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Abstract: Wearable devices are burgeoning, and applications across numerous verticals are emerging,
including human performance monitoring, at-home patient monitoring, and health tracking, to name
a few. Off-the-shelf wearables have been developed with focus on portability, usability, and low-cost.
As such, when deployed in highly ecological settings, wearable data can be corrupted by artifacts
and by missing data, thus severely hampering performance. In this technical note, we overview a
signal processing representation called the modulation spectrum. The representation quantifies the
rate-of-change of different spectral magnitude components and is shown to separate signal from noise,
thus allowing for improved quality measurement, quality enhancement, and noise-robust feature
extraction, as well as for disease characterization. We provide an overview of numerous applications
developed by the authors over the last decade spanning different wearable modalities and list
the results obtained from experimental results alongside comparisons with various state-of-the-art
benchmark methods. Open-source software is showcased with the hope that new applications can be
developed. We conclude with a discussion on possible future research directions, such as context
awareness, signal compression, and improved input representations for deep learning algorithms.

Keywords: modulation spectrum; wearable devices; quality measurement; signal enhancement;
feature engineering

1. Introduction

Advances in data acquisition, sensing technologies, displays, and extended battery life
have allowed for the burgeoning of wearable devices, especially those used for fitness and
activity tracking, as well as physiological signal monitoring. Recent projections suggest
that by 2026, the wearables market will rise to over 260 billion USD, with over 75 billion
USD coming from wristwear (smart watches, smart bracelets) [1]. Wearable devices allow
for continuous, unobtrusive, and long-term recording of physiological signals in real-world
settings, thus show potential not only for individuals interested in learning more about
their health and fitness levels, but also opens doors for new research directions and for,
potentially, world-wide experiments.

Recent examples of this new era of patient monitoring could be witnessed during
the COVID-19 pandemic, where numerous studies were run on tens of thousands of
participants remotely using wearables. Fitbit, for example, showed that prediction of
whether a person was sick on any specific day was possible by looking at specific patterns
in respiration rate, heart rate, and heart rate variability for that day and the four preceding
days [2]. The UCSF study, in turn, showed that the Oura ring could be used to measure heart
rate and changes in dermal temperature to predict the onset of COVID-19 symptoms such
as fever, cough, and fatigue [3]. The Stanford study, in turn, is currently using wearables to
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track combinations of step count, body movement, galvanic skin response, temperature,
location, steps, calories burned, active minutes, heart rate, the amount of oxygen in the
blood, blood pressure, and the quality of sleep in order to predict COVID-19 infections
prior to symptoms showing. Pilot analyses have already shown promising results [4].

In addition to COVID-19 infection monitoring, wearables have shown to disrupt nu-
merous healthcare domains, including cardiology [5], gait analysis [6], sleep quality [7], clin-
ical trials during cancer treatment [8], stress management [9], and emotion/depression [10],
just to name a few. In addition to healthcare, wearables have also seen applications in smart
vehicles [11], pedestrian tracking [12], gaming [13] and extended reality [14], smart homes
and robots [15], construction safety [16], and Industry 4.0 applications [17]. There is no
doubt that wearables are here to stay.

Wearable devices have gained popularity due to the fact that they allow for mea-
surement in real-world settings in an unobtrusive manner. Previously, measurement of
physiological signals was traditionally performed in controlled laboratory conditions with
non-ambulant subjects. Although this assures high signal quality and reduces confounding
factors, the accuracy of the obtained models can deteriorate when used in highly ecological
settings (e.g., see [18]). It is known that ambulant users can generate a large amount of
artifacts that can severely affect signal quality [19].

For example, comparisons by [20] between wrist-worn wearable heart rate data and
data measured from a chest-worn device showed that correlations were reduced in real-
world settings. The work of [21], in turn, showed that movement had an impact on the
quality of electrocardiography (ECG) and galvanic skin response (GSR) signals. The work
by [22] showed the susceptibility of photoplethysmography (PPG) signals to motion noise,
and ultimately, the impact it has on the calculation of heart rate variability measures during
daily life movements, especially when strenuous movement is involved [23]. Additionally,
the work in [24] showed that motion artifacts may coexist with respiratory movement, thus
also making respiratory rate estimation from PPG signals challenging. Electroencephalogra-
phy (EEG) signals are also known to be inherently sensitive to muscle and eye movements
and blink artifacts. Moreover, dry electrodes, typically found in wearable EEG headsets,
have shown to have increased sensitivity to movement artifacts relative to wet electrode
based systems that are typically found in the clinic [25]. A recent study measuring the
reliability and validity of consumer wearable devices for the measurement of heart rate,
energy expenditure, and steps in free-living settings showed that (i) high-intensity activity
caused significant deterioration in heart rate estimation, (ii) in over 40% of the evaluated
studies, step count errors were above the acceptable 10% error margin, and (iii) in 29% of
the studies, errors in energy expenditure calculations exceeded the 10% threshold [26].

Although the potential is clear that wearable devices can revolutionize numerous sectors,
significant work is still needed in order to measure and enhance the quality of the measured
signals. Over the years, numerous methods have been proposed for signal quality measure-
ment and enhancement of different physiological signals and wearable device data. Methods
can rely on human intervention [27] or be (semi)automated. Representative examples of
the latter include methods that rely on data statistics (e.g., [28,29]), spectral/connectivity
profiles (e.g., [30–32]), blind source separation (e.g., [33,34]), adaptive filtering (e.g., [35,36]),
and, more recently, on machine and deep learning approaches (e.g., [37–40]). Combinations
of multiple such approaches have also been proposed (e.g., [41,42]). For wearable data and
real-time analytics, it is imperative that quality measurement and enhancement methods be
automated (i.e., not rely on human intervention), require low computational complexity, rely
on small amounts of training data, as these can be hard and/or expensive to collect, and be
safe against attacks [43]. Ideally, methods should be able to detect the signal quality and adjust
the enhancement scheme “on-the-fly” for optimal results. Few existing systems, however,
follow this approach, thus leaving ample room for innovation.

In this technical note, we provide an overview of the so-called modulation spectral
signal representation developed and used by the authors across numerous applications
over the span of the last decade. By measuring the rate-of-change of signal spectral com-
ponents, the measure is capable of accurately separating signal from noise, thus allowing
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for accurate measurement and enhancement of numerous different wearable device sig-
nals. In particular, the authors have explored the use of this representation for (i) sensor
quality assessment, (ii) automated artifact removal, (iii) noise-robust feature extraction,
and (iv) new biomarkers development for disease characterization. The goal of this techni-
cal note is to provide the reader with an in-depth overview of these developed methods,
showcase new applications developed and how they compared to state-of-the-art methods,
as well as open-source toolboxes developed in-house, and finally, provide guidance on
potential future work that can leverage the proposed representation. Although the majority
of the work presented here has already been published elsewhere, this report will provide
readers with a “one-stop-shop” document covering a decade’s worth of research by the
authors on the use of the modulation spectrum signal representation for “in the wild” appli-
cations involving wearables. For a more in-depth comparison between the developed tools
and state-of-the-art methods, the interested reader is referred to the numerous references
cited herein.

The remainder of this technical note is organized as follows. First, Section 2 will
present the modulation spectral signal representation and its signal-noise separation prop-
erties, thus motivating quality measurement and enhancement applications, among others.
Section 3 then covers the various wearables applications of the modulation spectrum
explored by the authors over the last decade, including a description of in-house devel-
oped open-source software. Finally, Section 4 provides a discussion on future research
possibilities, and Section 5 concludes the paper.

2. Modulation Spectrum Signal Representation

Here, we describe the steps for calculating the modulation spectrum signal representa-
tion. Next, we motivate its use for different applications involving wearable devices.

2.1. Signal Processing

The modulation spectral signal representation measures the rate-of-change of spectral
magnitude components. The motivation lies in the fact that, although many artifacts and
environmental noise sources overlap in both time and frequency, the rate at which their
spectra vary over time differs, hence becoming more separable in the new frequency–
frequency modulation spectral domain. As expected, two transformations are needed to
obtain the representation; Figure 1 depicts the signal processing steps involved.

Figure 1. Signal processing steps involved in the computation of a modulation spectrogram. Other
methods of computing the representation can be found in [44].

First, the time-domain signal x(t) is transformed to its spectrotemporal equivalent
X(t, f ). This transformation can be achieved by different methods, such as a short-time
Fourier transform (STFT), a continuous wavelet transform (CWT), or the use of filterbanks
together with the Hilbert transform (HT). These different methods offer certain advantages
and disadvantages in terms of time and frequency resolution trade-off. However, for all
these methods, the spectrotemporal representation X(t, f ) can be written as the convolution
of the time-domain signal x(t) and a series of complex filterbanks λ f (t)ej2π f t, i.e.,

X(t, f ) = x(t) ? λ f (t)ej2π f t, (1)
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where convolution is indicated with ?, ej2π f t denotes complex oscillations for different
frequencies f , and λ f (t) is the window applied for each complex oscillation at a given
frequency. The interested reader is referred to [44] for a detailed description the STFT, CWT,
and HT methods, their comparison with each other, and their common formulation in the
form of Equation (1).

The next step for the calculation of the modulation spectrogram consists in characteriz-
ing in the frequency domain the changes of the instantaneous amplitude for each frequency
in the spectrotemporal representation X(t, f ). As such, the modulation spectrogram associ-
ated to the signal x can be written as:

X( fmod, f ) = Ft{|X(t, f )|}, (2)

where Ft{·} indicates the the Fourier transform over the time dimension. This procedure
is illustrated in Figure 1, where fmod represents the modulation frequency, whereas f
represents the conventional frequency axis. Although the phase information of X(t, f ) is
not used to obtain the modulation spectrogram, phase information is kept if reconstruction
of the time-domain signal is needed.

The modulation spectrogram X( fmod, f ) provides insight into the entire signal’s spec-
trotemporal dynamics. Such a representation has been found to be useful if stationary
noise is present or if desired characteristics from the signal do not change significantly
over the short time periods of the recorded signal (e.g., biomarkers of disease over several
minute recordings). However, the modulation spectrogram is not time resolved. On the
other hand, if transient or time-varying noise is present or time-varying changes in the
signal of interest are present (e.g., changing heart rate during exercise), then the modulation
spectrogram should be considered in shorter time windows (frames) and window overlaps,
hence resulting in a modulation spectral tensor representation of dimension F× Fm × N,
where F denotes the resolution across the (conventional) frequency axis, Fm the resolution
across the modulation frequency axis, and N the total number of frames available within
the signal x(t). It is important to emphasize that the choice of window size and window
shifts in the first transform will ultimately dictate the maximum modulation frequency
present in the signal, whereas the window size and shifts of the second transform will
dictate the resolution of the modulation spectrogram. Different signals require different
resolutions and depending on the properties being sought, different frequency ranges
are important. As such, these signal processing parameters (e.g., window size, window
overlap) are often treated as hyper-parameters and optimized on a per application basis.

Because the modulation spectrum can capture higher order periodicities of the signal,
it helps not only to separate signal from noise, but also to quantify properties of the
signal not otherwise obvious in time and time–frequency domains. As the authors have
shown over the years, the separability of the signal and noise components that is achieved
inherently by the method can open doors for numerous innovations. In the sections to
follow, we describe the potential of the representation in building new tools for signal
quality assessment, signal enhancement, blind source separation, noise-robust feature
extraction, and disease characterization. Section 3, in turn, will detail the applications
developed by the authors for various different signal modalities recorded from wearable
devices, including electrocardiograms (ECG), electroencephalogram (EEG), accelerometry,
speech and breath sound recordings, and compare them against existing methods.

2.2. Quality Assessment

The modulation spectrogram or modulation spectral tensor representation can be used
directly for signal quality assessment. As the representation separates signal from noise
components, one may characterize the signal and noise components separately and take
their ratio to obtain a correlate of the signal-to-noise ratio (SNR) without the need for a
clean reference signal. Figure 2 shows an example using a synthetic ECG signal. The top left
plot depicts the time-domain signal for the same ECG signal corrupted by recorded sensor
noise at three separate SNR levels (30 dB, 5 dB, and −5 dB). The bottom left plot, in turn,
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depicts the time–frequency representation of the same three signals. Finally, the plots on
the right depict the modulation spectrogram of the signals with decreasing SNR from top
to bottom. From the top modulation spectrogram plot, it can be seen that ECG information
is encoded in the lobes, whereas noise in the areas outside the lobes. By measuring the
energy inside and outside the lobes, one can obtain a measure of the signal quality. Quality
metrics for ECG and speech signals have been proposed and will be described in more
detail in Section 3.

Figure 2. Plots of (a) three snippets of synthetic ECG corrupted by noise at SNR levels of 30 dB, 5 dB,
and −5 dB; (b) their respective time–frequency plots; and (c–e) the modulation spectrograms for the
three signals.

2.3. Signal Enhancement

As the modulation spectrum is obtained by performing two time-to-frequency trans-
formations, if such transforms are invertible, one can perform filtering in the modulation
spectral domain and invert the filtered representation back to the time domain in order
to perform signal enhancement. Figure 3 depicts one such filtering method that performs
signal enhancement by keeping the signal components captured by the representation and
filtering out the noise components. As will be shown in Section 3.2, different applications
will require different filtering schemes. Representative examples include bandpass filter-
banks for ECG, bandpass filter for speech, and bandstop filters for EEG. As the filtering can
result in phase delays, these need to be accounted for during reconstruction, as shown in
the figure.
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Figure 3. Signal processing steps for signal enhancement via modulation spectrum filtering.

2.4. Blind Source Separation

With physiological data, physiological “noises” are commonly observed and often
considered to be nuisance factors, hence are filtered out. Examples of such physiological
noise can include the breathing effects on ECG modulations, heart beats appearing in EEGs,
or heart and lung sounds concurrently present in breath sound recordings. Often these
nuisance signals overlap in both time and frequency, and conventional tools have been
developed to suppress/cancel them, hence resulting in enhancement methods, as noted
in the preceding section. Indeed, blind signal/source separation differs from signal en-
hancement in the sense that the interfering signal (e.g., noise) is not filtered out completely,
but instead is separated from the signal of interest and used in downstream applications.
Separating them in a manner that allows for the nuisance factor to be useful is a far more
challenging task. The modulation spectrum representation, in turn, lends itself well to the
task as the rate-of-change of the overlapping signals differ, hence become separable in the
modulation spectral domain. Such blind source separation of confounding physiological
signals can be very useful for wearables, as it allows for additional signal modalities to be
measured, hence not only improving accuracy, but also making the systems more robust
against missing data (e.g., one could recover the heart rate from the EEG noise and use this
information when ECG data from a chest monitor are missing).

2.5. Noise-Robust Feature Extraction

Up to now, methods to measure and enhance the quality of wearable data have been
noted. Ultimately, however, features need to be extracted from the signals and input into
machine learning algorithms for automated detection/classification/recognition tasks. One
recurring issue with wearable data collected in realistic settings is that the added noise
degrades performance, and enhancement can often remove important details from the
signal. One way to bypass the need for enhancement is to derive noise-robust features and
use these directly for classification. The modulation spectral representation is an excellent
candidate for this, as features can be extracted directly from the signal components in
the modulation domain and input to the machine learning pipeline. Noise-robust feature
extraction is an important topic for “in-the-wild” studies with wearables, and applications
involving ECGs, EEGs, and speech will be highlighted in Section 3.4.

2.6. Disease Characterization

Finally, as noted previously, the modulation spectrum representation is useful in
quantifying the higher order periodicities of the investigated signals. It turns out that,
e.g., disease and aging can affect such periodicities, thus making the modulation spectral
signal representation useful for disease characterization. An added bonus is that such dif-
ferences are often disjoint from the noise spectral dynamics, hence noise-robust diagnostic
systems may be possible. Section 3.5 will highlight a few applications explored by the
authors, including Alzheimer’s disease diagnosis and severity level prediction, stress and
anxiety monitoring, and dysarthric speech intelligibility characterization.
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3. Applications

Over the last decade, the authors and their collaborators have explored the use of
the modulation spectral representation across numerous domains. Here, we highlight
those related to wearable devices. The interested reader will be directed to published
papers providing more in-depth technical details and comparative analyses with state-of-
the-art methods.

3.1. Quality Assessment

Due to its ability to separate signal from noise, the modulation spectrum domain has
been used to estimate the quality of various signals, as detailed in the subsections to follow.

3.1.1. Electrocardiograms

A modulation spectrum quality index (MS-QI) for ECG quality assessment was pro-
posed in [45]. MS-QI utilizes the insights shown in Figure 2 and proposes the ratio of the
total modulation energy inside the lobes to the total modulation energy outside the lobes
as a correlate of the ECG SNR. The metric was tested on four different datasets: one of
synthetic ECG data contaminated by different noise types at different levels (ranging from
30 dB to −10 dB SNR), and three based on recorded ECGs under varying physical activi-
ties and quality levels. Experimental results showed the proposed metric outperforming
conventional ECG quality benchmarks, including ECG kurtosis and the in-to-out-of-band
spectral power ratio within the QRS complexes, across all tested conditions. More recently,
in [46], a variant of the MS-QI metric was proposed based on signals measured from an
instrumented steering wheel and showed to achieve results in line with those obtained
from a chest ECG monitor. The predicted quality can also be used as context in real-world
applications. For example, in [47], the MS-QI metric was used to flag only usable portions
of the ECG to be stored on the wearable device for future offline analysis. Such a strategy
was able to save 65% in storage requirements and reduce energy requirements. These are
crucial gains for wearable devices.

3.1.2. Speech Signals

Based on physical constraints imposed by our vocal chords and speech production
system, humans are not capable of generating spectral changes beyond certain rates. Ex-
periments conducted over the years have shown that important speech components lie
between 2 and 20 Hz modulation frequency [48], and noise and room acoustics can affect
such frequencies and/or appear in a different frequency range [49]. Figure 4, for example,
depicts the modulation spectrogram of clean speech and speech corrupted by reflections in
a medium-sized room with a reverberation time (RT60) of 0.8 s. As can be seen, for clean
speech, the majority of the modulation energy lies below 20 Hz fmod, while increasing
reverberation levels cause increases in energy outside this range.

Figure 4. Modulation spectrogram for speech in clean (left) and with reverberant ((right)
RT60 = 0.8 s) environments.



Sensors 2022, 22, 4579 8 of 19

Using these insights, a blind speech quality and intelligibility measure was proposed
in [50] and called speech-to-reverberation modulation energy ratio (SRMR). The measure
computes the ratio between the amount of modulation energy below 20 Hz (speech) and
the amount of energy above 20 Hz (reverberation). The SRMR metric was shown to not
only correlate highly with speech quality but also with room acoustic parameters [51,52].
Extensive experiments showed the proposed metric significantly outperforming several
state-of-the-art metrics in use by the International Telecommunications Union (ITU-T),
including the so-called P.563, P.862, and P.863 standards. Later work showed that (i) nor-
malizing the metric could improve quality measurement accuracy [53], (ii) incorporating
hearing impairments into the SRMR metric could allow for quality assessment for impaired
listeners [54], (iii) using the modulation spectral tensor representation could provide more
flexibility [55] and serve as input to deep learning algorithms [56], and (iv) incorporating
bone-conduction properties could allow for in-ear microphone speech quality monitor-
ing [57]. The SRMR metric was used as a benchmark by many systems in the 2014 REVERB
(REverberant Voice Enhancement and Recognition Benchmark) Challenge [58] and the 2015
ACE (Acoustic Characterisation of Environments) Challenge [59]. The work in [60] com-
pared the SRMR metric and its hearing-impairment adjustments to several state-of-the-art
methods (including the aforementioned ITU-T standards) across numerous datasets. Ex-
perimental results showed the superiority of the method, particularly for cochlear implant
users and for hearing aid users with nonlinear frequency compression methods enabled.

3.2. Signal Enhancement

Once the regions of the modulation spectrogram tied to signal and those linked to
noise have been found, one can perform filtering in the modulation domain for signal
enhancement. In the subsections to follow, different enhancement algorithms developed by
the authors will be described.

3.2.1. Electrocardiograms

In [61], we proposed the use of a bank of adaptive bandpass filters in the modulation
domain in order to keep only the modulation spectrogram lobes responsible for signal infor-
mation (as per insights from Figure 2). Finite impulse response filters were used, such that
phase shifts could be applied during reconstruction to minimize artifacts. Experiments with
synthetic and recorded ECGs were performed, and improved heart rate measurement and
heart rate variability (HRV) monitoring could be achieved after the proposed enhancement
strategy. Results were compared with a state-of-the-art wavelet enhancement algorithm.
On the synthetic data, the proposed method was able to reduce heart rate estimation errors
from 57% at an SNR of −10 dB to 2.2%, thus outperforming the benchmark, which, in
turn, resulted in a 6.2% error rate. Improved HRV measurement was also shown, where
errors in the pNN50 metric at extremely noisy cases were around 20% for the benchmark
and only 5% for the proposed method. More importantly, the results showed that the
improvements in heart rate and heart rate variability measurements could be achieved
with negligible computational overhead. Figure 5 depicts a representative example of a
noisy ECG corrupted at −5 dB and its corresponding enhanced counterpart obtained via
modulation spectrum filtering. More recently, this ECG enhancement strategy was used
to enhance very noisy wearable ECG signals and to improve the accuracy of peak detec-
tion algorithms, such as the widely-used Pan–Tomkins algorithm [62], under ambulant
conditions. The enhanced ECGs were able to better measure heart rate variability and their
effects on mental workload [63].
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Figure 5. Plots of time domain (top) noisy ECG signal (60 bpm) corrupted with an SNR = −5 dB and
(bottom) its enhanced counterpart obtained after modulation spectrum domain based filtering.

3.2.2. Speech Signals

As noted previously, speech is mostly constrained between 2 and 20 Hz fmod, and
researchers first proposed the use of low/bandpass filters in the modulation spectrum
domain for speech enhancement (e.g., [64,65]). The idea was later applied for environment-
robust feature extraction via the so-called RASTA (relative spectral) feature processing
pipeline [66]. Although such filtering schemes were shown to indeed remove unwanted
noise, it was also observed that unwanted artifacts were introduced. Removal of DC
modulation energy can cause issues when applying the inverse transform, as negative
amplitude values may result. As the modulation representation is measured from the
absolute values, a negative value is not possible. Typically, half-wave rectification was used
to counter this issue, hence resulting in unwanted artifacts, such as musical noise. As such,
in [67] we proposed the use of bandpass modulation filtering followed by bandwidth
expansion in the modulation spectrum domain. In essence, the speech-dominated 2–20 Hz
modulation frequency band was used to estimate the speech contribution in the 0–2 Hz
band. Filtering combined with bandwidth expansion was shown not only to reduce
the musical noise effects to negligible levels, but also to result in enhanced speech that
was preferred by the majority of the listeners. For example, when compared against
the state-of-the-art noise suppression algorithm at the time (i.e., the one available in the
enhanced variable rate codec, EVRC), a subjective listening test showed that 86.25% of the
listeners preferred the proposed method over the benchmark. More recently, the concept of
multi-microphone beamforming for speech enhancement was proposed in the modulation
spectral domain [68]. Improvements of over 7 dB in signal-to-noise ratio improvement
relative to conventional beamforming schemes were reported.

3.2.3. Electroencephalograms

Portable EEG signals are contaminated by eye blinks and muscle movement artifacts,
among other factors. Similar to the other signals already covered in this technical note,
such artifacts vary at a rate that differs from normative EEG. As such, the work in [69]
characterized the modulation spectral “patches” related to such artifacts and applied
bandstop filters to remove them from EEG signatures of hands, feet, and tongue imagined
movements. The enhanced EEGs were then reconstructed and applied to a standard motor
imagery brain–computer interface pipeline. An experiment with the BCI Competition IV
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dataset showed the proposed method outperforming the Challenge winner on six of the
nine participants.

3.3. Blind Source Separation

As noted previously, blind signal/source separation differs slightly from signal en-
hancement in the sense that the interfering signal (e.g., noise) is not filtered out completely,
but instead is separated from the signal of interest and used in downstream applications.
Two applications explored by the authors are detailed next.

3.3.1. Measuring Breathing Rate from ECGs

It is known that breathing modulates the amplitude of the ECG and the changes occur
at rates much different that the rates expected from ECGs. Figure 6 depicts the effects that
breathing has on the ECG, how this shows up in the modulation spectrogram, and how
breathing rate can be recovered. The work in [70] showed that breathing rates could be
recovered with high accuracy even from noisy ECG signals, with respiration rate estimation
errors below 10%, and with correlations with true breathing rates as high as 0.9. More
recently, these results were replicated with sensors embedded in a car steering wheel, and
multimodal driver mental state classification could be achieved [46].

Figure 6. Measuring breathing rate from the breathing-related modulations in an ECG signal.

3.3.2. Heart and Lung Sound Separation from Breath Sound Recordings

The work in [71] showed that heart and lung sounds measured from breath sound
recordings overlapped highly in both time and frequency domains. Hence, state-of-the-
art wavelet based separation algorithms still suffered from high levels of residual noise.
To overcome this issue, power-complementary bandpass and bandstop filters were applied
in the modulation spectral domain to separate heart and lung sounds from the breath
sound recordings. After separation, the residual noise was shown to be imperceptible,
and both signals were accurately separated even when the breath sound recordings were
taken from different locations on the participant’s chest. Comparisons were made with a
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state-of-the-art wavelet separation method, and the log spectral distance (LSD) was used as
a measure of how well the heart and lung sounds were separated. The proposed method
achieved an LSD below 0.8 dB, whereas the benchmark resulted in LSD values greater
than 1.1 dB. In the audio coding community, LSD values below unity are indicative of
processing that results in imperceptible distortions. Moreover, the processing time of the
proposed method was shown to be significantly lower for the proposed method, relative to
the benchmark (i.e., 2.44 s vs. 67 s by the benchmark to process a 65-second recording).

3.4. Noise-Robust Feature Extraction

If machine-based classification is of interest, it may be more efficient (in terms of
computational power and energy requirements) to bypass enhancement and extract noise-
robust features directly from the modulation spectrogram and apply them to downstream
machine learning algorithms. In the subsections below, various different noise-robust
features are described.

3.4.1. Electrocardiograms

The work in [72] showed that the modulation spectral signal representation could be
used to more accurately measure the “instantaneous” heart rate of very noisy wearable
ECG data, thus could be used to more accurately predict heart rate variability (HRV).
A new modulation domain HRV metric was proposed and shown to outperform dozens
of conventional time, frequency, and non-linear domain HRV metrics across a number of
different noisy conditions with and without the use of a wavelet enhancement algorithm.
For example, on synthetic noisy data, the correlation between the proposed HRV and the
true HRV was of 0.93 at an SNR= −8 dB, whereas for the noisy signal, this correlation was
0.5. Although wavelet enhancement improved results to 0.62, this was still far below the
results achieved with the new proposed metric. With this new feature, heart rate errors
remained at 1.7% at SNR=−10 dB, thus performing better than when filtering was applied,
with both the modulation filter (2.2%) or the wavelet method (6.2%), thus showing that
noise-robust feature extraction can be a viable alternative to pre-processing.

3.4.2. Speech Signals

Extraction of noise-robust features from speech modulation spectrograms has been
explored for a number of applications by the authors. The work in [73], for example,
showed that new features extracted from the 2–20 Hz fmod range could be used for reliable
automatic speaker identification in far-field conditions. When compared to a state-of-the-art
benchmark based on mel-frequency cepstral coefficients, it was shown that a slight decrease
in accuracy was seen in clean conditions relative to the benchmark (i.e., 96.6% vs. 97.2%
accuracy), but the accuracy remained unchanged with increasing levels of reverberation.
The accuracy of the benchmark system, in turn, quickly dropped to unacceptable values (ac-
curacy below 45%) at higher reverberation levels around RT60 of one second. Similarly, new
features were proposed for speech emotion recognition in noise [74], stress detection [75],
as well as for whispered speech detection in noise [76], and for whispered speech-based
speaker verification [77]. In all applications, comparisons with state-of-the-art benchmarks
and features showed the superiority of the proposed methods.

3.4.3. Electroencephalograms

In [78,79], new modulation spectral features were extracted from EEG signals and
shown to better correlate with the mental workload and stress ratings provided by ambulant
users. The proposed features not only outperformed widely used power spectral subband
features, but also showed complementary behavior that boosted overall accuracy when
fused together. The work in [80], in turn, showed that new coupling measures computed
directly from the EEG modulation spectral representation could better predict user emo-
tional states relative to conventional benchmark spectral, asymmetry, and phase–amplitude
coupling measures. Using balanced accuracy as a figure of merit, it was shown that the
proposed features could outperform the benchmarks by as much as 8%, 20%, and 6.5% for
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valence, dominance, and liking ratings, respectively. More recently, the work in [81] showed
that amplitude modulation information from the EEG signal, in particular related to alpha
band modulations, was correlated with cortical hemodynamics measured via functional
near-infrared spectroscopy (fNIRS), as well as that it could predict the performance of an
fNIRS-based affective brain-computer interface [82].

3.4.4. Accelerometry

The work in [83] showed that wearable accelerometers could be used to measure
the gait speed of elderly patients performing a 400 m walk test. The recorded signals
were shown to be too noisy for conventional gait speed calculations based on widely
used kinematic models. Figure 7 shows two representative signals, with the one on the
left representing a cleaner accelerometry signal and the one on the right a noisier one.
As can be seen, conventional spectrum-based measures are not capable of capturing the
stride information (spectral peak) accurately in the noisier case, whereas the modulation
spectral representation is able to preserve those details even under very noisy conditions.
Experimental results showed the proposed gait speed measure outperforming benchmark
measures across a number of different testing conditions. For example, a correlation of
0.98 was obtained between the proposed measure and the true gait speed measures; for
comparison, the kinematic model benchmark achieved a correlation of 0.68. Further tests
on the MAREA (Movement Analysis in Real-world Environments using Accelerometers)
dataset [84] confirmed a correlation of 0.99 with ground truth speeds.

Figure 7. Time domain representation (top plots) of a clean (left) and noisy (right) y-axis accelerome-
ter signal segment (sampled at 30 Hz) and their corresponding spectra (middle plots) and modulation
spectrograms (bottom plots).



Sensors 2022, 22, 4579 13 of 19

3.5. Disease Characterization

Disease is also known to affect hidden periodicities in different signal modalities. This
neuromodulatory deficit was first shown in EEG signals with patients with Alzheimer’s
disease (AD) [85]. Wearable systems with automated enhancement algorithms were later
explored [86] and further optimized for portability and low-cost [87]. Features were
extracted from the EEG modulation spectrogram based on frequency subbands widely
used in the EEG literature and compared to conventional measures extracted from these
subbands, including magnitude/phase coherence and spectral power based benchmarks.
Results showed the proposed features outperforming these benchmarks by 8%, 5%, and
11% in terms of accuracy, sensitivity, and specificity, respectively. Gains further improved
when the proposed measures were fused with the benchmarks, resulting in improvements
of 9% in accuracy and sensitivity. More recently, in [88], we showed that alternate subbands
were more useful, in terms of both conventional and modulation frequency dimensions,
and resulted in more robust accuracy. For example, the new measures achieved an F1-
score of 0.75 using raw EEG data, thus outperforming the previous modulation spectrum
measured based on conventional bands (F1 = 0.70) and a benchmark based on spectral
features (F1 = 0.69). Although accuracy gains could be seen after enhancement was applied,
the gains were not significant (F1 = 0.76), thus suggesting that the new features are also
more robust to EEG artifacts. These new so-called modulation spectral “patches” were
obtained via visual inspection. More recently, they have also been validated and improved
upon with machine learning principles based on the use of saliency maps obtained with
convolutional neural networks [89]. The new data-driven patches have resulted in further
gains and have shown the importance of higher gamma band frequencies.

From speech, dysarthria is known to affect speech intelligibility and the amplitude
modulation of the produced speech sounds. The work in [90] proposed a new intelligibility
measure for dysarthric speech and showed that the new measure outperformed several
measures widely used in the clinic, including prosody and nasality ones. Actual severity
levels were later predicted by the measures in [91]. In [92], modulation spectral features
were also shown to discriminate toddlers diagnosed with autism spectrum disorder based
on the analysis of the amplitude modulation of their cries and non-verbal vocalizations.
Experimental results showed the proposed features outperforming several prosodic features
and achieving results in line with a state-of-the-art wavelet based benchmark. Fusion
experiments showed further improvements, thus suggesting their complementarity. More
recently, the modulation spectrum has shown to be a useful tool for COVID-19 infection
detection based on speech. As an illustration, Figure 8 depicts the normalized average
modulation spectrogram for speech made by individuals diagnosed with COVID-19 (left)
and by healthy individuals (right). Preliminary analyses suggest that features extracted
from the modulation spectrum can accurately detect COVID-19 infection. Experiments
with the INTERSPEECH 2021 COVID-19 detection challenge dataset show the proposed
method significantly outperforming the Challenge benchmark system [93].

Figure 8. Normalized average modulation spectrograms for speech made by individuals with
COVID-19 (left) and by healthy individuals (right).
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3.6. In-House Developed Software

In order to help advance science and to facilitate the replication of research results,
it is desirable for open-source code to be available to the community. The University of
Washington Modulation Matlab Toolbox [94] has been available since the early 2000s and
has been widely used by the authors, especially in earlier work involving speech and
audio signals. An in-house toolbox for the SRMR speech quality metric was developed and
made available at our Lab’s GitHub page (https://github.com/MuSAELab, accessed on
15 May 2022) under the SRMRToolbox repository. The normalized and hearing-impaired
user adaptations noted in Section 3.1.2 are also available. More recently, a faster quantized
version of the modulation spectrogram has been implemented and made available under
the modulation_filterbanks repository. These toolboxes, however, have been tailored to
acoustic signals, hence a gap existed when it came to analyzing biological signals. As such,
the Amplitude Modulation Analysis (AMA) toolbox was developed and made available to
the community in Matlab/Octave (under repository amplitude-modulation-analysis-matlab)
and Python (amplitude-modulation-analysis-module) programming languages. More details
about the toolbox can be found in [95]; Figure 9 shows a screenshot of the AMA toolbox
user interface. For completeness and replication purposes, the interested reader can use the
modulation-spectrogram-technical-note repository and associated readme files and scripts to
regenerate all of the images included in this technical note.

Figure 9. A screenshot of the in-house developed open-source. Amplitude Modulation Analysis
(AMA) Toolbox user interface. The toolbox can be used for modulation spectral signal analysis.

4. Future Research Possibilities

Artificial intelligence and machine learning tools are burgeoning, and wearables-based
applications have started to emerge for healthcare, human performance monitoring, smart
cities, and automated systems, to name a few. Many of the used algorithms, however, have
been developed with computer vision applications in mind, hence rely on 2-dimensional
image-like inputs (e.g., convolutional deep neural networks). To this end, the spectrogram
has played a crucial role in enabling the use of these algorithms with 1-dimensional time
series data, such as biosignals and speech, hence generating the image-like inputs required
by the deep neural networks. As shown here, the modulation spectrogram can serve as
a powerful alternative to the conventional spectrogram, as it can better separate signal
and noise components. Such improved discrimination can help reduce the complexity of
the classification algorithms, as shown by [96] for a mental state classification task based
on heart rate measured from a wearable. This can have a direct effect on minimizing the
environmental impact of the machine learning algorithms as well as mitigating privacy
and security concerns by allowing models to be run directly on portable devices (edge

https://github.com/MuSAELab
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computing). As such, this technological report has only described a very small subset of
possibilities that can be achieved with the modulation spectrogram.

The possibilities for future research directions are numerous and may include the
development of new tools and applications across different verticals, including the ex-
ploration of the use of the modulation spectrogram with other signal modalities (e.g.,
electrooculography, electromyography). Moreover, the modulation spectrum can be used
to measure context from the separated noise components and provide this information to
machine learning algorithms. Currently, accelerometers have been widely used to charac-
terize movements, and tools based on wireless sensing are emerging (e.g., [97,98]). With the
modulation spectrum, however, we have shown in [72] that sitting, walking, and running
could be discriminated directly from the noise patterns measured from the ECG modulation
spectrogram. Such contextual information can provide additional intelligence to machine
learning algorithms.

An additional potential avenue is in the detection of so-called adversarial attacks,
where carefully crafted noise can be added to input signals to force the classifier to make
mistakes while yet being very confident in their decisions. Adversarial attacks can have
drastic outcomes, especially in healthcare applications. Typically, these noises are made to
be imperceptible to the user, but the modulation spectrum may help sift out such attacks.
Moreover, by separating signal from noise, potentially improved compression algorithms
can be developed by focusing only on the signal components. In fact, such an approach
may lead to combined compression-and-enhancement schemes for 1-dimensional signals,
such as speech and biosignals. Such approaches have been proposed for images (e.g., [99])
but lack for other time series based signals. Finally, future work could explore the use of
the modulation spectrogram as an alternative input modality to emerging deep learning
algorithms. This could lead to new state-of-the-art results as well as the generation of new
biomarkers of disease (e.g., as in [89] for Alzheimer’s disease diagnosis). It is hoped that by
making open-source tools easily accessible to the research community, barriers to achieving
these innovations can be reduced.

5. Conclusions

This technical note has presented the modulation spectral signal representation that
has been proposed and used by the authors over the last decade across numerous “in the
wild” applications involving wearable devices. Applications in signal quality measurement
and enhancement, blind source separation, robust feature extraction, and disease character-
ization have been highlighted. Future research possibilities have also been highlighted, and
existing open-source tools are listed to facilitate research replication and the development
of new applications. The goal of this technical note was to compile all of the research
outcomes obtained by the authors using this particular technology, thus serving as a “one
stop shop” for researchers interested in building reliable applications using wearables in
highly ecological settings.
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