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Abstract: The working environment of rotating machines is complex, and their key components
are prone to failure. The early fault diagnosis of rolling bearings is of great significance; however,
extracting the single scale fault feature of the early weak fault of rolling bearings is not enough to
fully characterize the fault feature information of a weak signal. Therefore, aiming at the problem
that the early fault feature information of rolling bearings in a complex environment is weak and
the important parameters of Variational Modal Decomposition (VMD) depend on engineering
experience, a fault feature extraction method based on the combination of Adaptive Variational
Modal Decomposition (AVMD) and optimized Multiscale Fuzzy Entropy (MFE) is proposed in
this study. Firstly, the correlation coefficient is used to calculate the correlation between the modal
components decomposed by VMD and the original signal, and the threshold of the correlation
coefficient is set to optimize the selection of the modal number K. Secondly, taking Skewness (Ske)
as the objective function, the parameters of MFE embedding dimension M, scale factor S and time
delay T are optimized by the Particle Swarm Optimization (PSO) algorithm. Using optimized MFE to
calculate the modal components obtained by AVMD, the MFE feature vector of each frequency band
is obtained, and the MFE feature set is constructed. Finally, the simulation signals are used to verify
the effectiveness of the Adaptive Variational Modal Decomposition, and the Drivetrain Dynamics
Simulator (DDS) are used to complete the comparison test between the proposed method and the
traditional method. The experimental results show that this method can effectively extract the fault
features of rolling bearings in multiple frequency bands, characterize more weak fault information,
and has higher fault diagnosis accuracy.

Keywords: Adaptive Variational Modal Decomposition; correlation coefficient; Multiscale Fuzzy
Entropy; feature extraction; Particle Swarm Optimization

1. Introduction

As the rotating support components of most machinery, the fault detection and di-
agnosis of rotating machinery such as rolling bearings is essential to prevent mechanical
failures [1,2]. A variety of bearing fault detection techniques such as acoustic emission,
electrostatic and vibration are used meticulously by industrial enterprises [3–5]. Among
them, vibration monitoring is the most established diagnostic technique for rolling element
bearing. To ensure the smooth operation of the bearing, it is important to study its fault
diagnosis method. The operating characteristics of most bearings are unstable, and it is
difficult to extract fault features for its large vibration and noise interference. Therefore,
accurate fault feature extraction is the key to fault diagnosis of rolling bearings under
complex environment interference.

The key to fault diagnosis lies in analyzing the original signals from the time-frequency
domain and constructing feature sets from different aspects to describe the running state of
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the rotating machinery. At present, one of the most commonly used time-frequency analysis
methods is Empirical Mode Decomposition (EMD) [6]. Bustos et al. [7] proposed a signal
processing method based on EMD in order to monitor the early defects of key components
of high-speed trains. However, EMD has problems such as endpoint effect and modal
aliasing [8]. Ensemble Empirical Mode Decomposition (EEMD) is an improved algorithm
for EMD, which can effectively suppress mode aliasing [9]. Local Mean Decomposition
(LMD) [10] improves the problem of overdevelopment or underdevelopment in EMD,
but its essence, similar to EMD and EEMD, belongs to recursive mode decomposition,
and ultimately cannot avoid the endpoint effect and mode aliasing. Dragomiretskiy and
Zosso proposed a non-recursive modal decomposition method, namely VMD, according
to the constrained variational problem, which can effectively reduce the occurrence of
modal aliasing [11]. Li et al. [12] optimized VMD parameters based on the principle of
minimum information entropy, and then obtained the Intrinsic Mode Function (IMF) of
minimum information entropy as the effective IMF component for envelope demodula-
tion analysis to extract bearing fault features. Zheng et al. [13] proposed a signal feature
extraction method based on VMD and Permutation Entropy (PE), which utilized Permu-
tation Entropy to construct fault feature sets for fault identification and achieved good
results. Xia et al. [14] proposed a method for combining Maximum Correlated Kurtosis
Deconvolution (MCKD) and VMD to extract rolling bearing fault features. The maximal
correlation kurtosis deconvolution is used to enhance the fault features, and the kurtosis
criterion cross-relation number is used to reconstruct the signal to extract the fault features
with rich fault information.

Fuzzy Entropy (FE) is a measure of the probability that a time series will generate
new patterns when its dimensionality changes [15]. Moreover, the greater the probability
of the sequence generating new patterns, the greater the complexity of the sequence and
the greater the entropy value will be. In 2014, Zhen et al. [16] proposed a new method
for measuring the complexity of time series: Multiscale Fuzzy Entropy (MFE), which
represents the complexity and self-similarity of time series under different scale factors.
Therefore, a fault diagnosis method of rolling bearings based on MFE and Support Vector
Machine (SVM) [17] is proposed. Although MFE contains temporal pattern information
on different scales and reflects the inherent characteristics of the signal, the performance
of signals with similar characteristics is not ideal. Li et al. [18] proposed a new method to
reflect signal complexity or nonlinearity based on MFE. Li used the skewed distribution
characteristics of fuzzy entropy values at different scales to quantitatively characterize the
complexity or nonlinearity of the signal, and more accurately reflect the characteristics of
the signal. In order to accurately use vibration signals for fault diagnosis, Yang et al. [19]
proposed a gear fault diagnosis method based on EEMD-MFE. This method utilizes the
fuzzy entropy of the IMF component obtained by EEMD decomposition and takes the
fuzzy entropy of the original signal at multiple scales as the characteristic parameter of
different gear states. Fan et al. [20] decomposed the sample signal by VMD in order to
realize the sound recognition of different models under different working conditions. MFE
calculation is performed on the obtained intrinsic mode functions of different scales, and
MFE features are obtained. Xu et al. [21] proposed a fault diagnosis model for rolling
bearings that combines fine composite MFE and a Particle Swarm Optimization support
vector machine. Compared with fine composite Multiscale Sample Entropy (MSE) and
MFE, the smoothness of the fine composites MFE model is better. For the problem that
the characteristic information of rolling bearings is difficult to effectively extract under
the influence of a harsh environment, Ding et al. [22] proposed a method based on Local
Mean Decomposition (LMD) and MFE. The rolling bearing fault diagnosis algorithm first
used LMD to decompose the bearing vibration signal, and then extracted MFE features for
each component.

Most of the above methods only consider the fault diagnosis in the case of a single
feature, which creates a problem of insufficient fault feature representation. In order to
describe the weak fault features from multiple perspectives better, this study proposes an
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early fault feature extraction method that combines AVMD and MFE. The parameters of
the MFE are optimized by the Particle Swarm Optimization (PSO) [23] algorithm, so that
the extracted MFE features can characterize the fault information to the greatest extent.
Taking Ske as the objective function, the parameters of MFE embedding dimension M, scale
factor S and time delay T are optimized by PSO algorithm. The MFE eigenvectors of each
frequency band after AVMD are obtained. After the AVMD, the modal components in
each frequency band of the original signal are better separated, and the MFE after their
parameter optimization is extracted. The method can extract the optimized MFE in multiple
frequency bands of the fault signal and characterize more weak fault information. It is
more beneficial to identify the early weak faults of rolling bearings.

The second part of the article introduces the principles of AVMD and PSO to optimize
MFE. The third part introduces the specific process of constructing a fault feature set based
on AVMD combined with optimized MFE. The fourth part uses the DDS test bench for
experimental analysis. It is proved that the combination of AVMD and optimized MFE can
describe the MFE characteristics of fault signals in multiple frequency bands, which can
better characterize more weak fault information, and is more sensitive to the early weak
faults of rotating machinery. Additionally, compared with the traditional decomposition
method, the method proposed in this study has higher fault diagnosis accuracy.

2. Basic Theory
2.1. Variational Modal Decomposition

The overall framework of VMD is to solve the variational problem in order to minimize
the sum of the estimated bandwidths of each eigenmodal function, where each eigenmodal
function is assumed to be a finite bandwidth with different center frequencies. To solve this
variational problem, the alternating direction multiplier method is used to continuously
update each eigenmode function and its center frequency, which can demodulate each
eigenmode function to the corresponding fundamental frequency band and, finally, extract
each eigenmode function and its corresponding center frequency.

The decomposition steps of the variational modal decomposition are as follows:

(1) Initialize
{

u1
k
}

,
{

ω1
k
}

, λ1
k and n = 1;

(2) n = n + 1, entering the loop;
(3) update according to the update formula for uk and ωk until the inner loop stops when

the number of decompositions K is reached;
(4) update λ according to the update formula of λ;

(5) Given the precision ω, if the stopping condition ∑
k

||un+1
k −un

k ||
2
2

||un
k ||

2
2

< ε, is satisfied, stop

the loop, otherwise enter step 2 to continue the loop.

Where uk is the decomposed unit-component IMF signal; ωk is the center frequency of
each but component IMF signal; λ is the Lagrange multiplier; n is the number of iterations.

2.2. Adaptive Variational Modal Decomposition

Compared with EEMD and other adaptive decomposition algorithms, the VMD
algorithm has better sparse modal components, but the decomposition result of the VMD
algorithm is affected by multiple parameters, among which the modal number K and
penalty factor α have a great impact on the VMD algorithm. Improper parameter selection
will cause over-decomposition, modal aliasing and false modes. Therefore, the parameter
optimization of modal number K and penalty factor α is the focus of scholars’ discussion.

This article chooses the method of combining the correlation coefficient with VMD
to optimize the value of parameter K in VMD. The correlation coefficient method is one
of the most important methods to process and analyze signals. In the segmentation
method proposed in this study, the correlation coefficient is used to calculate the correlation
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coefficient between the modal component obtained after VMD and the original signal. The
mathematical model of the correlation coefficient is as follows.

ρxy =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

In the formula, x is the mean value of the IMF component, y is the mean value of the
original signal and

∣∣ρxy
∣∣ is the correlation coefficient of the two sets of signals, the range is

between [−1,1]. The weaker the correlation, the closer
∣∣ρxy

∣∣ gets to 0, indicating that the
component signal has little or no correlation with the original signal.

Therefore, due to the smaller
∣∣ρxy

∣∣, this study chooses to set a correlation coefficient
threshold as the critical value of the correlation coefficient in the proposed AVMD algorithm
and use it to optimize the value of the modal number K.

The penalty factor is one of the parameters that must be adjusted manually in VMD.
Too small a penalty factor α will increase the probability of mode aliasing and too large
a penalty factor α will weaken the effect of noise reduction. According to the spectral
distribution characteristics of the fault vibration signal of rotating machinery, the mid-low
frequency region is mainly composed of the harmonics of the rotating frequency and its
related characteristic frequencies (such as the bearing fault characteristic frequency and gear
meshing frequency, etc.), while the fault impact and noise interference are mostly located
in the high frequency area. At the same time, the harmonic signal has the characteristics of
longtime domain duration and relatively compact frequency domain, while the impulse
signal has the characteristics of a short time domain and wide frequency domain. Therefore,
in order to better separate the inherent harmonic signal, fault impact and noise signal, the
value of the penalty factor α = 1/2 f s ∼ 2 f s is set to verify the decomposition effect of
AVMD in this study.

VMD and the correlation coefficient are combined to optimize the selection of the
modal number. The initial modal number K = 2. Perform VMD on the signal and obtain the
correlation coefficient between each mode after decomposition and the original signal. If
the minimum value of the correlation coefficient between each mode and the original signal
after decomposition is less than the threshold, the decomposition will stop. Otherwise, the
mode will increase the number and continue to decompose until the stopping condition is
met, in order to determine the modulus K, and finally store the optimal value of K. The
AVMD flow chart is shown in Figure 1.
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In order to check the effectiveness of the algorithm, this section takes the simulated
signal as an example, and uses the AVMD algorithm proposed in this article to verify
the decomposition effect. For periodic simulation signal: x(t) = x1(t) + x2(t) + x3(t),
x1(t) = cos 8πt, x2(t) = 1

4 × cos 96πt, x3(t) = 1
16 × cos 576πt, the actual signal contains

three modes: cosine with amplitude of 1 at 4 Hz, cosine with amplitude of 1/4 at 48
Hz and cosine with amplitude of 1/16 at 288 Hz. Perform AVMD on it, preset different
K (K = 2, 3, 4, 5) values, and the penalty factor α = f s. Then calculate the correlation
coefficient between each modal component and the original signal under different K values,
and the results are shown in Table 1.

Table 1. Correlation coefficients between each modal component and the original signal under
different K values.

Modulus\Correlation
Coefficient ρ1 ρ2 ρ3 ρ4 ρ5

K = 2 0.9923 0.1038
K = 3 0.9765 0.2564 0.1535
K = 4 0.9813 0.2846 0.1689 0.0878
K = 5 0.9625 0.2987 0.1257 0.0756 0.0878

It can be seen from the correlation coefficient between each modal component and the
original signal that when K = 2, the correlation coefficient between the modal com-ponent
u2 and the original signal is 0.1083. When K = 4, the correlation between the modal
component u4 and the original signal is 0.1083. The coefficient is only 0.0878 (less than the
set threshold E = 10%). Then, the selected mode number K = 3 meets the iterative stop
condition and makes the VMD diagram when K = 2, 3, 4, as shown in Figure 2.

As shown in Figure 2, when K = 3, the three modes are well separated. However,
when K = 2, it can be seen that the 4 Hz cosine signal and the 48 Hz cosine signal in
the original signal are superimposed together, and the phenomenon of “modal aliasing”
appears; when K = 4, u1(t), u2(t) represents the cosine signal of 4 Hz and 48 Hz in the
original signal, and u3(t) represents the cosine signal of 288 Hz, but a false mode u4(t) also
appears.

According to the sampling frequency of the periodic simulation signal, f s = 1000 Hz,
take K = 3; take α = 1/8 f s, 1/2 f s, f s, 2 f s respectively, and make the spectrum of each
modal component after VMD under different penalty factor α values distribution map, as
shown in Figure 3.

From the spectrogram of each modal component after VMD under different α values, it
can be seen that when α = 1/8 f s, 2 f s, each modal signal component experiences a serious
modal aliasing phenomenon; when α = f s, 1/2 f s, the phenomenon of component modal
aliasing is weakened, but there are still some frequency components that have not been
decomposed. This is mainly because the bandwidth of the Wiener filter is narrow at this
time, which belongs to some frequencies of the original signal. Components will be filtered,
resulting in missing information, and some frequency components will appear in multiple
components at the same time.

Therefore, from the above analysis of the simulated signal, it can be seen that the
default penalty factor α = 1/2 f s, f s proposed in this study, and the adaptive variational
modal decomposition method selected by optimizing the modal number K through the
correlation coefficient, can well separate the signal from high frequency to low frequency
and avoid the phenomenon of modal aliasing. The decomposition algorithm has a good
effect on the decomposition of the signal.
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2.3. Multiscale Fuzzy Entropy

Multiscale Fuzzy Entropy (MFE) is improved on the basis of fuzzy entropy and
combined with multiscale entropy to measure the complexity and similarity of time series
under different scale factors. MFE can be calculated as follows:

(1) Coarse-grained original time series X = { x(t), t = 1, 2, . . . , N} is processed to obtain
coarse-grained sequence y(τ) =

{
yτ

d , 1 ≤ d ≤ N′/τ
}

.

yτ
d =

1
τ

dτ

∑
t=(d−1)τ+1

xt

where τ is a scale factor and is generally a positive integer.

(2) Calculate the fuzzy entropy of coarse-grained sequence under each scale factor, and
its calculation formula is:

MEF(X, τ, m, r) = FE
(

y(τ), m, r
)

where m is the embedding dimension; r is similarity tolerance.
The parameter selection of the MFE has a great influence on the extracted MFE

features of the vibration signal. Selecting the default parameter settings cannot adequately
characterize the weak fault characteristics of rotating machinery. It will have a greater
impact on the diagnostic results.



Sensors 2022, 22, 4504 8 of 15

2.4. PSO-Optimized Multiscale Fuzzy Entropy

The Particle Swarm Optimization (PSO) algorithm is one of the evolutionary algo-
rithms. It starts from a random solution, finds the optimal solution through iteration, and
evaluates the quality of the solution through fitness. However, it is simpler than the genetic
algorithm rule, and finds the global optimum by following the currently searched optimal
solution. This algorithm has the advantages of easy implementation, high precision and fast
convergence. Additionally, it has demonstrated its superiority in solving practical problems.
Therefore, this study chooses to optimize the parameters of MFE with a PSO algorithm.

The PSO is initialized to a group of random particles (random solutions), and then the
optimal solution is found through iteration. At each iteration, the particle updates itself by
tracking two “extreme values” (pbest, gbest). After finding these two optimal values, the
particle updates its velocity and position by using the formula below.

vi = vi + c1 × rand()× (pbesti − xi) + c2 × rand()× (gbesti − xi)

In order to improve the performance of the algorithm, the weight ω is introduced to vi
of the above formula, as shown in the following formula.

vi = ω× vi + c1 × rand()× (pbesti − xi) + c2 × rand()× (gbesti − xi)

xi = xi + vi

The above two formulas form the standard form of the PSO algorithm.
It is necessary to determine a fitness function when a PSO algorithm is used to find

the optimal parameter of MFE. At this point, the Ske of the data can be obtained. The larger
the absolute Ske is, the more problematic the efficiency of the mean is, or the smaller the
absolute Ske is, the more reliable the mean is.

In this study, the square function of Ske of MFE is selected as the objective function to
find its minimum value. In this way, the parameter values of the embedding dimension M,
the scale factor S and the time delay T of the MFE are optimized.

Ske = E
[

Hp(X)− Hm
p (X)

] 3
/
[

Hd
p(X)

] 3

where Hm
p (X) is the mean value of sequence Hp(X); Hd

p(X) is the standard deviation of
sequence Hp(X); E is the expectation of finding the sequence.

3. Fault Feature Set Construction

The MFE was calculated for the modal components in each frequency band after
AVMD, and the MFE feature set was constructed to characterize more weak fault informa-
tion. The specific construction method of an MFE feature set is as follows.

The specific steps and flowchart of the method based on adaptive variational modal
decomposition and fuzzy entropy feature set construction are shown in Figure 4.

(1) Obtain the original signal, initialize the modal number K = 2, use the default value of
the penalty factor α and the correlation coefficient threshold E: α = f s, E = 10%.

(2) Perform VMD on the vibration signal and calculate the correlation coefficient between
each mode and the original signal. When the correlation coefficient satisfies the
termination condition, the correlation coefficient threshold less than E = 10%, and the
optimal mode number K and penalty factor α are determined.

(3) The optimized VMD is performed on the vibration signal to generate K modal compo-
nents.

(4) In order to minimize the Ske of the original signal, the optimal MFE parameters are
obtained by adaptive optimization using the PSO algorithm.

(5) Calculate the MFE of K modal components to construct a multiscale and multiband
fuzzy entropy feature set.
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(6) Input the fuzzy entropy feature set obtained in the previous step into the classifier for
fault identification.
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4. Experimental Verification

In order to further verify the effectiveness of the method proposed in this article, five
different types of bearing and gear faults on the DDS test bench were collected, and the
cube method proposed in this article was used for fault diagnosis to prove the effectiveness
of the method. Five different categories of bearing and gear failure are: (1) inner ring
fault; (2) outer ring fault; (3) rolling body fault; (4) inner ring + gear wear fault; (5) inner
ring + broken tooth fault. The DDS fault diagnosis comprehensive test bench and test gear
are shown in Figure 5.
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Using the method proposed in this study, the initial AVMD cross-correlation coefficient
threshold was set to E = 10% and the penalty factor α was set to 1/2 f s. AVMD decomposes
five different fault signals. Among them, the inner ring signal is decomposed into seven
modal components, and the correlation coefficient between each modal component and
the original signal is calculated. When K = 8 (as shown in Table 2), the cross-correlation
coefficient is 0.0947, which exceeds the initial value. The set stop threshold is 10%. The
modal components obtained by the AVMD of the outer ring fault, inner ring fault, rolling
element fault, gear wear fault and gear broken tooth fault of the signal are shown in
Table 3. The original signal of the inner ring fault and the modal component spectrum
results after AVMD are shown in Figure 6. It decomposes the inner ring fault signal into
seven different modal components from high frequency to low frequency. It can be seen
from the spectrogram that the modal components of each frequency band have no modal
aliasing phenomenon, which can effectively avoid the phenomenon of modal aliasing. The
phenomena of modal aliasing and end-effects that can be caused by traditional adaptive
decomposition methods are eliminated.

Table 2. Correlation coefficient between each mode and the original signal when the bearing inner
ring faults with different K values.

The Modulus\The
Correlation Coefficient ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

K = 2 0.5576 0.2306
K = 3 0.5638 0.2637 0.2303
K = 4 0.5544 0.5407 0.3163 0.2217
K = 5 0.4042 0.4877 0.5364 0.3247 0.2184
K = 6 0.4036 0.4871 0.5348 0.2108 0.3207 0.2175
K = 7 0.2646 0.3877 0.4737 0.5335 0.2620 0.2827 0.2142
K = 8 0.2578 0.3819 0.4684 0.4627 0.4218 0.3105 0.2180 0.0947

Table 3. The number of modes obtained by decomposing different fault signals.

Modal Number Inner Ring
Fault

Outer Ring
Fault

Rolling Body
Fault

Inner Ring + Gear
Wear Fault

Inner Ring + Broken
Tooth Fault

K 7 8 8 7 9

After that, taking Ske as the objective function, the parameters of MFE embedding
dimension M, scale factor S and time delay T are optimized by PSO algorithm. Set the
population size to 15 and the maximum iteration times to 30. Set the value range of
optimization parameters according to fault signal characteristics: M is [2, 5], S is [1, 10] and
T is [1, 5]. The MFE parameters of the five types of fault vibration signals are shown in
Table 4.

Table 4. Multiscale Fuzzy Entropy parameters for five kinds of fault.

Parameter\Fault
Type

Inner Ring
Fault

Outer Ring
Fault

Rolling Body
Fault

Inner Ring + Gear
Wear Fault

Inner Ring + Broken
Tooth Fault

M 5 3 5 5 5
S 10 3 4 6 7
T 1 1 4 1 5

A total of 500 samples was extracted from five different fault vibration signals collected
by the DDS test bench, with each sample having 1024 sampling points. It can be seen from
Table 3 that the modal number K value obtained by the inner ring fault after AVMD is the
smallest, so extract the first seven modal components of the fault signal decomposed by
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AVMD. After that, the MFE of each modal component is calculated based on the optimal
MFE parameters in Table 4, and the MFE feature set is constructed as shown in Table 5.
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Table 5. MFE feature sets for different faults.

Fault Type Sample
Number Feature Vector Expected

Output

Inner ring
1 0.0031 0.1380 0.4990 0.5983 0.7603 0.6467 0.3830

12 0.0036 0.1799 0.4101 0.5768 0.7545 0.7067 0.3755
3 0.0033 0.1544 0.4293 0.5907 0.7692 0.7662 0.3346

Rolling element
10 0.0111 0.1015 0.4513 0.6587 0.413 0.5540 0.2112

2102 0.0145 0.1735 0.4338 0.6330 0.4024 0.3927 0.2496
103 0.0195 0.1022 0.4587 0.6104 0.4922 0.5042 0.2097

Outer ring
201 0.0044 0.1459 0.5183 0.5314 0.7753 0.4901 0.3953

3202 0.0046 0.1449 0.5966 0.5168 0.7162 0.5975 0.3323
203 0.0048 0.1304 0.5736 0.5109 0.7880 0.5312 0.3228

Inner ring + gear wear
301 0.0085 0.1418 0.5929 0.6776 0.8001 0.7140 0.4273

4302 0.0082 0.1216 0.5738 0.6483 0.8968 0.5445 0.4502
303 0.0084 0.1808 0.5526 0.6102 0.8114 0.7295 0.4105

Inner ring + broken tooth
401 0.0023 0.1720 0.2627 0.4657 0.5695 0.3751 0.2856

5402 0.0022 0.1697 0.2400 0.4156 0.5161 0.4363 0.2883
403 0.0022 0.1186 0.2662 0.4677 0.5982 0.5006 0.2448

In order to further analyze the feature vector set constructed by the method in this
study, the T-SNE method was introduced to visualize the eigenvector set, and the distri-
bution of five types of faults in the low-dimensional space was observed. As shown in
Figures 7 and 8, Figure 7a–c, respectively, shows the distribution of the fault feature set
constructed by EEMD, LMD and AVMD combined with the parameter-optimized MFE in
the low-dimensional space. Figure 8a–c, respectively, shows the distribution of the fault
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feature set constructed by combining AVMD with FE, MFE and parameter-optimized MFE
in low-dimensional space.
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As shown in the Figures 7 and 8, the method proposed in this study can distinguish
faults better than the other categories. The MFE feature set constructed in this way can rep-
resent more fault information. In addition, it can distinguish fault types in fault diagnosis
better and be more sensitive to the weak fault features of rotating machinery.

The MFE feature set constructed by the five methods were put into the SVM, and the
accuracy of the five methods is shown in Table 6.

As shown in Table 6 and Figure 7, the method combining AVMD and optimized
MFE proposed in this study is compared with the traditional EEMD and LMD signal
decomposition methods. AVMD reaches 98% accuracy, which is much higher than the
traditional signal decomposition method. It shows that AVMD is superior to EEMD and
LMD in signal decomposition.

It can be seen from Table 6 and Figure 8 that the fault feature set is constructed by
combining AVMD with FE, MFE and optimized MFE. The fault feature set constructed
by combining AVMD and optimized MFE has more obvious differences in the feature
distribution of low-dimensional space, indicating that it is more sensitive to the fault
features of vibration signals, it can represent more weak fault information and is more
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conducive to distinguishing fault types. The fault diagnosis accuracy of 98% compared to
the other two methods of 89.3% and 81.3% further proves the superiority of the method
proposed in this study.

Table 6. Accuracy of different fault features.

Decomposition
Method

Inner Ring
Fault

Outer Ring
Fault

Rolling Body
Fault

Inner Ring +
Broken Tooth

Fault

Inner Ring +
Gear Wear

Fault

Average
Accuracy

EEMD-PSO-MFE 93.3% 97.0% 47.0% 66.7% 66.7% 73.3%
LMD-PSO-MFE 93.3% 90.0% 83.3% 76.7% 83.3% 85.3%

AVMD-FE 100% 100% 90.0% 40.0% 76.7% 81.3%
AVMD-MFE 100% 100% 90.0% 73.3% 80.0% 89.3%

AVMD-PSO-MFE 100% 100% 100% 93.3% 96.7% 98%
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5. Conclusions

In this study, a method combining AVMD and optimized MFE is proposed to construct
a fault feature set, and this method is verified by DDS test bench data. Compared with other
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decomposition methods and feature extraction methods, the fault diagnosis accuracy rate
in the proposed method reaches the highest 98%. The superiority of the method proposed
in this study is proved.

(1) By analyzing the simulation and experimental results, AVMD optimizes the mode
number K in VMD by using the correlation coefficient, which can reduce the phe-
nomenon of mode aliasing and excessive decomposition.

(2) The early fault feature extraction method based on AVMD and optimized MFE mainly
decomposes the fault signal through AVMD. Taking Ske as the objective function,
PSO searches for the optimal parameters of MFE and extracts the MFE features in
multiple frequency bands. Through this method, the MFE of the modes in different
frequency bands is calculated by decomposing the adaptive variational modes, and
the MFE in different frequency bands is used to form a feature vector set. In this way,
the weak fault information of rotating machinery can be more fully characterized,
and it is more conducive to the early weak fault identification. Simultaneously, it can
achieve higher fault diagnosis accuracy.

(3) The MFE feature extraction method based on AVMD can effectively extract the weak
fault information of the fault signal, but the calculation amount of MFE is large. The
next work will improve this problem to improve the computational efficiency.
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