πβ/2)

Γ[((1+β)/2)]·2(β−1)/2

}
σv = 1

(30)

where Γ is the standard Gamma function.

3.3. LSTM

Gradient disappearance and explosion may occur after multiple iterations when
recurrent neural networks (RNN) are used to process time series [26]. To overcome this
issue, Hochreiter et al. [27] proposed a LSTM network to improve the traditional RNN
model. Compared to the hidden cells of a RNN, the hidden cells of a LSTM are more
complex. The LSTM can selectively add or reduce the information content as information
flows through the structure of the hidden cells. Each memory block of the LSTM consists
of one or more self-connected memory cells and three gating units comprising the input,
output, and forget gates. A schematic of the LSTM structure for a single cell is shown in
Figure 1.
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Figure 1. LSTM structure diagram.

In the above structure diagram, ft represents the forget gate, which controls whether
the hidden cellular state of the upper layer in the LSTM is filtered. it represents the input
gate, Ct−1 represents the cell state at the previous moment, Ct represents the cell state at
the present moment, and Ot represents the output gate. xt and ht represent the input and
output at the current moment, respectively, and σ and tanh represent the sigmoid and
hyperbolic tangent functions, respectively. The forget gate, input gate, output gate, and
weight matrix of the cell state are denoted by w f , wi, wo, and wc respectively. b f , bi, bo,
and bc represent the offset vectors of the forget gate, input gate, output gate, and cell state,
respectively. The calculation principles for each control gate are described below.

The value of the input gate it and the candidate state value C̃ of the input cell at
moment t are first calculated:

it = σ(wi·[ht−1, xt] + bi) (31)

C̃ = tanhwc·[ht−1, xt] + bc (32)

The activation value ft for the forget gate at moment t is then calculated:

ft = σ
(

w f ·[ht−1, xt] + b f

)
(33)

Using the values obtained in the above two steps, the cell state Ct at moment t can
be obtained:

Ct = ft × Ct−1 + it × C̃t (34)

After obtaining the cell state update values, the output gate values can be obtained:

Ot = σ(wo·[ht−1, xt] + bo) (35)

ht = Ot × tanh(Ct) (36)

Through the above calculations, the LSTM can effectively use the input function as
long-term memory [28].

Overfitting is a common problem in machine learning. When the model is overfitting,
the loss function of the model on the test set data is large and the prediction accuracy is
low. To solve the overfitting problem, this study adds a Dropout layer to the LSTM neural
network. With this, the LSTM neural network will not depend too much on specific local
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features so as to improve the overall generalization ability of the model and avoid the
occurrence of overfitting.

3.4. Residual Sequence Decomposition and Reconstruction
3.4.1. Residual Series Decomposition

A residual sequence x(t) is constructed from the differences between the predicted
and true values of the IWOA-LSTM model and used as the raw data for the subsequent
multimodal decomposition.

Empirical mode decomposition (EMD) [29] is a method for dealing with the time-
frequency dependence of adaptive signals by decomposing the signal into individual
components that are independent of one another. Compared to the Fourier and wavelet
transforms, EMD is very adaptive and powerful because it leaves the basic functions
behind and only decomposes the signal based on the time-scale characteristics of the data
themself. However, in practice, the time signals obtained are often anomalous, which
inevitably affects the choice of the extrema and results in the envelope being a combination
of anomalous and real signals. The intrinsic mode function (IMF) components filtered
by this envelope are then inevitably affected by the anomalous signals and suffer from
pattern overlap.

To solve the problem of mode aliasing in the EMD algorithm, Huang [30] proposed
the ensemble empirical mode decomposition (EEMD) method. In this noise-assisted
processing method, the uniform spectrum distribution of zero-mean noise is used in
the signal analysis. When the signal is consistent with the time-frequency distribution
of the white noise background throughout, the different time scales in the signal are
automatically distributed to the appropriate reference scale. Because of the nature of zero-
mean noise, after many repetitions the impact of the reconstruction error can be reduced
by the average noise. However, the computation time of the algorithm is also greatly
increased. The CEEMDAN algorithm adds a finite amount of adaptive white noise to the
EMD decomposition stage to ensure that the reconstruction error is essentially zero even
when the number of integration averages is small. Therefore, the CEEMDAN algorithm
not only solves the modal mixing problem of the EMD algorithm, but also overcomes the
shortcomings of the EEMD algorithm, which requires multiple integration averages and
has low computational efficiency [31].

The detailed steps of the CEEMDAN algorithm are as follows:

1. Random white noise of a certain amplitude ni(t) is added to the original signal
x(t) to form a new signal xi(t) = x(t) + ni(t), i = 1, 2, . . . , M (M is the number of
averaging processes).

2. The new signal xi(t) is decomposed using EMD as xi(t) = ∑n
n=1 ci,n(t) + ri(t) where

n is the number of EMD-decomposed IMF components, ci,n(t) the individual IMF
components, and ri(t) the residual vector.

3. The overall average of the resultant n modal components gives the first eigenmodal
component of the CEEMDAN decomposition: c1(t) = 1

n ∑n
n=1 c1,n(t).

4. The residual when the first modal component is removed is calculated: r1(t) =

x(t)− c1(t).
5. Using r1(t) as a carrier for the new signal, steps (1), (2), and (3) are repeated until the

obtained residual signal cannot be further decomposed. Assuming that the number of
eigenmodal components obtained at this point is k, the original signal is decomposed
as x(t) = ∑k

k=1 ck(t) + rk(t).

The flow chart of the signal decomposition process in the CEEMDAN method is shown
in Figure 2.
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3.4.2. Combination of Residual Assignments of Multidimensional Eigenmodal
Components

The residual sequence x(t) is decomposed using the CEEMDAN method to k subseries,
consisting of the eigenmodal components. The subseries are re-divided into training
and test sets and predicted using the IWOA-LSTM model. The final residual correction
sequence obtained by directly adding up the prediction results of the k subseries will not be
impacted by differences in the accuracies between different subseries. A combined residual
assignment model for the k subseries is therefore used in this study. Because the range of
each subseries is different, it is necessary to first normalise each subseries before residual
assignment. The model is expressed as:

ωi =

1
ϕ(i)

1
∑k

i=1 ϕ(i)

(37)

ϕ(i) =
1
t

t

∑
ε=1

∣∣∣xi(ε)− ˆxi(ε)
∣∣∣ (38)

x̂ =
k

∑
i=1

ωi x̂i (39)
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where ωi represents the weight of the prediction result of the ith sub-series; ϕ(i) the mean
absolute error between the true and predicted values of the ith subseries; xi(ε) and ˆxi(ε) the
true and predicted values of the εth data of the ith sub-series, respectively; x̂i the prediction
result of the ith sub-series; and x̂ represents the data after residual correction.

3.5. IWOA-LSTM-CEEMDAN Residual Correction Model Construction Process

A flow chart for the construction of the prediction model is shown in Figure 3. The
main process is comprised of data pre-processing, improvement of the WOA, construction
of the IWOA-LSTM model, decomposition and reconstruction of the residual series, and
evaluation and analysis of the model’s prediction values.
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1. Data pre-processing. Data pre-processing is an important process prior to data mod-
elling because it fundamentally determines the quality of all subsequent data work
and output values. The dataset for this study was sourced from a working face in a
coal mine in Guizhou province. There are some missing values in the collected dataset
because of network transmission issues. Therefore, the missing values in the data
need to be filled, following which data downscaling and normalisation are applied on
the data before suitable data are finally selected from the dataset for model training.
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2. Improvement of WHO. Gaussian mapping is performed on the initialised population
to produce a more uniformly distributed initial population. Elite backward learning
is then performed on all the individuals in the solution space to select the optimal
individual based on the fitness value. This is followed by the updating of the adaptive
weight factor ω in the WOA algorithm to update the positions of the individual whales.
The optimal individual is finally updated using Levy flight strategy optimisation. The
fitness value of the optimised individual obtained using these four strategies is then
judged to determine if the individual should be retained. This approach increases the
likelihood for the algorithm to exit local optima and improve its convergence accuracy.

3. Construction of the IWOA-LSTM model. The dataset is divided into training, valida-
tion, and test sets. The IWOA-LSTM model is trained using the training set. The data
from the validation set is used to monitor the model for overfitting. The data from
the test set is input to the model to obtain the prediction results from the model. The
differences between the true and predicted values are used as the initial data of the
residual series.

4. Decomposition and reconstruction of residual sequences. Multimodal decomposition
of the residual sequence is performed using the CEEMDAN method described in
Section 3.4.1. The training, validation, and test sets are divided into individual
eigenmodal components separately. The IWOA-LSTM model is then used to predict
each eigenmodal component, and the residuals are assigned to each subsequence to
obtain the predicted value of the residual-corrected sequence. This predicted value
is added to the predicted value from the IWOA-LSTM model in step 3 to obtain the
prediction of the final IWOA-LSTM-CEEMDAN residual-corrected model.

5. Model evaluation analysis. The forecasting ability before and after the model improve-
ment is compared based on model evaluation indicators. The changes in the model
forecasting effectiveness are analysed.

3.6. Evaluation Indicators

The evaluation indicators used in this study are the mean absolute error and root mean
square error. Because absolute values are taken for the error values in the mean absolute
error, there is no possibility of positive and negative errors cancelling one another out. The
mean absolute error can therefore better reflect the actual prediction error. The existence
of large errors in the predicted value will cause the value of the root mean square error to
become larger; therefore, the root mean square error can effectively reflect the degree of
dispersion in the error value. The explicit formulae for the errors are given by:

MAE =
1
m

m

∑
i=1

∣∣(yreal − ypre
)∣∣ (40)

RMSE =

√
1
m

m

∑
i=1

(
yreal − ypre

)2 (41)

where m is the number of samples, yreal is the true value, and ypre is the prediction result.
Obviously, a smaller value of the evaluation indicator indicates a smaller error between the
real and predicted values and a higher prediction accuracy of the model.

4. Results and Discussion

The characteristics of the dataset used in this study to verify the reliability and prac-
ticality of the proposed model are listed in Table 1, and the structure of the constructed
model is shown in Figure 3. The single-step and multi-step experimental prediction results
are compared with those from the BP neural network and the GRU, LSTM, WOA-LSTM,
and IWOA-LSTM residual correction models, and the prediction results are analysed to
show that the proposed model has higher prediction accuracy.
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4.1. Data Dimensionality Reduction Analysis

Missing data may exist in spatio-temporal sequence data from underground coal
mines because of communication errors or network transmission delays. Because missing
data can affect the prediction accuracy of the model, the missing data in the raw data were
filled in using the missing data treatment method proposed in Section 2.1. After obtaining
the complete dataset, PCA downscaling was performed on the dataset. Figure 4 shows the
cumulative contributions of the downhole multidimensional monitoring data to the gas
concentration. To cover the main components of the dataset, 98% of the main content of
the original dataset needs to be retained in the data. As shown in Figure 4, the threshold
value set could already be reached when the original data was downscaled from multiple
dimensions to three dimensions.
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To verify the necessity and validity of dimensionality reduction, the original dataset
and the dataset after PCA dimensionality reduction were used as the input data for the BP,
GRU, LightGBM, and LSTM models. The mean absolute errors of the prediction results
from the different models are compared in Table 2.

Table 2. Comparison of data prediction errors before and after dimensionality reduction for
each model.

Model Name Raw Data Prediction Error Data Prediction Error after
Dimensionality Reduction

BP model 0.0233 0.0218
GRU model 0.0198 0.0181

LightGBM model 0.0211 0.0193
LSTM model 0.0190 0.0177

The results of the above experiment show that the prediction accuracy of each model
was significantly improved after dimensionality reduction was applied on the input dataset.
The necessity and effectiveness of data dimensionality reduction were therefore verified.

4.2. Analysis of IWOA Algorithm

To evaluate the performance of the proposed IWOA algorithm, the 10 typical bench-
mark test functions shown in Table 3 were used for simulation experiments in this study [32].
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Table 3. Functional expressions of benchmark functions.

Function Name Function Formula Dimensionality Search Interval fmin

Sphere f1(x) =
D
∑

i=1
xi

2 30 [−100,100] 0

Schwefel’Sp2.22 f2(x) =
D
∑

i=1
|xi| ÷∏D

i=1|xi| 30 [−100,100] 0

Quadric f3(x) =
D
∑

i=1

(
∑i

j=1 xj

)2 30 [−100,100] 0

Schwefel’Sp2.21 f4 = maxi(|xi|), 1 ≤ i ≤ D 30 [−50,50] 0
Rosenbrock f5 = ∑D−1

i=1

[
100
(

xi+1 − xi
2)2

+ (xi − 1)2
]

30 [−30,30] 0

Noise f6(x) = ∑D
i=1 ixi

4 + random[0, 1) 100 [−10,10] 0
Step f7(x) = ∑D

i=1(|xi + 0.5|)2 100 [−100,100] 0
Schwefel f8(x) = ∑D

i=1−xi sin
(√
|xi|
)
+ 418.9829× D 100 [−500,500] 0

Rastrigin f9(x) = ∑D
i=1
[
xi

2 − 10 cos(2πxi)÷ 10
]

100 [−10,10] 0

Ackley f10(x) = −20 exp
(
−0.2

√
1
D ∑D

i=1 xi
2
)

100 [−50,50] 0

To verify the validity and effectiveness of the multi-strategy improvement of the
WHO, simulations were carried out for each test function in which the maximum number
of algorithm iterations was set to 1000 and the number of populations was set to 30. The
optimal iterative convergence curves for each test function are shown in Figure 5.

The optimised values of the test functions used for this study were all 0. The horizontal
coordinate of each curve in Figure 5 is the number of iterations, and the vertical coordinate
the is value of the logarithm of the fitness value. A smaller value of the vertical coordinate
corresponds to a higher convergence accuracy of the model. As shown in Figure 5, IWOA
not only had high convergence accuracy but also a faster convergence speed throughout
the entire search process for each given benchmark test set. These results show that IWOA
has benefitted from the higher degree of diversity in the initial population and nonlinear
adaptive weights, as well as the Levy flight strategy. These improvements allow the
weights in IWOA to change adaptively with the current population and individual fitness
values. Regions in the search space where optimal solutions may exist can therefore be
rapidly searched for during the initial iterations while balancing global search and local
exploitation capabilities in the process of finding the optimal solution. This avoids the
process of ineffective iterations in WOA and effectively increases the convergence speed of
the algorithm.

In this study, IWOA algorithm was used to optimize the hyperparameters of the
LSTM network. The optimized hyperparameters of LSTM model were set as follows:”
Hidden layers =2”, ”Number of neurons in the first layer = 115”, “Number of second layer
neurons = 55”, ”Dropout = 0.2”, ”epoch = 11”, and ”batch-size = 256”.

4.3. CEEMDAN Decomposition and Reconstruction of Residual Sequences

Considering the non-smoothness of the residual series, the residual series was first
decomposed using the CEEMDAN method. The results are shown in Figure 6.
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Figure 5. Convergence curves of each test function. (a) Comparison of the two algorithms on
f1; (b) Comparison of the two algorithms on f2; (c) Comparison of the two algorithms on f3;
(d) Comparison of the two algorithms on f4; (e) Comparison of the two algorithms on f5; (f) Com-
parison of the two algorithms on f6; (g) Comparison of the two algorithms on f7; (h) Comparison
of the two algorithms on f8; (i) Comparison of the two algorithms on f9; (j) Comparison of the
two algorithms on f10.

Because the non-smoothness of the residual series results in the existence of more IMF
components in the CEEMDAN decomposition, the residual assignment method was used
to calculate the weights of the prediction errors of each eigenmodal component during
the assignment of weights to the predicted values of each eigenmodal component. This
resulted in the restructuring and merger of the subseries. The dataset of each sub-series
was divided into training, validation, and test sets at a ratio of 7:2:1. The divided dataset
was input into the IWOA-LSTM model for training and the data in the test set used for
testing. The mean absolute errors of the true and predicted values and the weights were
calculated using Equations (37) and (40), respectively, and are shown in Table 4.

Table 4. Prediction errors and weights of each subsequence.

Subsequence Name Mean Absolute Error Weighting

IMF1 0.00568 0.0518
IMF2 0.00625 0.0471
IMF3 0.00513 0.0573
IMF4 0.00309 0.0952
IMF5 0.00574 0.0512
IMF6 0.00272 0.1081
IMF7 0.00204 0.1442
IMF8 0.00367 0.0802
IMF9 0.00125 0.2353
RMSE 0.00124 0.2372

Using the weights obtained from Table 4 and Equation (29), the value of the normalised
reconstructed sequence could be obtained. Inverse normalisation was then performed to
obtain the CEEMDAN reconstructed residual correction sequence, which was added to the
predicted values from the IWOA-LSTM model to obtain the final prediction values of the
IWOA-LSEM-CEEMDAN residual correction model.

4.4. Model Prediction Analysis and Comparison

To verify the accuracy of the proposed IWOA-LSTM-CEEMDAN residual correction
model, the BP, GRU, LSTM, WOA-LSTM, and IWOA-LSTM (residual correction) models
were used for comparison tests. The prediction results from the different models are shown
in Figure 7.
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Figure 6. CEEMDAN decomposition of residual sequences.

As can be seen from the above graphs, the IWOA-LSTM-CEEMDAN residual correc-
tion model achieved a higher prediction accuracy than the traditional machine learning,
WOA-LSTM, and IWOA-LSTM residual correction models. A comparison of the single-step
prediction values and the multi-step prediction MAE and RMSE values (prediction step of
3) for each model is shown in Table 5.
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Table 5. Comparison of model evaluation indicators.

Model Name
Single-Step Prediction Multi-Step Prediction

MAE RMSE MAE RMSE

BP 0.01611 0.02068 0.03091 0.04468
GRU 0.01332 0.01769 0.02697 0.03524
LSTM 0.01239 0.01644 0.02778 0.03727

WOA-LSTM 0.01165 0.01513 0.02417 0.03069
IWOA-LSTM (Residual correction model) 0.00972 0.01323 0.02011 0.02796

IWOA-LSTM-CEEMDAN (Residual
correction model) 0.00846 0.01239 0.01843 0.02518

The MAE and RMSE values of each model are the average values obtained from the
model trained ten times with the same parameters. The MAE and RMSE values of the
IWOA-LSTM-CEEMDAN residual correction model proposed in this study are the smallest
among all models for both single-step and multi-step prediction. This proves that the gas
concentration prediction model proposed in this study has a higher prediction accuracy.
Because the purpose of the above models is to predict gas concentrations for safe operation
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of gas mines, the ability of the proposed model to act as an early warning indicator for
actual gas accidents was verified using the data recorded by detection equipment for
the mine gas concentration on the eve of a coal and gas outburst accident in 2021. The
prediction results obtained by inputting these data into the proposed model are shown in
Figure 8.
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Figure 8. Case study of coal and gas outburst accident.

As can be seen in Figure 8, the proposed model was able to replicate the gas concen-
tration trends over a period of time before the coal and gas protrusion accident occurred.
When the predicted value of the gas concentration is greater than a threshold, the manager
can inform the underground operators to stop work immediately and withdraw from
the mine. The gas concentration can be artificially reduced through means such as gas
extraction and the spraying of water mist and the gas concentration waited to stabilise to a
safe value before resuming operations.

4.5. Model Generalisability Analysis

During the selection of the study area, it was found that different regional coal mines
have strong local characteristics. Coal and gas protrusion is a phenomenon involving the
sudden destruction of gas-containing media in which the destroyed solids become the
subject of the protrusion event. The coal structure in each coal mine is the main factor
that determines the coal seam [33]. Therefore, to verify the generality of the proposed
algorithm, a prediction analysis was carried out for the gas concentrations at three different
coal mines comprising of the Shanxi (A), Yunnan (B), and Anhui (C) mines. The results of
the comparison are shown in Figure 9.

As shown in Figure 9, the IWOA-LSTM-CEEMDAN model proposed in this study was
compared with the WOA-LSTM model and the IWOA-LSTM residual correction model
and validated on several coal mine datasets. The IWOA-LSTM-CEEMDAN achieved the
smallest MAE and RMSE values, which further illustrates the good generalisability of the
proposed prediction model.
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5. Conclusions

To improve the accuracy of predicted gas concentrations, a multi-strategy IWOA
algorithm was proposed in this study to address the shortcomings of the standard WOA
algorithm. Deep learning techniques were applied for gas concentration prediction. An
LSTM network model based on the IWOA algorithm was proposed, and the CEEMDAN
algorithm was used to perform a multimodal decomposition and reconstruction of the pre-
diction error of the LSTM model. The IWOA-LSTM-CEEMDAN residual correction model
was then established by assigning weights to the residuals and reconstructing the residual-
corrected sequences based on the prediction errors of each normalised subsequence. The
following contributions were achieved in this study:

1. A multi-strategy optimisation of the WOA algorithm was proposed to improve the
convergence speed and convergence accuracy of the algorithm. Through the use
of benchmark test functions, the convergence accuracy and convergence speed of
the improved algorithm were verified to be improved compared with those of the
original model.

2. To improve the prediction accuracy of the residual correction model, a multimodal
decomposition of the residual series was performed using the CEEMDAN algorithm.
Each sub-series was then predicted separately, and weights were assigned to each
sub-series through residual assignment. The reorganized residual correction series
resulted in an obvious improvement in the prediction accuracy of the model.

A gas accident is a serious safety incident in coal mining. It endangers the safety
of coal mining enterprises, causes huge economic losses and, more importantly, puts the
lives of workers at risk. Therefore, it is imperative that gas concentration forecasts are
undertaken. The results in this study show that it is entirely feasible to apply the IWOA-
LSTM-CEEMDAN residual correction model to analyse and predict gas concentrations.
These predictions can effectively reflect the future development trends of the gas concentra-
tion and provide a scientific basis for coal mining enterprises to take safety measures in
advance [34]. Because of the limitations of the data in this study, the properties of the mine
itself, such as the seam thickness and roof pressure, were not taken into account. In future
research, more comprehensive data attributes will be collected to improve the prediction
accuracy of the model, and the time step will be extended while maintaining the accuracy
of the model prediction to give underground workers more time to escape in the event of a
gas incident.
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