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Abstract: Requests for caring for and monitoring the health and safety of older adults are increasing
nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is
human falls, especially among aged people. Computer vision techniques can be used to identify fall
events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based
solutions are a good alternative to body-worn solutions. This article proposes a novel human fall
detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed
Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural
Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high
accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by
applying the Fast Pose Estimation method, which has not been used before for this purpose, the
proposed solution is an effective contribution to accurate human fall detection, which can be deployed
in edge devices due to its low computational and memory demands.

Keywords: image analysis; computer vision; machine learning; deep learning

1. Introduction

The hospital admission rate due to falls of people over 60 years old in Canada, Aus-
tralia, and the United Kingdom range from 1.6 to 3.0 per 10,000 population [1,2]. According
to [2], between 28 to 34% of old adults had experienced at least one fall every year. More-
over, falling is the second most significant reason for accidental death for more than 87% of
adults in old age [3]. However, the detection of human falls in images is very complex as
such events can be easily mistaken for other activities. For instance, actions such as sitting
down, bending, or lying down on a bed or sofa, can assume similar poses to falls.

According to [1], fall detection may be a sub-task of general human activity estimation,
presenting distinguishable characteristics to general motion detection. Usually, there is a
quick change in height and width of the body after a fall, followed by an inactivity period
on the ground, which can be identified by the sleeping pose or a lack of head movement [4].

The usual approaches for fall detection can be classified into two distinct groups:
vision and non-vision based. A non-vision approach relies on wearable devices that use
internal sensors, like accelerometers, for fall detection [2]. These approaches have their
drawbacks, such as difficulties of usability, acceptance from users to wear them most of the
time, or power efficiency of the devices; additionally, such sensors are prone to creating high
false warnings being therefore not reliable [5]. Therefore, less intrusive and demanding
vision-based approaches have been proposed [6].

Usually, in vision-based approaches, the person’s motion is obtained from image
frames and then analyzed to detect events like lying on the floor, sitting, or standing. The
features used in such approaches are shape, posture, pixel information, distance, head
position, and orienting angle, amongst others [4].

Sensors 2022, 22, 4544. https://doi.org/10.3390/s22124544 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124544
https://doi.org/10.3390/s22124544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0844-8697
https://orcid.org/0000-0002-1094-0114
https://orcid.org/0000-0001-7603-6526
https://doi.org/10.3390/s22124544
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124544?type=check_update&version=1


Sensors 2022, 22, 4544 2 of 15

Numerous approaches that have been proposed for fall detection lead to results
with minor errors, especially using computer vision-based techniques. Lin et al. [7] pro-
posed a computer vision algorithm by combining shape-based fall characterization and a
supervised-learning classifier, in order to identify and distinguish falls from other daily
actions. The algorithm used the Curvature Scale Space (CSS) feature of human silhouettes
extracted from each image frame to represent the imaged action and was tested on an
action dataset acquired using the Kinect depth camera. The used dataset included six
types of actions: falling, bending, sitting, squatting, walking, and lying, performed by ten
subjects. The authors stated that one of the challenges for computer vision-based methods
for accurate fall detection is the lack of a large fall dataset, and some difficult intrinsic
factors such as image acquisitions with different view angles, illumination conditions, and
clothes. Jiao et al. [8] addressed the mentioned problems by using an improved Recurrent
Neural Network (RNN) with the Long Short-Term Memory (LSTM) architecture in order
to model the temporal dynamics of the 2D pose information of a fallen person, which led
to an improvement over the existing models.

Human pose estimation has been the main topic in computer vision, which has
been extensively implemented for action recognition and human-computer interaction [6].
Usually, it requires an efficient process to detect and locate body key points, such as wrists,
head, elbows, and knees, to name a few, from the input image frames. By implying deep
Convolutional Neural Networks (CNNs), significant improvements have been achieved in
this area [7,8]. However, concerning fall detection, deep networks with complex models
are time-consuming at inference time based, and demand high computing power and
memory space. Therefore, the deployment of the top-performing deep learning networks
on embedded systems is frequently not suitable, which motivated this study to develop an
agile fall detection method by using fast human pose estimation that presents lightweight
computation cost and high accuracy [9].

The used bi-dimensional (2D) posture model was influenced by the Real-time Human
Pose Estimation in TensorFlow.js. Then, to recover the third dimension from the 2D pose,
a deep feedforward neural network was trained on the 2D joints, which were obtained
using a motion capture system, in order to estimate their depth in the coordinate system of
the scene [9]. Every second, the detection model ran in the background to tackle incoming
persons, while a simple bounding box tracking was employed to monitor every person
in the scene. The proposed model could detect multiple persons in outdoor and indoor
scenarios. The Fast Pose model was implemented using Python 3.6 software and the
TensorFlow, PyTorch, OpenCV, and Matplotlib toolkits [10].

The primary goal of this study was to assess the performance of the Fast Pose model
to classify fall and non-fall image frames, i.e., videos, by using lightweight deep learning
networks. Fast Pose is a short and open-source library that can perform 2D/3D pose
estimation in real-time on both Central Processing Units (CPUs) and Graphics Processing
Units (GPUs) [8]. Initially, it detects a skeleton, which consists of key points and connections
between them, to identify human poses for persons in image frames. The poses may contain
18 key points found in the shoulders, neck, nose, elbows, wrists, hips, knees, and ankles,
Figure 1. The detection of the size and location of the human body is based on a top-down
based approach. Then, the input image is cropped around the regions of interest and used
for pose inference [8].

Most of the vision-based fall detection approaches rely on the use of background
subtraction to firstly distinguish the objects of interest in the images from the scene, i.e.,
image, background, and then detect the fall events [11]. In Ref. [9], an approach that used a
ceiling-mounted camera designed to detect background deduction full-body images, and
categorized them with the vectorized silhouette of their shape was proposed. However,
one of the drawbacks of the proposed approach is the lack of success in detecting “tucked”
falls, mainly in public areas [9].

In early human pose estimation methods, it was common to develop the image
structure model using hand-crafted features [1,11]. However, there was an important
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challenge for the traditional pose estimation methods, since they could lead to inaccurate
detections when some parts of the body were occluded. With the emergence of deep
convolutional neural networks for human pose estimation, which is reviewed, for example,
in [12,13], the models can learn how to predict human pose on large-scale datasets with
intensive human joint annotations.
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Figure 1. Examples of the detection of key points by the Fast Pose model.

According to Luo et al. [14], traditional methods adopt different hand-crafted feature
extraction methods for body parts. These techniques often have poor performance and
extra computational costs, but by proposing the Deep Pose method based on deep learning
approaches, the performance has been effectively improved. In addition, multi-scale fusion
can improve the accuracy of human pose estimation; for example, by using the HRnet
and HIgherHRnet models that accept input from parallel subnetworks [14]. By repeatedly
performing multi-scale fusions among these parallel multi-resolution subnetworks, the
HRNet can obtain rich high-to-low resolution representations, leading to enhanced high-
resolution representations [10].

Most of the works in this area are mainly focused on how to design a top-performing
pose estimation method by adopting complex architectures or expensive computer models,
originating the need for new solutions with lower computational and memory demands
that can be deployed in edge devices. Therefore, the development of a lightweight and
optimized solution based on a novel pose estimation model [15] represents an advantage
for this field.

The Fast Pose Distillation (FPD) model can be used to more effectively train extremely
small human pose convolution neural networks [16]. It consists of knowledge extraction
based on object image classification using deep learning models. In short pose estimation,
the pose knowledge distillation objective is to transfer the latent knowledge from a pre-
trained larger learning model to a tiny target pose model to be deployed in test time [16].
In Ref. [17], real-time in multi-person 2D pose estimation was used to retrieve the location
of 25 joint points of the human body, and detect the human movement based on their
locations.

Traditional articulated human pose estimation has been formulated as a structured
prediction task requiring an inference step that combines local observations of body joints
with spatial constraints [18]. The purpose of the inference process is to convert observations
from local part detectors into coherent body configuration estimations. Powerful body com-
ponent detectors have gradually surpassed these models, which have been strengthened
by the development of robust image representations based on convolutional networks [19].
Recent research attempted to add convolutional detectors into part-based models or to
create stronger detectors by integrating the detectors’ output with location-based charac-
teristics [20]. For example, in [11], a fall detector system uses a CNN-based human pose
estimation combined with stereo data to reconstruct human pose in 3D and estimate the
ground plane in 3D. Taking into account different scenarios covering most activities of
people living at home, an extensive evaluation demonstrated high accuracy (91%) without
missed classifications. The main contribution of this research was to implement the fast
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pose method as a lightweight network and tested it using an augmented image dataset. The
proposed solution achieved the highest accuracy among similar state-of-the-art computer
vision-based methods for fall detection and demands low computational resources, which
is an advantage for being deployed in edge devices, for example.

2. Model Architecture and Model Training

The main purpose of this study was to use one type of light human pose estimation
method, mainly the Fast Pose estimation method [15], for human fall detection. In this
method, the first step is to build a highly cost-effective human pose estimation model, which
requires the development of a compact backbone such as the Hourglass network [21]. To
more effectively train a small target learning network, the principle of knowledge distilla-
tion in the pose estimation context was adopted. The second step of the method requires the
pre-training of a strong pose model trainer, such as the state-of-the-art Hourglass network
or another existing alternative. The trainer model is then used to provide extra supervision
guidance in the pose knowledge distillation procedure via the proposed limitation loss
function. Finally, the test step is conducted, aiming to achieve a small target pose model
that provides a fast and cost-effective deployment [15].

Figure 2 shows a flowchart of the proposed solution for fall detection in image frames.
It consists of four steps: (1) recording fall and non-fall videos, (2) human pose extraction
using the Fast Pose method from the videos, (3) storing the coordinates of extracted pose
positions, and (4) implementing 1D-CNN and Time-Distributed CNN-LSTM (TD-CNN-
LSTM) models to classify fall and non-fall events using the stored coordinates.
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The body’s position during falls or Daily Life Activities can be used as a characteristic
for classifying them in image frames. A sequence of images is used to monitor the changes
in the human body pose providing, therefore, a significant clue to identify falls from
other daily activities [20,22]. Tracking is always challenging when considerable motion is
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involved. The idea is that body pose can be applied to every image frame and considered
in the tracking strategy.

The UR Fall Detection Dataset (URFD) used in this study contains 70 video sequences,
including 30 falls and 40 daily living activities. Since the original dataset is considerably
small for training and testing the developed models, techniques of data augmentation
(DA) [23] were used in order to improve the models’ generalization and performance. Thus,
the use of the data augmentation techniques, mainly rotation, horizontal flip, brightness,
and gamma correction, on the original videos allowed us to obtain a total of 560 videos:
240 of falls and 320 of daily living activities.

One of the novelties of this work is related to the analysis of the location of key points
of the human body, which are extracted by the fast pose estimation method [15]. Therefore,
the use of the fast pose estimation method led to the dataset used to train the proposed
models. For example, using the fast pose estimation method, a total of 6110 data samples,
i.e., the position of body key points, were extracted from just a non-fall video. Therefore,
the position of key points from all image frames of all experimental videos provided a huge
dataset to be used to train the proposed deep learning models in order to detect if a person
is lying on the ground. The comprised living activities included everyday events, such as
walking, lying down, bending, sitting down, and crouching down. On the other hand, the
image frames to be evaluated were recorded in standard rooms, including a living room,
office, and classroom, having just a tiny amount of furniture in the acquired scene. Their
duration ranges from 2 to 13 s, and the number of frames included per second is 30.

A fall sequence shows the rapid and sudden change of pose location compared with
daily living activities. Therefore, this change can be used to detect a fall based on the
tracking of the human pose. In this step, by running the fast pose model on the input image
frames, the location information of 18 poses is extracted in each frame and automatically
stored [16]. Then, this data is fed separately to both TD-CNN-LSTM and 1D-CNN models
to classify it into two classes: fall and non-fall.

LSTM models can learn sequence dependence information and accurately predict
sequential data. This deep learning network has an internal state that uses context informa-
tion learned from previous time steps to influence the prediction at the current time [22].
Additionally, a CNN can automatically extract features and provide informative time se-
ries representations. It consists of a highly noise-robust model that can extract valuable
information and in-depth features independent of time. Using joint location information
and short pose estimation, it is possible to analyze the change rate of poses in a sequence of
image frames, with this being information used by the LSTM and one-dimensional CNN
classifiers to detect falls and non-falls.

3. Convolution Neural Network

Deep Learning neural networks have been used to successfully extract significant
features for time series classification. Particularly, a CNN is an integrated framework that
simultaneously can perform feature extraction and classification tasks [24], and it includes
three main layers: convolution, pooling, and fully connected layers. Each layer operates
in different ways to conclusive learning. This network has been applied alone or together
with other networks in different architectures for data classification. The following steps
allow classifying pose location information based on a CNN model.

3.1. Feature Extraction

A CNN uses convolution and pooling layers to monitor and evaluate features in the
first step; Figure 3 illustrates how the filter kernel extracts valuable features. Then, the
max-pooling layer decreases the size of the extracted features. It can tackle the overfitting
problem in the neural network training step. It also evaluates the zone’s maximum from
the extracted feature map created by the convolution layer.
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3.2. Classification

An activation function and a dropout layer can cause non-linearity and decreased
overfitting. As shown in Figure 4, a fully connected layer can be used to categorize the
features into two classes; here, fall and non-fall classes.
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Figure 5 presents the architecture of the one-dimensional CNN used in this study. Of
the used 70 videos, 80% (56 videos) were used as training data and 20% (14 videos) as testing
data. The used model includes two convolution layers of 32 filter length, two convolution
layers of 16 filter length, and two convolution layers of 8 filter length. Commonly, in a
convolution neural network, the convolution layer is followed by a pooling layer with one
or several fully connected layers. However, applying a pooling layer after each convolution
layer is not necessary.

It is possible to realize from Figure 5 that the used model consists of 6 convolution
layers and three max-pooling layers. The last max-pooling layer output is a 2D array,
converted into a 1D array and sent to the fully connected layers using a flattened layer.
To control the output size of each convolution layer, a type of padding should be used.
Here, the same padding for the two proposed neural networks was used. The activation
function was the Relu function, and in the last layer the SoftMax activation function was
used, and then, 1024 fully connected layers and two fully connected layers were used to
classify the input data into the two classes of interest. The Adam function was used as
an optimization function because the results were significantly better than those of other
optimization functions, such as SGD and Adadelta. The learning rate (LR) parameter was
tested with values of 0.0001 and 0.00001, being the best result obtained using the latter. The
network training was over 300 epochs, being the data passed to the network in batches
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of 8 sizes (batch-size). The time of all epoch training was 1 min, which means that the
duration of each epoch was 0.2 s.
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The number of the used parameters depends on the output size of the last convolution
layer, the number of filters, and the number of hidden layers that are fully connected.
According to Table 1, the output shape of the first convolution layer of the used 1D-CNN
was (6110, 32), where 6110 refers to the input data size, and 32 to the filter size of the
first layer of the model. In the first stage, the number of parameters was 160. The output
shape was the same as the first layer for the next convolution layer, and the number of
parameters was (1024 × 4) + 32 = 4128, where 1024 represents the number of parameters in
the network’s hidden layer, 4 the convolution layer’s window size, and 32 the convolution
layer’s filter size (Conv1D 32, (4)).

Table 1. Parameters used in the implemented 1D-CNN for the 2 classes problem under study.

Layer (Type) Output Shape N. of Parameters

Convld_8 (Convld1D) (None, 6110, 32) 160
Convld_9 (Convld1D) (None, 6110, 32) 4128
max_pooling1d_4 (Maxpooling1) (None, 3055, 32) 0
Convld_10 (Convld1D) (None, 3055, 16) 2064
Convld_11 (Convld1D) (None, 3055, 16) 1040
max_pooling1d_5 (Maxpooling1d) (None, 1528, 16) 0
Convld_12 (Convld1D) (None, 1528, 8) 520
Convld_13 (Convld1D) (None, 1528, 8) 264
max_pooling1d_6 (Maxpooling1) (None, 764, 8) 0
flatten_2 (Flatten) (None, 1024) 0
dense_4 (Dense) (None, 1024) 6,259,712
dropout_2 (Dropout) (None, 1024) 0
dense_5 (Dense) (None, 2) 2050

Total number of parameters: 6,269,938; Number of trainable parameters: 6,269,938; Number of non-trainable
parameters: 0.

Based on the architecture of the used 1D-CNN, there was a max-pooling layer with
stride 2 after two convolution layers, with the output of the convolution layer divided by
two. Therefore, the output shape of the first max-pooling layer was 6110/2 = 3055, and the
number of parameters for max-pooling layers was equal to 0 (zero). The next layer was
a convolution layer with a filter size of 16. The output shape was (3055, 16) for this layer,
and the number of parameters was (512 × 4) + 16 = 2064, where 512 denotes the number of
parameters in the network’s hidden layer, 4 the window size of the convolution layer, and



Sensors 2022, 22, 4544 8 of 15

16 the filter size of the convolution layer (Conv1D 16, (4)). Here, the number of hidden layer
parameters was divided by two after each convolution layer. For the next convolution layer,
the output shape was (3055, 16), and the number of parameters was (256 × 4) + 16 = 1040,
where 256 refers to the number of the parameters in the hidden layer, 4 to the window
size of the convolution layer, and 16 to the filter size of convolution layer (Conv1D 16,
(4)). Then, the output shape for the max-pooling layer was 3055/2 = 1527.5~1528 with a
parameters number of 0 (zero). The output shape was (1528, 8) for the next convolution
layer, and the number of parameters was (128 × 4) + 8 = 520. For the last convolution
layer, the output shape was the same as of the last convolution layer with a parameters
number of (64 × 4) + 8 = 264, where 64 refers to the parameters number of the hidden
layer, 4 to the window size of the convolution layer, and 8 to the filter size of convolution
layer (Conv1D 8, (4)). The number of extracted features from the last max-pooling layer of
networks was 1528/2 = 764, which was used as input for the flattening layer. So, the output
of the flattening layer was 764 × 8 = 6112. In this stage, the output of the flatting layer
multiplied by dense layer size was (6112 × 1024 = 6258,688) and a bias of 1024 was added
to the result: 6,258,688 + 1024 = 6,259,712. During the training step, some number of layer
outputs were randomly ignored or dropped out by the dropout layer. The output shape
of the dropout layer was 1204, so the parameters number of the last dense layer with size
2 was (1024 × 2) + 2 (biases) =2050. Finally, by adding up all the values of the parameters
in Table 1, it is possible to calculate the total number of parameters associated with the
network training, in this case: 6,269,938.

3.3. CNN-LSTM

LSTM is a robust neural network able to learn how to bridge minimal time lags over
1000 discrete time steps by enforcing constant error flow in special units. Multiplicative
gate units identify and grasp the potential to open and close access to the constant error
flow. Besides this, LSTM is local in space and time and improves the RNN architecture [25],
and its main strength lies in dealing with sequential data such as in time series [26]. A
CNN-LSTM consists of convolutional layers to extract input data features, combined
with LSTMs to support sequence prediction. CNN-LSTM was developed for time series
prediction problems and for producing textual descriptions from sequences of images, i.e.,
videos, Figure 6. This model divides the primary data sequence into sub-sequences as
blocks, extracts features from each block, and then interprets each block’s extracted features.
Although LSTMs are robust neural networks, it is hard to use and configure them. Adding
a complex Time-Distributed Layer as a layer wrapper allows applying a layer to every
temporal slice of input [27].
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The time-distributed structure serves to learn the long-term and short-term features of
the time series. Consequently, it makes perfect use of extracted information on different
time scales. The Time-Distributed method converts the raw time-series input into a shorter
sequence, making learning long temporal dependencies easier. Time-Distributed CNN-
LSTM (TD-CNN-LSTM) is a composite end-to-end framework that uses time-distributed
spatiotemporal feature learning, and so a deployment method of basic CNN-LSTM [26].

For this network, the output shape of the first convolution layer was (6110, 16), where
6110 is the input data size, 16 refers to the window size of the convolution layer, and the
parameters number of the first convolution layer was 32. The output shape was equal
to the first layer for the second convolution layer, and the number of parameters was
(64 × 4) + 16 = 272, where 64 is the number of the hidden layer, 4 refers to the window
size of the convolution layer, and 16 to the filter size of the convolution layer. There was
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a max-pooling layer with stride 2 after two convolution layers, dividing the convolution
layer’s output by two. Therefore, the output shape of the first max-pooling layer was
6110/2 = 3055, and the number of parameters for max-pooling layers was equal to 0 (zero).
The next layer was a convolution layer with an output shape of (3055, 8) and a parameters
number of (32 × 4) + 8 = 136, where the number of the hidden layer, the convolution layer’s
window size, and the convolution layer’s filter size were: 32, 4, and 8, respectively. The
output shape of the next layer was equal to the one of the last layer, and the number of
the parameter was (16 × 4) + 8 = 72, where the number of the hidden layers, the window
size of the convolution layer, and filter size of the convolution layer were: 16, 4, and 8,
respectively. The next max-pooling layer had an output shape of 3055/2 = 1527.5~1527 with
a parameters number of 0 (zero). After the last max-pooling layer, a flatten layer converts
the two-dimensional output to a one-dimensional output. So, the output of the flatten layer
was equal to 1527 × 8 = 12,216. According to Figure 7, the output of the flatten layer was
the input for an LSTM layer with an output shape of 100 and a parameters number equal
to 4,926,800. There is no exact way to compute the number of parameters during a LSTM
training process. A dense layer with 1024 is used after the dropout layer which was shaped
as 100. For this layer, the number of parameters was (100 × 1024) + 1024 (biases) = 103,424.
The output shape of the dropout layer was 1204, so the parameters number of the last dense
layer with size 2 was (1024 × 2) + 2 (biases) = 2050. Adding up all the values of the Number
of Parameters column of Table 2 allows us to determine the total number of parameters
associated with the training of this model: 5,032,786.
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Table 2. Parameters used in the implemented TD-CNN-LSTM for the 2 classes classification stud-
ied problem.

Layer (Type) Output Shape N. of Parameters

time_distributed_7 (None, None, 6110, 16) 32
time_distributed_8 (None, None, 6110, 16) 272
time_distributed_9 (None, None, 3055, 16) 0
time_distributed_10 (None, None, 3055, 8) 136
time_distributed_11 (None, None, 3055, 8) 72
time_distributed_12 (None, None, 1527, 8) 0
time_distributed_13 (None, None, 12216) 0
lstm_1(LSTM) (None, 100) 4,926,800
dropout_1(Dropout) (None, 100) 0
dense_2 (Dense) (None, 1024) 103,424
dense_3 (Dense) (None, 2) 2050

Total number of parameters: 5,032,786; Number of trainable parameters: 5,032,786; Number of non-trainable
parameters: 0.
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4. Experimental Results

This study used the Fast Pose Model for human pose detection and to classify detected
pose sequences into fall and non-fall classes. For this purpose, two deep neural network
models were implemented and evaluated in terms of accuracy, precision, recall, and F1-
score criteria. Accuracy refers to the proximity of a measured value to a standard or actual
value [19]:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

where TP refers to true positive, TN to true negative, FP to false positive, and FN to
false-negative cases.

Precision is a metric that assesses the number of correct predictions made, calculated
as the proportion of correctly predicted positive samples divided by the number of positive
samples forecasted. Both precision and recall are metrics that can be combined to evaluate
the performance of classification or information retrieval systems. However, some feature
extraction strategies are complex, and usual machine learning classifiers have particu-
lar demands as to the used datasets, due to their limited ability of generalization [28].
Precision is the fraction of relevant instances among all retrieved instances, and Recall,
sometimes referred to as “sensitivity”, is the fraction of retrieved occurrences among all
relevant instances:

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

A perfect classifier has both precision and Recall equal to 100%. It is frequently
possible to calibrate a classifier and improve its precision at the expense of the recall, or
contrariwise [15].

Precision and recall are sometimes combined into the F1-score if a single numerical
measurement of a system’s performance is required [13]:

F1-Score = (2 × (Recall × Precision))/((Recall + Precision)) (4)

Table 3 summarizes the results obtained by the 1D-CNN and TD-CNN-LSTM proposed
classifier models. The training accuracy of the implemented 1D-CNN was 99.13%, and
its validation accuracy was equal to 99.31%. The training and validation accuracies of the
implemented TD-CNN-LSTM were 98.90 and 99.08%, respectively.

Table 3. Results of the proposed models for the two classes classification problem under study.

Model Training
Accuracy

Validation
Accuracy Training Loss Validation Loss

1D-CNN 0.9913 0.9931 0.0196 0.0181
TD-CNN-LSTM 0.9890 0.9909 0.0221 0.0196

Figure 8 presents the training and validation accuracies and loss analysis of the
developed models concerning the number of epochs, and, from them, it can be realized
that, for both models, the training loss was in the minimum range, and the accuracy was
higher than 97%.

Training a learning model means learning good values for all the weights and biases
from labelled examples [25]. A loss is a number indicating how wrong the model’s pre-
diction is on a single example. If the model’s prediction is flawless, the loss is zero; if not,
the loss is more significant. Hence, training a model means finding a set of weights and
biases that have low loss, on average, across all examples [23]. The common problem in
training learning models is related to the overfitting that can occur during the process,
which was observed in the primary model of this network but, by changing the size of max-
pooling and the second Dense layer of the network, the problem was solved. According
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to Figure 8, the model’s accuracy rate increased, and the loss decreased by running more
training epochs.
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Figure 8. Training and validation analysis of overall epochs for the developed 1D-CNN model:
(a) Accuracy analysis of Training and Testing, and (b) Loss analysis of Training and Testing; and for
the developed TD-CNN-LSTM model: (c) Accuracy analysis of Training and Testing, and (d) Loss
analysis of Training and Testing.

Table 4 summarizes the precision, recall, and F1-score for the two classes under study
obtained by the implemented 1D-CNN and TD-CNN-LSTM models.

Table 4. Precision, recall, and F1-score values were obtained by the proposed deep neural net-
work models.

Fall Non-Fall

Model Precision Recall F1-Score Precision Recall F1-Score

1D-CNN 1.0 1.0 1.0 1.0 1.0 1.0
TD-CNN-LSTM 1.0 1.0 1.0 1.0 1.0 1.0

According to the results in Table 4, both proposed models achieved high evaluation
metrics, confirming their reliability to predict fall and non-fall events in image frames.

In the research field of artificial intelligence, a confusion matrix is often used to
visualize an algorithm’s performance. In this matrix, each column represents the predicted
value of instances, and each row represents the actual, i.e., true, value of instances. Figure 9
shows the confusion matrices built for the two proposed models to visualize whether they
predicted correctly or not. In these matrices, the classification of 29 and 27 samples obtained
by the implemented 1D-CNN and TD-LSTM CNN models are represented, respectively,
being possible to confirm their high accuracy in predicting the two classes under study.
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Figure 9. Confusion Matrix obtained by the proposed 1D CNN (a) and TD-CNN-LSTM (b) models
on the testing data.

Receiver Operating Characteristics (ROC) curves help to evaluate and benchmark
classifiers, allowing the visualization of their performance. ROC plots are frequently used
in clinical decision-making and have recently become essential in machine learning and
data mining. The ROC plot is created by plotting the True Positive Rate (TPR) versus the
False Positive Rate (FPR) in different threshold settings. TPR denotes the number of items
correctly classified as positive by the classifier. On the other hand, FPR is the number of
items wrongly classified as positive by the classifier. Lowering the FPR, thus maximizing
the TPR, allows for achieving an optimal status. Therefore, the optimal point (TPR = 1 and
FPR = 0) is in the upper-left corner of the ROC curve. Figure 10a shows the ROC curve
built for the implemented TD-CNN-LSTM model, and Figure 10b shows the ROC curve
built for the implemented 1D-CNN model, according to the 0 (fall) and 1 (non-fall) classes
under study. The calculation of the area under the ROC curve, also known as the area
under the curve (AUC), has the maximum, which is the best value, of 1.00. Regarding the
ROC curves in Figure 10, the AUC of the TD-CNN-LSTM model was optimal (area = 1.00),
and the AUC of the 1D-CNN model was in a similar range (area = 1.00), which confirms
once more the very good performance achieved by the proposed classifier models.
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Several authors used pose estimation to achieve accurate fall detection by machine
learning and deep learning methods in image frames. Table 5 allows a comparison of the
results obtained by similar research works. This comparison shows that the proposed 1D-
CNN model outperformed the proposed TD-CNN-LSTM model by 1% in terms of accuracy.
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Table 5. Classification results obtained by the proposed and other published related models based on
pose estimation for fall detection in image frames.

Reference Method Accuracy Precision Sensitivity

Lin C et al. [27] Open Pose-LSTM
Model 92% - -

Hasan M et al. [24] 2DPose estimation - - 99%

Nunez A et al. [31] 2D Pose
estimation 95% - -

Harrou F et al. [29] SVM 96.66% - 100%
Jeong S et al. [30] LSTM 97.38% - -

Proposed 1D-CNN 1D-CNN 99.13% 100% 100%
Proposed

TD-CNN-LSTM TD_CNN-LSTM 98.90% 100% 100%

From Table 5, it is also possible to compare the results of the proposed models against
the ones obtained by other studies also on the URFD dataset. In Ref. [27] by using the
Open-pose estimation method, key points of the skeleton were detected, and a LSTM
model provided an accuracy of 92% for fall detection. According to [27], a recurrent neural
network with a LSTM architecture that models the temporal dynamics of the 2D pose
information of a fallen person was developed. Human 2D pose information, which has
proven to be effective in analyzing fall patterns, as it ignores people’s body appearance
and environmental information while capturing accurate motion information, made the
proposed model simpler and faster. In Ref. [29], the combination of Exponentially Weighted
Moving Average, a monitoring scheme, and an SVM classifier was proposed to classify
input data into fall and non-fall classes. The solution achieved an accuracy of 96% and
a sensitivity of 100%. The disadvantage of this solution relies on failure to differentiate
actual falls from some fall-like gestures, so, to overcome this barrier, a classification stage
based on a support vector machine was applied to detected sequences. Another method
based on the pose estimation method was suggested in [30] by adopting an LSTM model to
detect falls from continuous human activity, which achieved a 97.38% accuracy. Núñez-
Marcos et al. [31] achieved an accuracy of 95% by proposing a network to solely analyze
the situation of the whole body in image sequences. The work of Hasan et al. [24], which is
focused on human 2D pose information, has shown to be effective in analyzing fall patterns
by achieving 99% of sensitivity. This model had one of the most promising performances
among the state-of-the-art reviewed works, but it was still 1% lower than the proposed
TD-LSTM-CNN and 1D-CNN models, which achieved 100% of sensitivity.

According to the experimental results, the proposed models for human fall detection
achieved very promising accuracies when compared to the reviewed related state-of-the-art
methods. There is a lack of contributions related to optimized lightweight human pose
methods for human fall detection that can be applied efficiently with low computational de-
mands. In terms of evaluation metrics, the TD-LSTM-CNN and 1D-CNN models achieved
the highest values, which are superior to those of all reviewed related works. Therefore, this
research represents an important contribution to this field, since the Fast pose estimation
method was proved to be highly competent in fall detection demanding low computational
resources by using a lightweight human pose-based approach.

5. Conclusions

This article proposed a fall detection solution based on the Fast-Pose estimation
method, which is based on the extraction from the input image frames of the human
skeleton, the detection of the body’s critical points, and their further classification using
deep learning models. An augmented version of the URFD dataset, was obtained by using
the rotation, brightness, horizontal flip, and gamma correction augmentation techniques
on the original URFD videos, which led to a total of 560 videos, including 240 videos of
falls and 320 videos of daily life activities, was used to assess the developed models.
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At first, the location information of human poses in each image frame is extracted
by using the Fast-Pose estimation method and stored. The classification of extracted data
into fall and non-fall classes is achieved by applying 1D-CNN and CNN-LSTM models.
Regarding the evaluation results achieved by both proposed models, the accuracy obtained
by the 1D-CNN model was equal to 99.13%, which is higher than those obtained by similar
state-of-the-art methods. This achievement represents an advantage of the proposed model.
The proposed models were also assessed using other evaluation criteria such as recall,
precision, and F1-score. The highest precision, recall, and F1 score (of 100%) values were
obtained by both proposed models. These findings also confirm that the proposed solution,
which is based on the fast pose method that has not been used before for this purpose,
is an effective way to accurately detect human falls in image frames, requiring very low
computational resources being, therefore, very interesting to be deployed in edge devices.

To evaluate the generalization of the proposed models, other datasets that include dif-
ferent views of fallen people, and not just the front view, and the use of other augmentation
techniques, mainly based on Generative Adversarial Networks (GANs), are suggested for
future work.
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