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Abstract: Dual cameras with visible-thermal multispectral pairs provide both visual and thermal
appearance, thereby enabling detecting pedestrians around the clock in various conditions and appli-
cations, including autonomous driving and intelligent transportation systems. However, due to the
greatly varying real-world scenarios, the performance of a detector trained on a source dataset might
change dramatically when evaluated on another dataset. A large amount of training data is often
necessary to guarantee the detection performance in a new scenario. Typically, human annotators
need to conduct the data labeling work, which is time-consuming, labor-intensive and unscalable.
To overcome the problem, we propose a novel unsupervised transfer learning framework for multi-
spectral pedestrian detection, which adapts a multispectral pedestrian detector to the target domain
based on pseudo training labels. In particular, auxiliary detectors are utilized and different la-
bel fusion strategies are introduced according to the estimated environmental illumination level.
Intermediate domain images are generated by translating the source images to mimic the target ones,
acting as a better starting point for the parameter update of the pedestrian detector. The experimental
results on the KAIST and FLIR ADAS datasets demonstrate that the proposed method achieves new
state-of-the-art performance without any manual training annotations on the target data.

Keywords: pedestrian detection; unsupervised transfer learning; domain adaptation; deep learning;
multispectral fusion

1. Introduction

As one of the essential tasks in the field of computer vision, pedestrian detection has
been widely discussed and investigated over the past decades. Pedestrian detection plays a
crucial role in various applications, such as autonomous driving [1,2], public surveillance [3,4],
care for the elderly [5], and intelligent transportation systems [6,7]. Most of the successful
pedestrian detectors are restricted to the images sensed by visible cameras with a good light-
ing condition and might fail to work when there is insufficient illumination, e.g., during
the night time or adverse weather conditions. Different from the conventional cameras
that sense images using visible light, thermal cameras operating in the infrared spectrum
could capture the infrared radiation reflecting the temperatures of a sensed object and
its background environment. Regarding pedestrian detection, a pedestrian usually has a
distinct thermal signature, including the shape and temperature features compared to the
background being viewed. It is robust to detect pedestrians from a thermal camera against
illumination changes. Nevertheless, thermal cameras also have some shortcomings for
pedestrian detection, such as sensing fewer detailed appearance features and background
textures than visible cameras. Additionally, there is the so-called thermal crossover phe-
nomenon where pedestrians might get indistinguishable from the background environment
when their temperatures are similar [8]. Some typical examples could be found in Figure 1.
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(a) (b) (c)

Figure 1. Typical samples of multispectral pedestrian images. The first and second row are visible
and thermal images, respectively. (a) Both visible and thermal images are captured in good conditions.
(b) Thermal image is captured at ambient temperatures similar to the body temperature and the
thermal crossover may occur, leading to blurred and low-contrast results, while the quality of visible
image is still good. (c) Visible image is captured under an extreme lighting condition, while their
paired thermal image is robust against the illumination change.

To tackle these issues, researchers have proposed solutions for pedestrian detection based
on dual-camera systems with a visible and thermal camera pair [9]. Generally speaking, the vis-
ible and thermal cameras could provide complementary information compared to a single-
modality camera to improve the performance of pedestrian detection. Images captured by
a visible camera can provide detailed visual appearance details of pedestrians depending
on good illumination. In contrast, the thermal camera is not sensitive to the surrounding
illumination condition and could provide robust human silhouettes. Thus, it is helpful
to combine the advantages of both cameras and fuse the complementary characteristics
from the two separate modalities to achieve robust pedestrian detection under challenging
illumination and weather conditions.

The majority of current research focuses on designing an appropriate fusion strategy
to exploit the multispectral information from the dual cameras [10–12]. To the best of our
knowledge, although these methods that implement fusion detectors based on DCNNs
have obtained remarkably good performance, the current pedestrian detectors may be
biased towards the popular benchmarks in the single-dataset training and test pipeline,
thus reducing their generalization capability [13]. The real-world data contain images
captured under various illumination and weather conditions, making the direct evaluation
performance (i.e., without retraining the detector) not optimal [14]. Usually, to guarantee
the performance of a pedestrian detector in a new scenario, human annotators need to label
the new data for the supervised training process. A qualified annotator is required to be an
expert at distinguish pedestrians on both visible and infrared spectra for the labeling of
multispectral images. Moreover, the labeling work is labor-intensive and time-consuming,
making the deployment of a pedestrian detector unscalable. For that reason, it is beneficial
to design a method that could adapt detectors from the source dataset to the target domain.

Here, we define unsupervised transfer learning as the case of having abundant la-
beled source data and no labeled target training data. As far as we know, only limited
initial work [15,16] exists on unsupervised transfer learning in the area of visible-thermal
pedestrian detection. Inspired by their idea of using pseudo training labels, we proposed a
basic unsupervised transfer learning framework in our prior paper [17] to adapt pedestrian
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detectors to new scenarios, where the pseudo labels are generated to update the parameters
of a detector.

In this paper, we extend the prior work into a novel and unified framework. The overall
framework consists of two key steps: initial adaptation and iterative fine-tuning (as shown
in Figure 2). Since there is usually an obvious domain gap between the source and target
domains, we construct an intermediate domain lying between the source and target mul-
tispectral data by contrastive learning, to reduce the domain gap. We perform the initial
adaptation by training the detector on the intermediate domain. After that, initial pseudo la-
bels of high quality are generated for the subsequent fine-tuning of the detectors. Given that
the environmental illumination has different impacts on the detection results from different
modalities [18], the use of estimated illumination level is investigated to guide the pseudo
label fusion in our work. By conducting extensive experiments, the effectiveness of the
proposed framework is validated. The main contributions are as follows:

• A novel and unified unsupervised transfer learning framework for multispectral
pedestrian detection is proposed. The adaptation of a multispectral detector using
pseudo training labels, leveraging auxiliary detectors specializing in single modalities;

• The idea of using an intermediate domain representation is introduced to reduce the
domain gap between the source and target domains. The high-quality initial pseudo
labels are generated based on the this intermediate domain;

• An illumination-aware label fusion strategy is proposed to select the best pseudo labels
from different modalities, where the environmental illumination level is accessed by
an independent illumination estimation network;

• Experimental results on the KAIST [9] and FLIR ADAS [12] datasets demonstrate
that our proposed method outperforms the state-of-the-art unsupervised method and
reports comparable performance with supervised training.

Source Domain Intermediate Domain Target Domain

Image-to-image 

Translation

Detector 

Training
Multispectral 

Detector

Visible 

Detector

Thermal 

Detector

Pseudo Label 

Generation

Stage II: Iterative Fine-tuningStage I: Initial Adaptation

Illumination-Aware 

Label Fusion

Figure 2. Illustration of the proposed scheme. The overall process consists of two stages: initial
adaptation and iterative fine-tuning. The initial adaptation stage aims at handling the domain shift
problem across the source and target domains. The iterative fine-tuning stage is adopted to converge
the multispectral pedestrian detector on the target domain progressively, based on illumination-aware
fused pseudo labels.

The rest of this paper is organized as follows. Section 2 reviews the related work
focused on pedestrian detection in the literature. Section 3 introduces the proposed frame-
work and its implementation details. Next, Section 4 demonstrates the experimental results
and discussion. Finally, the conclusion of this paper and potential future work directions
are presented in Section 5.

2. Related Work
2.1. Visible Pedestrian Detection

Pedestrian detection is one of the most fundamental tasks in many computer vision
applications. In recent years, many methods have been proposed for pedestrian detection,
and most of these research works are based on visible cameras due to the high resolution
and low price. Contemporary pedestrian detection methods have developed rapidly from
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handcrafted features to deep learning approaches. In the year 2005, Dalal and Triggs [19]
proposed the histograms of oriented gradient (HOG) descriptors for pedestrian detection.
Later, inspired by the HOG descriptor, Felzenszwalb et al. [20] proposed the deformable
part models (DPM), which can describe a human as a collection of different parts to improve
the robustness of the method. Dollár et al. [21] investigated the integral channel features
(ICF) on pedestrian detection. Further, they proposed a variant of ICF called aggregated
channel features (ACF) [22], which is one of the most successful handcrafted feature-based
pedestrian detection approaches.

With the advent of DCNNs, methods based on deep learning have predominated the
research on pedestrian detection. Generally, these methods fall into two main categories:
two-stage and single-stage detectors. The region-based convolutional neural network
(R-CNN) [23] initiated a two-stage work using selective search to generate region proposals
for detection. Based on the R-CNN framework, various solutions have been proposed to
speed up the detection, such as Fast R-CNN [24] and Faster R-CNN [25]. Faster R-CNN
realizes the end-to-end detection relying on pure DCNNs to perform both region pro-
posal and classification, which makes it a standard and popular baseline for pedestrian
detection [26]. Derived from the Faster R-CNN architecture, a variety of pedestrian de-
tection methods have been introduced [27–29]. On the other hand, the most widely used
one-stage detectors belong to the YOLO [30], and SSD [31] families. Compared to the
two-stage detectors, those one-stage detection frameworks can directly predict the output
bounding boxes without the intermediate region proposal process, leading to a simpler
and faster model architecture while losing the accuracy performance sometimes.

2.2. Thermal Pedestrian Detection

Although pedestrian detection based on visible cameras has been widely used in
many applications, satisfactory performance cannot be guaranteed at nighttime or under
low lighting conditions. Recently, pedestrian detection on thermal imagery has attracted
increasing attention due to its superiority in low-illumination conditions. In practice, most
of the current research benefits from the excellent works on visible imagery, such as the
popular HOG descriptor and Faster R-CNN framework. Chang et al. [32] proposed an early
work based on the HOG descriptor, where AdaBoost is used to perform the detection task.
In [33], the fusion of HOG features and local binary patterns in thermal modality showed
an impressive performance in the age of handcrafted features.

Similar to the development of visible pedestrian detectors, the success of DCNNs has
advanced the detection based on thermal data significantly. However, the natural charac-
teristics of thermal images, such as low resolution and blurred details, restrict the further
improvement of the performance. Ghose et al. [34] adopted saliency maps to augment
the thermal images and thus improve the training of Faster R-CNN in thermal images.
In [35,36], the authors presented enhancement methods based on generative adversarial
network (GAN) for thermal pedestrian detection. Moreover, the work of [35] borrowed
visible training data from other sources to realize enhancement for the so-called pseudo
multispectral pedestrian detection as a compromise for the absence of paired multispectral
data, which proves the importance of real visible-thermal multispectral data and pedestrian
detection based on it.

2.3. Multispectral Pedestrian Detection

For a pedestrian detection task, the fusion of sensors from multiple modalities
(e.g., cameras, LiDAR, and radar) can provide more useful information to achieve ro-
bust performance for self-driving and public video surveillance applications. Among all
these sensors, a visible-thermal multispectral camera is one of the most common choices
due to the vision-like sensory for human intervention, and lower price compared to
other fusion solutions [37]. Like many modern computer vision tasks, the research on
visible-thermal multispectral pedestrian detection is also data-driven. The quality of
datasets predetermines the performance of pedestrian detectors, especially those based
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on DCNNs. The recently published large-scale datasets, such as KAIST [9], CVC-14 [38] and
FLIR ADAS [12], have attracted much research attention on the fusion of multispectral
information for all-day pedestrian detection applications.

Hwang et al. [9] introduced a multispectral ACF encoded to include additional HOG
features of the thermal images. Liu et al. [10] first introduced Faster R-CNN into this area
and proposed four typical architectures where the fusion is implemented at different stages.
Among all these four methods, Halfway Fusion achieves the best performance. From then
on, Faster R-CNN has been adopted as a standard baseline in this area by many researchers
because it is fair and clear to determine whether a tested improvement is due to the proposed
fusion method or the detector itself. König et al. [11] utilized boosted decision trees (BDT)
instead of the original classification network in Faster R-CNN to reduce potential false positives.
Recently, to facilitate more fine-grained fusion, sorts of solutions have been proposed with the
help of semantic information [39,40], attention mechanisms [41,42] and illumination-aware
weighting [18,43]. Specifically, there are two types of illumination-aware weighting designs:
built into the detector [43] or independent illumination network [18], depending on whether
it is built on the computed features in the Faster R-CNN detector. Meanwhile, there are also
several recent works focusing on real-time multispectral pedestrian detection based on one-
stage frameworks such as YOLO and SSD [44–46]. Recently, Li et al. [46] proposed a method
integrating both feature-level fusion and decision-level fusion to ensure reliable detection.

2.4. Unsupervised Transfer Learning

Many works have been proposed for unsupervised transfer learning in the context of
image classification [47,48], while the object detection task consisting of both localization
and classification is much more complicated. This brings unique challenges and has
attracted growing attention very recently. A pioneering work for object detection belongs
to Chen et al. [49], where the problem of domain shift was addressed on both image-level
and instance-level by an adversarial training manner. Saito el al. [50] proposed a method
to focus on the adversarial alignment of local similar features. Hsu et al. [51] proposed to
bridge the large gap between domains with an intermediate domain, with the help of an
image-to-image translation network CycleGAN [52]. Recently, Zhang et al. [53] presented a
coarse-to-fine adaptation method to minimize the feature distance between the same object
category from different domains.

Although multispectral pedestrian detectors trained on a specific dataset have achieved
superior performance, the generalization ability across datasets is limited, leading to re-
training the detector based on new training data [14]. Multispectral data captured from
different real locations have the domain shift problem, as the visible cameras are sensitive
to the illumination conditions and the thermal images have different appearances according
to the environment temperature ranges. To retain the optimal detection performance, the
newly collected data demand the annotation work from experienced experts for retraining,
which makes the real-world deployment slow and unscalable. Thus, unsupervised transfer
learning is utilized to adapt the detectors to the unlabeled target domain, leveraging the
knowledge from the source domain [54].

As far as we know, there is limited unsupervised transfer learning work in the area of
multispectral pedestrian detection. Cao et al. [15] proposed an unsupervised approach to
adapt a generic pedestrian detector to the target multispectral domain without using any
target annotations. Later, Guan et al. [16] combined the pedestrian detection with semantic
segmentation and utilized pseudo annotations to adapt the multispectral detector iteratively.
The final output of their designed detector [16] is in the form of full-size heat maps instead of
bounding boxes. Both of these two methods are implemented based on pseudo labels, while
the large domain gap and varying illumination conditions influence the quality of generated
pseudo labels. How to alleviate these challenging problems has not been studied yet.
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3. Methodology

This section introduces the proposed framework to perform unsupervised transfer
learning (UTL) for multispectral pedestrian detection. Firstly, we present an overview of
the whole framework. Then, the intermediate domain is presented as a bridge between the
source and target domains. Finally, the proposed illumination-aware label fusion strategy
is demonstrated.

3.1. Framework Overview

The task of our proposed UTL multispectral pedestrian detection framework is to
adapt a multispectral pedestrian detector from the source domain S consisting of the source
visible-thermal image pairs {XV

s ; XT
s } and manual annotations Ys to the target domain T

with only data {XV
t ; XT

t }, where V represents the visible spectrum and T is the thermal
modality respectively. The overall framework consists of two main stages, i.e., initial adapta-
tion and iterative fine-tuning. An overview of the proposed framework is presented in Figure 3.

Start

Source Data 

(Labeled)

Intermediate Domain 

Adaptation
Detector Training*

Pseudo Label 

Generation*  
Pseudo Label Fusion

Target Data 

(Unlabeled)

End of Iteration?

Yes

No

End

Initial Adaptation

Iterative Fine-tuning
Detector

Fine-tuning*

Figure 3. The flow chart of our proposed framework. The main unsupervised adaptation process is
divided into two steps: initial adaptation and iterative fine-tuning. In the first stage, the intermediate
visible and thermal images are generated by mimicking the target domain style. The initial adaptation
is performed by training a detector using the intermediate data with source labels. In the second
stage, pseudo labels of the target data generated by both multispectral and auxiliary single-modality
(i.e., visible and thermal) detectors, are fused via an illumination-aware mechanism. The iterative
fine-tuning process is adopted to converge the detector on the target domain progressively. A block
marked with “*” means that the operation is performed for both multispectral and auxiliary detectors.

Since there are common domain shift problems across datasets for both visible and thermal
modalities, we firstly construct the intermediate domainM lying between the source and
target domains, to perform the initial adaptation. An image-to-image translation technique is
applied to the source visible-thermal image pairs to generate the corresponding intermediate
image pairs {XV

m; XT
m} in the intermediate domain M, which matches the global domain

style of the target while keeping the local image content. Consequently, this synthetic domain
located between the source and target domains can help reduce the large domain gap between
S and T . Later, based on the generated intermediate images {XV

m; XT
m} and the source training

labels Ys, the initial adaptation S →M is finished. In this way, an initially adapted detector
benefits from knowledge from both the source and target domains. A detailed description of
the intermediate domain adaptation can be found in Section 3.2.

After that, the initially adapted multispectral detector goes through a second-stage
fine-tuning process M→ T based on iteratively generated training pseudo labels in the
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target domain. When the environmental illumination level is high (e.g., during the sunny
daytime), a visible pedestrian detector generates good detection results, while a thermal pedes-
trian detector still works for a low-illumination detection scenario. Considering that these two
single-modality detectors output reliable results under certain conditions, we adopt them as
auxiliary detectors for the pseudo label generation. An illumination-aware label fusion strategy
is proposed to fuse the generated pseudo labels. In particular, a tiny illumination estimation
network (IEN) is introduced for label fusion, as illustrated in Section 3.3.

3.2. Intermediate Domain Adaptation

As the data distribution varies across datasets, the unsupervised adaptation of a
pedestrian detector between two distant domains is a considerably challenging task.
For instance, the sensed ambient temperature ranges can influence the thermal imaging
results dramatically: a human body is brighter than the background on cold days while
being darker in hot days. Meanwhile, the image contrast also varies according to the sensed
temperature ranges. As for the visible images, they are relatively sensitive to the lighting
conditions. To achieve the domain adaptation for object detection in the color imagery,
Hsu et al. [51] proposed to bridge the large domain gap between the source and target
domains with an intermediate domain, with the help of an image-to-image translation
network CycleGAN [52]. Inspired by this work, we introduce the idea of intermediate
domain into the task of multispectral pedestrian detection, to generate intermediate visible
and thermal images, making the adaptation easier.

Given a set of image {XV
s ; XT

s } from the source domain S , the intermediate images
{XV

m; XT
m} of the intermediate domainM are generated via image style translation to match

the appearance style of the target domain T , while retaining the local content of interest.
In pedestrian detection, an ideal intermediate domain should imitate the domain style of the
target, e.g., illumination and weather conditions. This kind of domain style can be learned via
an adversarial loss [55]. Meanwhile, the locations and sizes of pedestrians, which are the vital
local contents from the source, should not be changed. In general, a good domain translation
method for pedestrian detection is supposed to have the ability to keep the local image content
from the source data while generating a domain style globally similar to the target domain.

To achieve this goal, a contrastive learning-based domain style translation method
called CUT [56] is employed in this paper. Different from the work based on cycle-
consistency [52], which changes the local image content together with the global style, the
CUT method presents a straightforward yet efficient way of maintaining correspondence
in local content for global domain style translation by maximizing the mutual information
between the source and generated intermediate domains.

In particular, the CUT method is able to associate the corresponding local content
during the training progress via patchwise contrastive learning, as shown in Figure 4.
A patch is sampled from the generated intermediate image as “query” and compared to
the “positive” source patch at the same location, while “negative” patches are randomly
selected at different locations within the same image. Thus, contrastive learning aims to
minimize the distance between the query and positive patches sharing the same content
but maximize the distance otherwise. As shown in Figure 4, the generated image shows a
different image style compared to the source image (e.g., with higher contrast and more
textures) while keeping the consistent local content.

The generated intermediate domainM is supposed to have a feature space distribution
closer to the target T compared with the source domain S . Here, we present an example
of the data distribution differences between the KAIST [9] and FLIR ADAS [12] datasets
in Figure 5. The intermediate domains are generated using the above mentioned CUT
method on visible and thermal modalities, respectively. The distribution of data is extracted
and mapped to a two-dimensional feature space with the help of t-SNE [57]. As shown
in Figure 5, the generated intermediate data are at a closer distance to the target data in
feature space compared to the original data. It is worth noting that the clusters of source
and target data in the thermal spectrum are denser than those in the visible spectrum. It is
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reasonable that the thermal images contains fewer detailed visual features than the visible
images, leading to the denser clusters. The source thermal images in KAIST dataset have
much fewer contrasts and texture features than the target FLIR ADAS dataset. Accordingly,
the generated intermediate thermal data imitate the high-contrast and rich-texture source
style, leading to more internal variations.

Generator Encoder

Multilayer, Patchwise

Contrastive Loss

Discriminator

Patchwise Contrastive Learning

Figure 4. Illustration of the patchwise contrastive learning progress used in [56]. A generated
intermediate image patch (marked with a blue box) is strongly associated with the corresponding
patch (colored green) in the source image via contrastive learning, while disassociated from the other
random patches. In this way, the generated intermediate domain is forced to preserve the source
local content.

Source Data
Intermediate Data
Target Data

(a)

Source Data
Intermediate Data
Target Data

(b)
Figure 5. Visualization of the data distribution of source, intermediate and target domains.
From every domain, 500 images are taken and their features represented as dots are extracted
via t-SNE [57], where red, green and orange dots refer to the source, intermediate and target data
respectively. (a) visual, (b) thermal.

With the help of the intermediate domain, the whole adaption task S → T in the proposed
UTL framework is divided into two phases, i.e., S →M andM→ T , respectively. At the
first phase of UTL, the intermediate images {XV

m; XT
m} share the same local image contents

(e.g., pedestrian locations and sizes) with their corresponding source images {XV
s ; XT

s },
although the domain style (e.g., image contrast and texture) is transferred to match the
target domain. Accordingly, by combining the generated intermediate images {XV

m; XT
m}

and the manual training labels Ys from the source domain, we perform the supervised training
of a detector as the initial adaptation process S →M. An initially adapted detector provides
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better detection results on the target images compared to the one trained only on source data.
By evaluating the initially adapted detectors on the target data, we get the pseudo training
labels for second-phase adaptation taskM→ T .

3.3. Illumination-Aware Label Fusion

Recently, pseudo labels have been widely used in image classification tasks to include
the large amount of unlabeled data into the training process and improve the accuracy [58].
Normally, iterative fine-tuning is adopted to generate more pseudo training labels and
help the convergence on the target domain, while the noisy labels do not significantly
reduce the performance in the task of image classification. However, the whole task of
pedestrian detection consists of not only the classification but also the localization subtask,
which makes it quite sensitive to the inaccurate pseudo labels. Thus, how to select the
most accurate pseudo labels is very important for the iterative fine-tuning of a pedestrian
detector in our proposed UTL framework.

For the multispectral pedestrian detection task, the dual cameras capture aligned
visible-thermal images, where different characteristic features are exhibited from different
modalities. It is known that current multispectral pedestrian detectors extract fused features
and can achieve better detection performance compared to any single-modality detectors.
However, the generalization capability of a complex multispectral detector is worse than
a single-modality detector. A multispectral detector is sensitive to both the visible and
thermal domain gaps across different datasets. It is difficult to explicitly determine when
and whether a multispectral detector works well. A visible detector generalizes well
when it is evaluated in a new dataset consisting of only sunny daytime data. As for a
thermal detector, it still sees pedestrians under low-illumination conditions. Thus, we adopt
auxiliary pedestrian detectors which specialize in single modalities (visible and thermal
respectively) to generate pseudo labels for the iterative fine-tuning of a multispectral
pedestrian detector. Furthermore, the multispectral detector itself with updated parameters
is also used to generate pseudo training labels for the next iteration.

When a pedestrian detector is applied to the target domain, an arbitrary detection
result ŷi is accompanied by a confidence score c(ŷi) (i = V, T or F, representing the visible,
thermal and multispectral modalities respectively). All the three sets of candidate pseudo
labels are selected according to the confidence score:

YV = {ŷV ∈ ŶV : c(ŷV) > cthr}
YT = {ŷT ∈ ŶT : c(ŷT) > cthr}
YF = {ŷF ∈ ŶF : c(ŷF) > cthr},

(1)

where cthr is a confidence threshold. In this paper, the threshold cthr is empirically set to 0.9
and only detections with high confidence scores are chosen for the subsequent fusion.

Among all the pseudo labels generated by the mentioned detectors in an iteration,
there are false labels as well as inaccurate detections. Usually, a visible detector is sensitive
to the environmental illumination of the sensed image, resulting in false labels when there
is insufficient lighting. In addition, a multispectral detector is supposed to have better
performance over any auxiliary detectors when the illumination level is high because of the
complimentary visual and thermal features, while the thermal detector generates slightly
worse detection results than the visible one restricted by lack of appearance details. As for
the case of low illumination level, the thermal detector achieves the best performance while
the outputs of a visible detector are unreliable [18].

Based on the above considerations, we propose an illumination-aware label fusion
strategy to fuse the pseudo labels according to their priorities for the best quality. As shown
in Figure 6, there are two types of illumination-aware networks [18,43] integrated into
supervised multispectral pedestrian detection tasks. The detection results (both bounding
boxes and confidence scores) are fused as the weight sum of two corresponding output
from the subnetworks, as shown in Figure 6a,b.
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Figure 6. Illustration of the difference between existing illumination-aware weighting mechanisms
and our illumination estimation network for pseudo label fusion. (a,b) are the illumination-aware
weighting mechanisms proposed in [18,43] for supervised training respectively, where w represents
the illumination weight and + indicates the operation of matrix addition. The final result contains
both the confidence score and predicted bounding box, calculated as the weight sum of corresponding
items from two modalities respectively. (c) illustrates our illumination-aware label fusion mechanism,
where F indicates the pseudo label fusion process.

Compared to the built-in network that is easily affected by the varying multispectral
feature maps, an independent illumination network with fixed parameters is more robust
for the unsupervised transfer learning task. In our UTL framework, candidate pseudo
labels are generated from both single-modality and multispectral detectors, where there are
inevitable false or inaccurate labels. The illumination-aware weighting mechanism brings
accumulated errors and is not suitable for the UTL task. In this paper, the candidate pseudo
labels get fused by keeping only the labels with the highest priorities determined by the
estimated environmental level. To achieve this, we introduce the use of an independent
illumination estimation network (IEN) to guide the pseudo label fusion in this paper.

In particular, the IEN is trained on the source domain and used directly in the
target domain. The proposed IEN only takes visible images as inputs because the thermal
camera is not sensitive to illumination. Considering that there is no ground-truth labels for
illumination information in the datasets, we take the known binary classes daytime/nighttime
as the training labels for IEN, i.e., a daytime image labeled as 1 and a nighttime one as 0.
For an arbitrary visible image xV

i , the output of IEN is an estimated environmental illumina-
tion level `(xV

i ) ∈ [0, 1], where `(xV
i ) > 0.5 means the estimated illumination level is high.

The construction of IEN is as follows: A visible input image is resized to 32× 32 and followed
by two convolutional layers with 5× 5 kernels, while a 2× 2 max pooling layer follows each
convolutional layer. Three subsequent fully-connected layers with 120, 84, and 2 neurons,
respectively, are used to classify the input. Besides, a dropout layer with a probability of 0.5 is
inserted after the first fully-connected layer. ReLu is also adopted to overcome the vanishing
gradient problem. The network is trained with the binary cross-entropy loss, and the softmax
function is used to generate the output estimated illumination level.

Here, we utilize IEN as an estimator of the real environmental illumination level to
guide the following label fusion process. Priorities are assigned to the candidate pseudo
labels from different modalities, according to the estimated illumination output of IEN.
For instance, a detected pedestrian in the form of a bounding box from the visible detector
may have the corresponding detection from the thermal detector, i.e., with an Intersection
Over Union (IoU) of bounding boxes greater than 0.5, while the visible detection usually
is more reliable for images with high illumination levels owing to the complete visual
appearance details. Hence, we assign a higher priority to the visible pseudo label and
abandon the corresponding low-priority thermal label. The overall priority order of the
proposed illumination-aware label fusion strategy is assigned as follows:{

P(ŷF) > P(ŷV) > P(ŷT), when `(xV
t ) > 0.5

P(ŷT) > P(ŷF), when `(xV
t ) ≤ 0.5,

(2)

where P(ŷF), P(ŷV) and P(ŷT) represent the priority order of candidate pseudo labels from
multispectral, visible and thermal detectors respectively, and `(xV

t ) is the output of the pro-
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posed illumination estimation network. For images estimated with a high illumination level,
pseudo labels from the multispectral detector receive the highest priority, and the thermal
detections are assigned the lowest priority. When the estimated illumination level `(xV

t ) ≤ 0.5,
the visible detection will not be used. On top of the assigned priority of each candidate pseudo
label, the proposed label fusion strategy select one bounding box with the highest priority from
the overlapping bounding boxes of different modalities. The selected bounding box serves as
a pseudo training annotation for fine-tuning of detectors to the target domain T .

To avoid the overfitting of iterative training, the early stopping mechanism is adopted.
We evaluated different maximum iteration values and found that the detection performance
reaches the best after three iterations. Thus, the number of maximum iterations is set to
three empirically in this paper. At the end of the iterative adaptation process, a multispectral
pedestrian detector has been fine-tuned to the target domain T .

4. Experiments and Results

We evaluate the proposed unsupervised transfer learning (UTL) framework on var-
ious visible-thermal multispectral datasets for the pedestrian detection task in this section.
The datasets used as the source and target domains are introduced in Section 4.1. The related ex-
perimental setup, including the implementation details, is given in Section 4.2. The main experi-
mental results with state-of-the-art comparisons are presented in Section 4.3. Moreover, ablation
studies of the intermediate domain adaptation and illumination-aware label fusion strategy
are conducted in Section 4.4.

4.1. Datasets and Metrics

KAIST [9] is one of the most widely used large-scale multispectral pedestrian detection
datasets. The dataset is divided into daytime and nighttime scenarios by the original
authors according to the recorded timestamps and provides visible-thermal image pairs
that are aligned well with a resolution of 640× 512. Using the same settings as in [18], a
set of 7601 RGB-thermal image pairs is utilized as the training set, and 2252 images pairs
are adopted as the test set. The involved images suffer from various serious challenges,
such as illumination changes and occlusions. Specifically, KAIST is chosen as the source
and the target dataset separately in the different groups of experiments in this paper. Since
the original annotations of the test set have the problem as well as missing bounding boxes,
we choose the widely used improved annotations provided by [10] for a fair comparison in
our experiments.

CVC-14 [38] is another widely used large-scale multispectral dataset containing visible-
thermal image pairs, where the visible images are in the grayscale form instead of RGB.
There is also the division of daytime and nighttime images. There are 7085 image pairs in
the training set and 1433 frames in the test set, with a resolution of 640× 480. However, a
large portion of the image pairs face the problem of misalignment. The primary goal of
this paper is to design an unsupervised transfer learning framework instead of a specific
multispectral detector to handle the misalignment challenge. To perform a fair and clear
comparison, CVC-14 is only used as the source dataset in our experiments. Accordingly, an
auxiliary single-modality pedestrian detector is trained with its corresponding modality-
specific annotations, while the training labels for the thermal images are used as the ground
truth for the training of a multispectral detector. Especially, the multispectral detector is not
adopted to generate pseudo labels in the first iteration of our proposed iterative fine-tuning
phase for the sake of quality assurance of generated pseudo labels.

FLIR ADAS [59] is a recently published multispectral object detection dataset.
The RGB-thermal image pairs are collected in the Santa Barbara, CA, USA, with a resolu-
tion of 640× 512. The dataset includes images captured under different lighting conditions,
while the labels of daytime/nighttime are not directly given. The FLIR ADAS dataset con-
tains not only pedestrian annotations but also annotations for other detected objects. In this
paper, we only use the labeled pedestrians. Since there are some misalignment problems
between the visible and thermal images among the original dataset, a sanitized version
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[12] of the dataset in which misaligned image pairs were manually removed, is adopted in
our experiments. The sanitized dataset contains 4129 well-aligned image pairs for training
and 1013 image pairs for testing. We only treat FLIR ADAS as the target dataset, due to its
relatively small amount of training images and pedestrians involved.

Evaluation Metric. Following the guidelines by the authors of [9], the reasonable
setting is used for the evaluation, including all non-occluded pedestrians larger than
55 pixels. A detected pedestrian is considered as a correct match (true positive) if the Inter-
section over Union (IoU) of the detection and corresponding ground-truth bounding box
is greater than 0.5, which is the common choice of IoU threshold for pedestrian detection.
Log-Average Miss Rate (LAMR) is utilized as the detection performance metric for consis-
tency with the literature [9,10,15]. The LAMR metric computes the averaging miss rate of
pedestrians against 9 evenly distributed false positives per image (FPPI) over the log range
of [10−2, 100]. A lower value of LAMR means a better detection performance.

4.2. Experimental Setup

Multispectral pedestrian detector. All the detectors used in this paper are imple-
mented based on Faster R-CNN [25]. We utilize the Feature-Map Fusion method [17]
concatenating feature maps of the thermal and visible branches in Faster R-CNN with a
backbone of VGG16 [60] to form a multispectral pedestrian detector, which follows the
successful design of Halfway Fusion [10]. After the concatenation operation, a convo-
lutional layer called Network-in-Network (NIN) with 1× 1 kernel is attached to reduce
the dimension as well as to fit into the standard Faster R-CNN architecture. It is efficient
to fuse individual features maps of the two modalities to generate slightly high-level
multispectral features. All the demonstrated experiments related to any stage of our UTL
framework adopt the multispectral pedestrian detector based on Feature-Map Fusion.

Training details. The backbone VGG16 of Faster R-CNN is pre-trained on ImageNet
dataset [61]. At each training stage, horizontal flipping is adopted as a basic data aug-
mentation operation, and the parameter update of detectors is performed with the help of
stochastic gradient descent (SGD). At the stage of initial adaptation, the training progress
contains 6 epochs with a learning rate (LR) of 0.001 for the first four epochs and LR 0.0001
for the last two epochs. As for the iterative fine-tuning stage, we fine-tune a detector for the
first epoch with LR 0.001 and one more epoch with LR 0.0001 at each iteration. The above
mentioned training settings apply to both multispectral and auxiliary pedestrian detectors
in all the experiments. We follow the default settings [56] to train the CUT model for
intermediate domain adaptation, where the unpaired input instances are constructed with
visible images from the source and target domains separately. All the input images are
resized to 480× 480 and then cropped to 256× 256 to fit into the CUT model and keep the
image details. As for the inference stage, the images are taken as their original resolutions
to generate the intermediate images with the same resolution as the source images. In this
way, the training labels from the source domain can be used directly to supervise the
initial training based on the generated intermediate images. Furthermore, the proposed
illumination estimation network is trained with Adam optimizer for two epochs with LR
0.0001, using only visible images in the source domains. For the unsupervised transfer
learning experiments, the ground-truth annotations of the target training set are abandoned
to form a target domain without any manual training labels.

4.3. Main Results

Here, we provide the experimental results for multispectral pedestrian detection using
the proposed UTL framework and compare the performance with state-of-the-art methods.
As stated in Section 4.1, the CVC-14 and KAIST datasets are adopted as source datasets,
while the KAIST and FLIR ADAS datasets are set as the target. Given that there is limited
UTL research in the multispectral pedestrian detection area, we report the results of the
only available state-of-the-art method U-TS-RPN [15] on KAIST. What is more, we compare
the same detector’s performances trained in three different ways: fully supervised trained
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on the target domain, trained on the source domain and unsupervised transferred to the
target domain using our proposed UTL method, to see the gain on both datasets.

The experimental results on KAIST and FLIR ADAS datasets are presented in
Tables 1 and 2, respectively. Examples of pedestrian detection results are shown in Figure 7.

Table 1. Detection performance comparisons on KAIST dataset. The original manual annotations
are used to perform the supervised training. For the results of U-TS-RPN [15], the pseudo train-
ing labels are provided by the original authors and detections are generated by the fine-tuned
detector accordingly.

Methods
LAMR (Lower, Better)

All Daytime Nighttime

Supervised training
ACF + T + THOG [9] 47.25% 42.44% 56.17%
Halfway Fusion [10] 26.14% 24.08% 29.01%
Feature-Map Fusion 21.27% 18.63% 26.17%

Source only:
Feature-Map Fusion (CVC-14) 51.94% 53.83% 44.76%

Unsupervised transfer learning:
U-TS-RPN [15] 30.07% 31.59% 26.78%
Ours (CVC-14→ KAIST) 19.98% 22.17% 15.78%

Table 2. Detection performance comparisons on FLIR ADAS dataset. The supervised training is
performed on FLIR ADAS dataset directly using manual labels of the “person” class.

Methods LAMR (Lower, Better)

Supervised training
Halfway Fusion [10] 40.43%
Feature-Map Fusion 31.41%

Source only:
Feature-Map Fusion (KAIST) 64.64%
Feature-Map Fusion (CVC-14) 43.92%

Unsupervised transfer learning:
Ours (KAIST→ FLIR ADAS) 44.19%
Ours (CVC-14→ FLIR ADAS) 33.16%

In our experiments, a method classified as “supervised training” category trains a
pedestrian detector on the target images using the corresponding ground-truth
training annotations. Specifically, the classical Halfway Fusion method is re-implemented
in this paper according to the original settings [10]. From Table 1 we can see that the
performances of two deep learning-based detectors surpass the classical handcrafted multi-
spectral detector ACF + T + THOG [9]. What is more, as shown in both Tables 1 and 2, the
Feature-Map Fusion detector outperforms the Halfway Fusion detector on both KAIST and
FLIR ADAS datasets, owing to the high-level feature concatenation from individual feature
maps. As a result, we adopt Feature-Map Fusion as the baseline multispectral detector in
all the following experiments.
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(a)  (b) (c) (d)

FLIR 

ADAS

KAIST

Figure 7. Examples of pedestrian detection results. (a) The ground truth. Detection results of the
detector (b) trained only on CVC-14, (c) trained on the target dataset with manual annotations and
(d) adapted from CVC-14 to the target dataset using our framework. The shown detections are test
results from KAIST and FLIR ADAS datasets containing various illumination conditions.



Sensors 2022, 22, 4416 15 of 20

For results reported in the category of “unsupervised transfer learning”, the whole
training progress of the pedestrian detector does not involve any manual labels from the
target dataset, and its cross-dataset detection performance is demonstrated. Besides, the
results of the same detector trained with only source data and tested on the target test set,
are marked as “source only”. An unsupervised adapted detector is supposed to have a
significantly better cross-dataset performance (i.e., lower LAMR), compared to the detector
trained on the source dataset only.

On the KAIST dataset, we use CVC-14 → KAIST as the domain pair to test our
proposed UTL framework. For comparison experiments, the results of state-of-the-art
unsupervised multispectral feature learning method U-TS-RPN [15] is reported in Table 1.
In particular, the pseudo training labels for U-TS-RPN are provided by the original authors,
and the results reported are fine-tuned on the KAIST training set, based on the same multi-
spectral pedestrian detector as used in our framework for a fair comparison. The proposed
method introduces a clearly lower LAMR (19.98% vs. 30.07%) for all-day scenes. Compared
to the performance of detector trained on source data only, our UTL framework significantly
reduces the LAMR from 51.94% to 19.98% for all-day scenarios. Furthermore, our method
achieves a similar detection performance compared to fully supervised training, without
using any training annotations from the target domain, making the deployment scalable
and avoiding the human re-labeling work. Specially, our performance on nighttime images
is significantly superior (15.78% vs. 26.17%), while our method reports a performance that
is slightly worse in the daytime scenario.

To evaluate the effectiveness on FLIR ADAS dataset, two pairs of cross-dataset exper-
imental are conducted, i.e., CVC-14→ FLIR ADAS and KAIST→ FLIR ADAS, and the
results are presented in Table 2. Since FLIR ADAS dataset is relatively new and there is
no unsupervised related work tested on it, we validate the effectiveness of the proposed
framework, by comparing with detectors fully trained on the target data with manual
annotations as well as those trained on source data only without adaptation. As we can
see, our adapted detectors surpasses the unadapted detectors (trained on source only) by a
large margin. Notably, the proposed method reports a comparable detection performance
with the supervised trained result (LAMR 33.16% vs. 31.41%) when the source dataset is
CVC-14, and an apparently worse result for the case of KAIST (LAMR 44.19%) because
there is a large domain gap between the KAIST and FLIR ADAS datasets. We will analyze
the domain gap problem in Section 4.4.1.

Overall, the results presented in this section reflect that the proposed framework is robust
enough to perform the unsupervised adaptation across different multispectral pedestrian
detection datasets. Compared with U-TS-RPN [15], our framework achieves significantly better
detection performance with the help of intermediate domain adaptation to tackle the domain
shift problem. The two-stage adaptation strategy makes the proposed framework capable of
reporting similar results with supervised training, while reducing the requirements of labeling
new data for target domain and effectively increasing its portability.

4.4. Ablation Study

Here, two essential ablation studies are conducted to examine the effects of the intermediate
domain adaptation and illumination-aware label fusion. In order to show each effect of the two
key steps clearly, we report the experimental results solely using the related step, respectively.

Figure 8 shows a qualitative result for our ablation study. Comparing Figure 8b,c with
Figure 8a, respectively, we can clearly see that each of the two steps improves the detection
performance. The whole framework benefits from both two steps and achieves the best
performance, as shown in Figure 8d.
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(a) (b) (c) (d) 

Figure 8. Qualitative examples for the ablation study. Detection results of the detector (a) trained
only on CVC-14 dataset, (b) adapted initially on the generated intermediate images, (c) fine-tuned
iteratively from CVC-14 to KAIST dataset without using intermediate images and (d) adapted from
CVC-14 to KAIST dataset using our whole framework.

4.4.1. Effects of Intermediate Domain Adaptation

Usually, the data distribution between different datasets varies greatly, making a bad
direct evaluation performance across datasets. In this paper, the use of intermediate images
generated from the source dataset forms an intermediate domain bridging the gap between
the source and target domains. The intermediate domain consists of both the original
source training annotations and the generated intermediate images with a domain style
similar to the target domain. We take advantage of both the source and target domain
knowledge via training a pedestrian detector on the intermediate domain.

To validate the effectiveness of intermediate domain used in the initial adaptation
phase, we conduct three groups of analytic experiments, i.e., CVC-14 → KAIST,
CVC-14→ FLIR ADAS and KAIST→ FLIR ADAS. Specifically, the initially adapted multi-
spectral pedestrian detector, which is trained on the generated images of the intermediate
domain, is applied to the test set of the corresponding target dataset and marked as “Initial
Adaptation (w/ID)” in Table 3. Moreover, histogram matching is used as a weak version
of the intermediate domain adaptation technique. In our experiments, image-to-image
histogram matching is conducted according to the same source-to-target correspondence
as the CUT model’s inference stage. The reported results with the help of histogram
matched synthetic images are listed as “Initial Adaptation (w/HM)” and the performances
of detector trained on source data only are also reported in Table 3.

Table 3. Ablation study of intermediate domain (ID) in terms of Log-Average Miss Rate (LAMR).
Results of detectors trained with original source images and histogram matched (HM) synthetic
images are reported for comparisons. The best results are highlighted in bold.

Source → Target Methods
LAMR (Lower, Better)

All Daytime Nighttime

CVC-14→ KAIST
Detector Trained on CVC-14 51.94% 53.83% 44.76%
Initial Adaptation (w/HM) 43.28% 46.83% 33.79%
Initial Adaptation (w/ID) 41.07% 45.11% 29.20%

KAIST→ FLIR ADAS
Detector Trained on KAIST 64.64% - -
Initial Adaptation (w/HM) 60.13% - -
Initial Adaptation (w/ID) 52.41% - -

CVC-14→ FLIR ADAS
Detector Trained on CVC-14 43.92% - -
Initial Adaptation (w/HM) 40.51% - -
Initial Adaptation (w/ID) 39.16% - -
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From all the three groups of experiments in Table 3, we find that the idea of initial
adaptation based on synthetic (both histogram matched and intermediate) images boosts
the cross-domain detection performance. The reason could be that a modern detector using
DCNN-based architecture tends to learn domain-specific knowledge to reach the best per-
formance on a specific domain. However, this kind of domain-specific knowledge reduces
the generalization ability. The synthetic images, which have a similar image style to the tar-
get images, provide the target domain knowledge during the initial adaptation step in our
UTL framework. As a traditional way of adjusting the similarity of intensity distribution, his-
togram matching focuses on pixel-level processing and could not learn the global environmental
knowledge, making it not as good as the proposed intermediate domain adaptation method.
It is worth noting that initial adaptation from KAIST to FLIR ADAS helps LAMR change from
64.64% to 52.41%, which is a much larger margin compared to the one adapted from CVC-14
with LAMR reducing from 43.92% to 39.16%. Thus, even though the source data might have a
tremendous domain gap to the target data, the intermediate domain adaptation can effectively
reduce the gap and boost the detection performance.

4.4.2. Effects of Illumination-Aware Label Fusion

Pseudo labels provide functionality for training/fine-tuning a detector on the target
domain without any manual training labels. In practice, the visible branch in a multispectral
setup is sensitive to the illumination conditions caused by the diurnal cycle, shadow, and
extreme weather, leading to false or inaccurate pseudo labels. Our proposed illumination-
aware label fusion strategy relies on the fact that the most accurate pseudo labels come
from different modalities according to the illumination conditions.

To investigate the influence of the strategy mentioned above, we hereby report the
detection performance using label fusion based on estimated illumination against the
daytime/nighttime information in Table 4. Since there is no division of daytime/nighttime
in FLIR ADAS dataset, only the quantitative experiment CVC-14→ KAIST is conducted in
this paper. When there is no illumination knowledge available, we let the multispectral
detector generate pseudo labels to fine-tune itself without using auxiliary detectors, which
is the common form of iterative self-training to adapt to the target domain. The use of
daytime/nighttime as illumination information, makes the reported LAMR of all-day
scenarios decrease from 34.50% to 23.09%, which confirms the effectiveness of fusing
auxiliary pseudo labels. Furthermore, the images are assigned with different illumination
levels from the IEN output in the UTL framework, according to their real environment
lighting conditions rather than the division by time. The overall detection performance of a
detector iteratively fine-tuned with the illumination-aware fused pseudo labels is 2% better
than daytime/nighttime-aware fusion.

Table 4. Ablation study of illumination-aware label fusion. The results using known daytime/nighttime
information to determine the fusion strategy are listed for comparison. When there is no illumination
information available, the multispectral pedestrian detector generates pseudo labels and adapts itself
accordingly. The best results are highlighted in bold.

Methods
LAMR (Lower, Better)

All Daytime Nighttime

Without illumination info 34.50% 39.21% 24.49%
With daytime/nighttime info 23.09% 24.55% 17.74%
With estimated illumination 21.09 % 23.32% 17.14%

5. Conclusions

In this paper, we propose a novel unsupervised transfer learning framework for visible-
thermal multispectral pedestrian detection. Our goal was to develop a general framework
to adapt a multispectral pedestrian detector to the target dataset without using any man-
ual target annotations. The main novelty of this paper is the two-step adaptation solution.
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The initial adaptation is performed by training the detector on an intermediate domain, lever-
aging both the source and target domain knowledge to reduce the domain gap. After that,
an iterative process is conducted to fine-tune the detector based on fused pseudo labels from
different modalities, according to the proposed illumination-aware fusion strategy. The exten-
sive experimental results demonstrate the effectiveness of our framework on both KAIST and
FLIR ADAS datasets. As can be seen by the results presented, our method allows an effective
adaptation to new environments or datasets without the necessity of manually labeling a new
training set, making the multispectral detector flexible and generalizable. This provides the
possibility of using the proposed framework under a high variety of scenarios without needing
the inputs of specialists.

Opportunities for future work lie in the direction of investigating pedestrian-centric
intermediate domain representation and feature alignment. We will also explore the
potential direction of extending the framework into relevant object detection tasks in traffic
scenarios such as vehicle detection to support the smart city development.
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