

Sensors 2022, 22, 4621. https://doi.org/10.3390/s22124621 www.mdpi.com/journal/sensors

Article

SPCBIG-EC: A Robust Serial Hybrid Model for Smart Contract

Vulnerability Detection

Lejun Zhang 1,2,3,*, Yuan Li 1, Tianxing Jin 4, Weizheng Wang 5, Zilong Jin 6, Chunhui Zhao 7, Zhennao Cai 8

and Huiling Chen 8,*

1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China;

mx120200526@yzu.edu.cn
2 Research and Development Center for E-Learning, Ministry of Education, Beijing 100039, China
3 Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China
4 Yangzhou Marine Electronic Instrument Research Institute, Yangzhou 225001, China; yz723@vip163.com
5 Computer Science Department, City University of Hong Kong, Hong Kong; weizheng.wang@ieee.org
6 School of Computer and Software, Nanjing University of Information Science and Technology,

Nanjing 21004, China; zljin@nuist.edu.cn
7 College of Information and Communication Engineering, Harbin Engineering University,

Harbin 150001, China; zhaochunhui@hrbeu.edu.cn
8 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;

cznao@wzu.edu.cn

* Correspondence: zhanglejun@yzu.edu.cn (L.Z.); chenhuiling.jlu@gmail.com (H.C.)

Abstract: With countless devices connected to the Internet of Things, trust mechanisms are espe-

cially important. IoT devices are more deeply embedded in the privacy of people’s lives, and their

security issues cannot be ignored. Smart contracts backed by blockchain technology have the poten-

tial to solve these problems. Therefore, the security of smart contracts cannot be ignored. We pro-

pose a flexible and systematic hybrid model, which we call the Serial-Parallel Convolutional Bidi-

rectional Gated Recurrent Network Model incorporating Ensemble Classifiers (SPCBIG-EC). The

model showed excellent performance benefits in smart contract vulnerability detection. In addition,

we propose a serial-parallel convolution (SPCNN) suitable for our hybrid model. It can extract fea-

tures from the input sequence for multivariate combinations while retaining temporal structure and

location information. The Ensemble Classifier is used in the classification phase of the model to

enhance its robustness. In addition, we focused on six typical smart contract vulnerabilities and

constructed two datasets, CESC and UCESC, for multi-task vulnerability detection in our experi-

ments. Numerous experiments showed that SPCBIG-EC is better than most existing methods. It is

worth mentioning that SPCBIG-EC can achieve F1-scores of 96.74%, 91.62%, and 95.00% for reen-

trancy, timestamp dependency, and infinite loop vulnerability detection.

Keywords: blockchain; IoT; smart contract; vulnerability detection; deep learning; serial hybrid

network

1. Introduction

In recent years, with the progressive development of the pandemic and the rapid

development of e-commerce network platforms, the Internet of Things (IoT) devices are

more integrated into the privacy of people’s lives. The IoT has encountered many indus-

trial pain points during its long-term development and evolution [1]. “One of the biggest

issues in IoT is knowing who you are connecting to. That requirement for trust mecha-

nisms across millions or billions of sensors is what makes a distributed system like a

blockchain vital”, said Richard Mark Soley, Ph.D., executive director of the Industrial In-

ternet Consortium based in Needham, Mass. The traditional centralized management ap-

proach is difficult to implement effectively in the IoT era: the number of edge and end

Citation: Zhang, L.; Li, Y.; Jin, T.;

Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.;

Chen, H. SPCBIG-EC: A Robust

Serial Hybrid Model for Smart

Contract Vulnerability Detection.

Sensors 2022, 22, 4621. https://

doi.org/10.3390/s22124621

Academic Editors: Kamanashis

Biswas, Mohammad Jabed Morshed

Chowdhury, Muhammad Usman,

Naveen Chilamkurti

Received: 31 March 2022

Accepted: 17 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Sensors 2022, 22, 4621 2 of 32

devices in the IoT era is huge; it is difficult for a single central server or cluster to effec-

tively manage such large-scale devices, and the centralized system faces serious perfor-

mance bottlenecks. Therefore, the most remarkable permanent data preservation and tam-

per-proof solution, blockchain, was introduced [2].

In 2017, China Unicom joined many companies and research institutions to set up the

world’s first Blockchain of Things (BoT) standard project. This project defines a decentral-

ized platform for trusted Internet services and shows the promise of BoT. Blockchain has

an important impact on IoT characteristics, such as subject-to-subject, openness and trans-

parency, secure communication, difficulty being tampered with, and multi-party consen-

sus. The IoT involves devices and sensors that can automatically communicate and share

data, and the combination of IoT with smart contracts and blockchain technology is seen

as a key innovation in trade finance [3]. Smart contracts allow us to automate complex

multi-step processes. The devices in the IoT ecosystem are the points of contact with the

physical world [4]. However, the combination of IoT and smart contracts is indeed solving

some contradictions and problems [5,6]. For example, there are complex legal issues, as

well as security issues such as unpredictable code and contractual vulnerabilities. In the

context of the big data era, people’s personalized needs have been met to a greater extent,

while at the same time, personal privacy data are also stored in large databases, which

also forms a huge hidden risk for network security. There are various means to protect

information security. The fundamental task of information network transmission is to pro-

tect information from the source to the receiver, thereby sending information securely and

preventing it from being damaged, leaked, stolen, tampered with, etc. Safeguarding in-

formation security is of great significance to personal information security, commercial

secret protection, and government policy operation. Existing studies have secured infor-

mation security through threat model analysis and password authentication and have

achieved significant results [7–9]. Whether security can be guaranteed has become one of

the most important concerns in various fields in all industries. While BoT technology is

vigorously promoting the development of industrial innovation, its security must also be

guaranteed. Thus, it is urgent to propose a more efficient approach to smart contract se-

curity detection. Our research aims to propose an efficient model with robustness for

smart contract vulnerability detection.

The popularity of blockchain technology applications is generating more and more

available training data. Designing detection systems that are more sensitive to smart con-

tract security vulnerabilities is the focus of research on smart contract security issues.

Deep learning techniques have unique advantages: (a) Deep network models have pow-

erful feature learning capabilities; (b) The performance of the training model improves as

the size of the data grows; (c) Features can be extracted directly from the training data

[10]. Therefore, combining deep learning techniques with vulnerability detection makes

it easier and more effective to detect vulnerabilities in smart contracts by optimizing them

through continuous learning. It has the potential to reduce labor costs and improve the

accuracy and precision of detection compared to traditional methods.

Typical deep learning models are convolutional neural networks (CNNs), recurrent

neural networks (RNNs), deep belief networks (DBNs), etc. CNNs are good at classifica-

tion, but the convolution and merging steps may lose information about the order and

position of words in an utterance [11]; RNNs are better at extracting contextual infor-

mation about time series [12,13]; and DBNs are commonly used as probabilistic generative

models for unsupervised learning and resemble self-coding machines with a slow learn-

ing process [14–16]. Both CNNs and RNNs can be used for sequence modeling, but they

perform differently. RNNs emphasize the order in the time dimension, and the input or-

der of the sequence affects the output. CNNs obtain the overall information by aggregat-

ing local information, and they can extract hierarchical information from the input [17].

Existing smart contract vulnerability detection methods incorporating deep learning typ-

ically use RNNs [18]. One reason is their advantage in learning nonlinear features of se-

quences. However, they also suffer from the difficulty of extracting complex vulnerability

Sensors 2022, 22, 4621 3 of 32

features by ignoring the traditional code space. A combination of multiple models or

mechanisms can achieve better performance in problem classification tasks compared to

general deep learning models [19].

A single neural network is limited in its ability to process information. The training

accuracy of the network can be improved by increasing the number of neurons and in-

creasing the degrees of freedom of the network. However, this can lead to difficulties in

the convergence of the network during training. Eventually, the accuracy requirement

cannot be met. Therefore, we propose a robust serial hybrid model based on deep learn-

ing. It is a hybrid model that serializes CNNs with RNNs, named Serial-Parallel Convo-

lutional Bidirectional Gated Recurrent Network Model incorporating Ensemble Classifier

(SPCBIG-EC). Based on the above research background, we propose an effective hybrid

model based on deep learning to detect smart contract vulnerabilities in Ethereum. The

model can detect vulnerabilities quickly and efficiently based on patterns learned from

training samples. It is a hybrid model that serializes CNNs with RNNs, which we call the

Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model incorporat-

ing Ensemble Classifier (SPCBIG-EC).

Our contributions are as follows:

• We propose the SPCBIG-EC model, which shows excellent performance advantages

in multi-task vulnerability detection. For multi-task vulnerability detection in this

study, we performed a vulnerability detection task for six typical existing smart con-

tract vulnerabilities. Details of the specific types of vulnerabilities are given below.

Meanwhile, we propose a CNN structure, Serial-Parallel CNN (SPCNN), suitable for

this serial hybrid model. The SPCNN structure is used for feature extraction to cap-

ture the local and global features of the code sequences. The multi-scale series-paral-

lel convolution structure parallelizes the output of low-level and high-level features.

It makes the feature combinations of the extracted word vectors more informative.

• The SPCBIG-EC model uses an Ensemble Classifier. The Ensemble Classifier com-

bines multiple base classifiers to form a powerful classifier. It improves the robust-

ness of the model by combining the decisions of multiple classifier experts.

• We collected smart contracts from the Ethereum platform and constructed the CESC

dataset and the UCESC dataset. They are used for multiple types of vulnerability

detection and hybrid vulnerability detection tasks, separately. The CESC dataset con-

sists of snippets of smart contract code after data preprocessing, and UCESC consists

of original smart contract code. In our experiments, we focused on six smart contract

vulnerabilities, i.e., reentrancy, timestamp dependency, infinite loop, callstack depth

attack, integer overflow, and integer underflow.

• We compared SPCBIG-EC with 11 advanced vulnerability detection methods. Exper-

imental results show that our model has strong advantages in reentrancy, timestamp

dependency, and infinite loop vulnerability detection, with F1-scores of 96.74%,

91.62%, and 95.00%. For the hybrid vulnerability dataset, our model also achieved an

accuracy and F1-score of over 85%, outperforming most existing detection tools.

2. Related Work

2.1. Smart Contract Security

Smart contracts are written in a high-level language, compiled into bytecode, driven

by blockchain transactions, and run on a virtual machine using the blockchain as a storage

base, all of which are subject to different security threats. Smart contract security incidents

have occurred frequently in recent years. In 2016, an attack against DAO contracts resulted

in the loss of more than 3,600,000 Ethers, which stemmed from a reentrancy vulnerability

introduced in a critical DAO contract [20]. In 2017, the Parity multi-signature wallet vul-

nerability resulted in over 513,701 Ethers being locked. It led to an ongoing debate about

whether Ether needs to be upgraded by way of a hard fork [21]. In 2018, hackers attacked

the BEC contract, and an integer overflow security vulnerability caused the price of BEC

Sensors 2022, 22, 4621 4 of 32

to drop to almost zero [22]. In 2020, the CertiK security research team identified multiple

security vulnerabilities in the SushiSwap project’s smart contract. These vulnerabilities

could be exploited by the smart contract owner to allow the owner to perform arbitrary

operations, including emptying tokens from the smart contract account without authori-

zation [23].

Smart contracts are accompanied by the discovery of different types of vulnerabilities

throughout their lifecycle [24]. There are many types of existing discovered smart contract

vulnerabilities. Our research focuses on the existing known vulnerabilities, such as reen-

trancy, timestamp dependency, infinite loop, callstack depth attack, integer overflow, and

integer underflow.

2.2. Existing Methods for Detecting Smart Contract Vulnerabilities

There are several traditional methods for detecting vulnerabilities in smart contracts.

Oyente is a vulnerability detection tool based on static symbolic execution. Oyente’s de-

sign is modular, which allows advanced users to implement and insert their detection

logic to check custom properties in the contract [25]. Mythril is a vulnerability detection

tool based on a combination of symbolic execution and concrete execution, which covers

most types of vulnerabilities [26]. In addition, SmartCheck [27], a scalable static analysis

tool, and Securify [28], a tool that provides scalable and fully automated security analysis

for smart contracts, are advanced tools for smart contract security detection. These auto-

mated auditing methods are still in the developmental stage, and they face three main

major problems. First, the level of automation is low. They need to have constant feedback

to audit. Second, they have a high rate of false positives. They have a low level of automa-

tion and still require some human involvement. Third, they have a long audit time [29,30].

Our online data research found that Mythril averaged 60 s, Oyente was about 30 s, and

Securify was about 20 s [31].

Traditional smart contract vulnerability detection tools mostly rely on fixed detection

rules, while vulnerability detection methods that incorporate deep learning techniques

avoid this problem. Yu et al. proposed DeeSCVHunter, a deep learning-based framework

for the automatic detection of smart contract vulnerabilities, and they proposed the novel

notion of Vulnerability Candidate Slice (VCS) to help models capture the key point of

vulnerability [32]. The study provided us with research ideas by helping the model cap-

ture the key points of vulnerability. Ashizawa et al. proposed Eth2Vec, a machine learn-

ing-based static analysis tool for smart contract vulnerability detection. It automatically

learns the features of vulnerable smart contract bytecodes through a neural network for

natural language processing [33]. Eth2Vec detects vulnerabilities with a high degree of

accuracy by implicitly extracting features and combining lexical semantics between con-

tracts, even after rewriting the code. However, the method suffers from the problem of

not supporting inter-contract analysis when multiple contracts are interrelated. Huang et

al. developed a smart contract vulnerability detection model based on multi-task learning.

It improves the detection capability of the model by setting auxiliary tasks to learn more

directional vulnerability features [34]. Liu et al. proposed an interpretable way to combine

deep learning with expert pattern models for smart contract vulnerability detection. The

model can obtain an interpretable panorama of fine-grained details and weight distribu-

tions [35]. Wang et al. proposed a new method called AFS (AST Fuse program Slicing) to

fuse code feature information [36]. AFS can fuse structured information from the AST with

program slicing information to detect vulnerabilities by learning new vulnerability signa-

ture information. A study by Liao et al. proposed SoliAudit (Solidity Audit), which uses

machine learning and fuzzy testing for smart contract vulnerability assessment [37]. Dis-

tinguishing itself from previous studies, SoliAudit can detect vulnerabilities without ex-

pert knowledge or predefined patterns. Mi et al. proposed a new framework, VSCL, which

uses DNNs based on metric learning for vulnerability detection in smart contracts. In ad-

dition, a new feature matrix was generated by CFG extraction to represent the smart con-

tract and encode the operations using Ngram and TFIDF [38]. Zhang et al. proposed a

Sensors 2022, 22, 4621 5 of 32

smart contract vulnerability detection method based on information graphs and inte-

grated learning [39]. This paper proposed an ensemble learning (EL)-based contract vul-

nerability prediction method, which is based on seven different neural networks using

contract vulnerability data for contract-level vulnerability detection. The method exhib-

ited a high capability of vulnerability detection. However, it cannot determine the type of

vulnerabilities detected. Although these smart contract vulnerability detection methods

based on deep learning techniques have shown excellent performance, most of these

methods are optimized to improve the processing of smart contracts, and they all essen-

tially use single-network structure models. They do not optimize the detection capability

of the model by changing the network structure. Different types of network structures

have different focuses when extracting abstract and semantic features, and a single net-

work structure may have the problem of incomplete extraction of key information due to

insufficient learning of semantic and syntactic information of smart contracts, so we con-

sider the perspective of network structures to explore whether feature extraction with hy-

brid network structures will have a good impact on the vulnerability detection perfor-

mance of smart contracts.

Given the above research background, we have come to the following conclusions.

The deep learning-based vulnerability detection approach is driven by data. It allows fine-

grained segmentation of smart contract source code files when building a dataset, which

is then fed into the model. Therefore, detection methods using deep learning only require

the construction of reasonable datasets, which can lead to a tremendous improvement in

the code coverage of detection and thus reduce the rate of missed detections. A single

neural network is limited in its ability to process information. The training accuracy of the

network can be improved by increasing the number of neurons and increasing the degrees

of freedom of the network [40]. However, this can lead to difficulties in the convergence

of the network during training. Eventually, the accuracy requirement cannot be met. The

combination of multiple models or mechanisms can achieve better performance in classi-

fication tasks compared to general deep learning models [41]. Based on the above research

background, we propose a serial hybrid model combining CNN and RNN for smart con-

tract vulnerability detection.

3. Design of the Model

When using deep learning methods for smart contract vulnerability detection, two

practical problems need to be solved: (1) constructing a reasonable smart contract source

code dataset that can be trained by deep learning models; (2) constructing suitable deep

learning models for the smart contract source code dataset. For both problems, we de-

signed the overall implementation of the task, as shown in Figure 1.

Figure 1. A holistic design solution for smart contract source code vulnerability detection based on

deep learning.

Sensors 2022, 22, 4621 6 of 32

Our work in this study is divided into two parts: processing the data and passing the

processed data into a deep learning model to analyze and judge it. It is worth mentioning

that existing studies, such as model design and system implementation, fully consider the

security issues among modules, and thus, many technology-related studies on authenti-

cation have been widely proposed and applied [42–44]. The design of our model involves

the components of each module, but they are all linear connections of neural network

modules, so the security guarantee between each module does not need further consider-

ation here.

The main feature of this paper is the construction of deep learning models, in which

we build serial hybrid models combining CNN and RNN. Our approach is motivated by

the following considerations:

(1) The smart contracts that we process are sequential information. Both CNNs and

RNNs can be used for sequence modeling, but they perform differently. RNNs em-

phasize the order in the time dimension, and the input order of the sequence affects

the output. CNNs obtain the overall information by aggregating local information,

and they can extract hierarchical information from the input.

(2) RNNs read and interpret the input information of a code vector in a single pass, so

the deep neural network must wait to process the next code vector until the current

information has been processed. This means that RNNs cannot take advantage of

massively parallel processing (MPP) as CNNs can [45].

(3) CNNs, while achieving good results in feature extraction, do not even consider the

contextual relationships of the sequence. The occurrence of each word in the code is

considered independent of other words. However, a smart contract code is a long

sequence of words, and the occurrences of individual words are contextually inter-

related.

(4) A single neural network is limited in its ability to process information. The combina-

tion of CNN and RNN enables the temporal structure and location information of

sequence data to be fully preserved. It facilitates the extraction of multivariate com-

binatorial features.

3.1. SPCBIG-EC Model

We use a Serial-Parallel Convolutional Bidirectional Gated Recurrent Network

Model incorporating Ensemble Classifier (SPCBIG-EC) for vulnerability detection. The

process is as follows.

Step 1: The smart contract source code is processed into a dataset that can be used by

the model. The processed dataset D still consists of some smart contracts and can be rep-

resented as 𝐷 = {𝐶1, 𝐶2, 𝐶3, … 𝐶𝑛}. A smart contract 𝐶𝑖 consists of many functions that can

be represented as 𝐶𝑖 = {𝑓𝑖,1, 𝑓𝑖,2, 𝑓𝑖,3, … 𝑓𝑖,𝑚} , where 1 ≤ 𝑖 ≤ 𝑛 . The function 𝑓𝑖,𝑗 is com-

posed of the lines of code {𝑐𝑖,𝑗,1, 𝑐𝑖,𝑗,2, 𝑐𝑖,𝑗,3 …𝑐𝑖,𝑗,𝑘} . It can be expressed as

𝑓𝑖,𝑗={𝑐𝑖,𝑗,1, 𝑐𝑖,𝑗,2, 𝑐𝑖,𝑗,3 …𝑐𝑖,𝑗,𝑘}, where 1 ≤ 𝑗 ≤ 𝑚.

Step 1.1: Data preprocessing is performed to remove content that is not relevant to

the vulnerability.

Step 1.2: The source code is divided into small pieces of smart contract code around

key points corresponding to different vulnerabilities. These code fragments are logically

executable.

Step 2: Small fragments of smart contract code generated by control flow analysis are

converted into vector representations.

Step 2.1: User-defined variables and functions are mapped to symbolic names; the

segments in the symbolic representation are divided into a sequence of tokens by lexical

analysis. In this case, the original contract fragment line is represented by a sequence of

multiple tokens containing keywords, operations with built-in normalization variables,

etc. The code line 𝑐𝑖,𝑗,𝑤 is composed of an ordered set of tokens, 𝑐𝑖,𝑗,𝑤 =

{𝑡𝑖,𝑗,𝑤,1, 𝑡𝑖,𝑗,𝑤,2, 𝑡𝑖,𝑗,𝑤,3 … 𝑡𝑖,𝑗,𝑤,𝑞}, where 1 ≤ 𝑤 ≤ 𝑘.

Sensors 2022, 22, 4621 7 of 32

Step 2.2: Contract fragment tokens are converted to vectors via Word2Vec [46–48].

Word2Vec maps tokens to integers and then converts them to fixed dimensional vectors.

The entire contract fragment is mapped as in step 2.1, concatenating each line of the

marker to a long list. Word2Vec creates a vector for each segment and obtains a vector of

contract segments by combining the tag embedding. We can obtain the word vector 𝑋𝑖.

Step 3: The processed vectors are fed into the SPCBIG-EC model that we built. The

first layer of the model is the convolution layer, and the convolution kernel convolves the

input vectors under a convolution window to obtain the combined features 𝐶𝑛
1. When

there are 𝑘 convolution kernels convolving the word vectors under the convolution win-

dow, the combined feature 𝐶𝑛
1 can be expressed as 𝐶𝑛

1 = [𝐶1𝑛
1 , 𝐶2𝑛

1 , … , 𝐶𝑘𝑛
1].

Step 4: The second layer of the model is the convolution layer, where the convolution

kernel convolves the input vectors under a convolution window to obtain the combined

features 𝐶𝑛
2.

Step 5: 𝐶𝑛
1 is concatenated with 𝐶𝑛

2 to form a new feature combination. We use the

obtained feature vectors as input to the bidirectional gated recurrent (BiGRU) model.

Step 6: The hidden state of the last moment’s BiGRU [49] is fed into the attention

mechanism layer as a feature vector. The attention mechanism assigns weights to the sig-

nificant words in the code. The output is obtained by multiplying the normalized weights

obtained through the attention mechanism with the input feature vector of the layer.

Step 7: The attention mechanism layer is connected to the fully connected layer,

which contains an Ensemble Classifier. The Ensemble Classifier contains several weak

classifiers as candidate base classifiers (two classifiers, AM-Softmax [50] and Softmax

[51,52], were used as examples in our experiments). The weak classifier with the smallest

classification error is selected as the base classifier and trained iteratively using the re-

weighting method. The base classifiers are combined using a sequential linear weighting

approach to obtain a stronger classifier with higher robustness. The constructed strong

classifiers are used as the final classifiers to predict vulnerabilities.

Figure 2 shows the structural diagram of our model. The implementation of each

module is described in detail in the remaining subsections of Section 3.

As shown in Figure 2, the SPCNN structure consists of multiple convolutional layers,

which are based on a two-layer serial convolutional structure. Serial in our structure refers

to the linear serial structure of two convolutional layers. Parallel refers to the fact that

features extracted from the first convolutional layer are backed up and kept before being

passed to the second convolutional layer, and the backed-up features are output in paral-

lel with features extracted from the second convolutional layer from the higher convolu-

tional layer, and the two features are fused to obtain the final extracted feature infor-

mation of the SPCNN structure. The feature data 𝐶𝑛
1 extracted from the first convolu-

tional layer is kept for backup, while the data are input to the second layer for secondary

feature extraction, and the feature extraction data 𝐶𝑛
1 from the first layer under retention

is output in parallel with the feature extraction data 𝐶𝑛
2 output from the second layer at

the end of the second layer for feature fusion; then, the semantic and syntactic information

of the smart contract is fully extracted by taking the bottom layer features and paralleliz-

ing the output at the top layer. When there are 𝑘 convolution kernels convolving the

word vectors under the convolution window, the combined feature 𝐶𝑛
1 can be expressed

as 𝐶𝑛
1 = [𝐶1𝑛

1 , 𝐶2𝑛
1 , … , 𝐶𝑘𝑛

1]. When there are 𝑠 convolution kernels convolving the word

vectors under the convolution window, the combined feature 𝐶𝑛
2 can be expressed as

𝐶𝑛
2 = [𝐶1𝑛

2 , 𝐶2𝑛
2 , … , 𝐶𝑠𝑛

2]. The final features extracted by the SPCNN structure can be ex-

pressed as 𝐶 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐶𝑛
1, 𝐶𝑛

2). The advantages of the SPCNN structure are: (1) re-

placing the single-layer convolution of equivalent steps with a double-layer serial-parallel

convolution, which serves to improve the nonlinearity; (2) reducing the impact of the pos-

sible loss of key information, such as local position information and destruction of se-

quence structure, by the convolution pooling operation.

Sensors 2022, 22, 4621 8 of 32

Figure 2. SPCBIG-EC.

Sensors 2022, 22, 4621 9 of 32

Recurrent neural networks are good at dealing with sequential aspects due to their

memory function. With GRU, as a unidirectional recurrent neural network, the next mo-

ment’s predicted output is jointly influenced based on the inputs from multiple previous

moments. However, the semantic structure among smart contracts is complex, and the

prediction results may be influenced by the inputs of both past moments and future mo-

ments, so our model considers a bidirectional gated recurrent (BiGRU) network for tem-

poral modeling. BiGRU is a neural network model consisting of unidirectional, oppositely

oriented outputs jointly determined by the states of two GRUs. As shown in Figure 2, at

each moment, the input will provide two GRUs with opposite directions simultaneously,

and the output is jointly determined by these two unidirectional GRUs.

Ensemble learning often achieves significantly better generalization performance

than a single learner by combining multiple learners. There are various aggregation meth-

ods for ensemble learning, and in this paper, we use the sequence integration method, as

shown in Figure 2. It consists of iteratively using weakly learned classifiers and joining

their results into a final strongly learned classifier. The joining process usually assigns

different weights based on their classification accuracy. After adding a weak learner, the

data are usually re-weighted to reinforce the classification of previously misclassified data

points. First, we select a classifier from the candidate classifier set as the base classifier and

then stack the base classifiers in layers. Each layer is given a higher weight for samples

that are wrongly classified by the base classifier in the previous layer during training.

When testing, the final result is obtained by weighting the results of each layer of classifi-

ers. This makes use of the dependencies between the base learners. By assigning higher

weights to the samples that were incorrectly labeled in the previous training, the overall

prediction can be improved.

The implementation principles of each module of the model are described in detail

in Sections 3.2–3.5.

3.2. Dataset Processing

The dataset processing process consists of two steps: (1) converting the smart contract

source code into code fragments and (2) labeling the smart contract with vulnerabilities.

We describe this process in detail below.

(1) Converting smart contract source code into code fragments.

Lexical analysis of Solidity source code. The main purpose is to convert symbolic

representations in Solidity language, such as keywords and operators, to the correspond-

ing tokens. Table 1 shows several examples of token representations.

Table 1. The typical Solidity symbol corresponds to the token representation.

Symbolic Representation Token

function FUN

contract CON

for FOR

if IF

else ELSE

number NUM

constant CONS

variable VAR

Sensors 2022, 22, 4621 10 of 32

Determine the key points for different vulnerabilities and segment the smart contract

code around the key points. After lexical analysis of the Solidity source code, the source

code files need to be fine-grained. We extract the relevant code fragments around a key

point and combine them, dividing the entire source code into logically executable code

fragments. A code fragment consists of several lines of code that have data dependencies

or control dependencies on each other. In this case, the original contract fragment line is

represented by a sequence of multiple tokens containing keywords, operations with built-

in normalization variables, etc. For the six types of vulnerabilities that we are concerned

about, we highlight the key points that correspond to them. These keywords are obtained

from the official platform of Ethereum. In Table 2, we introduce the correspondence with

the example of reentry vulnerability and its key points. One of the features of Ethereum

smart contracts is the ability to call and use code from other external contracts. These con-

tracts typically manipulate Ether, often sending Ether to various external user addresses.

This operation of invoking external contracts or sending Ether to external addresses re-

quires contracts to submit external calls. These external calls can be hijacked by an at-

tacker, for example, through a fallback function that forces the contract to execute further

code, including a call to itself. This way, the code can be repeated in the contract. In the

transfer and call process of smart contracts, users who want their contracts to receive Ether

must use fallback (). In addition, call.value () is widely used in the transfer process since it

is a transfer function without gas restrictions. These two links give malicious contracts the

conditions to launch reentry attacks, so they are used as key points corresponding to

reentry vulnerabilities. The rules for determining the key points corresponding to several

other vulnerabilities are similar. The reason why we determine key points for different

types of vulnerabilities is that training and the learning of large sections of contract source

code for vulnerability detection of smart contracts will lead to problems of inadequate

feature learning and large training costs caused by redundant information, so we slice and

reorganize the original contract code around vulnerability-related keywords to form small

pieces of executable code containing key information for model learning and training. Fi-

nally, depending on the key points of the different vulnerabilities, we use a program slic-

ing algorithm to transform the original smart contract into a smart contract fragment.

Table 2. The key points corresponding to different vulnerabilities.

Vulnerability Key Points

Reentrancy fallback (), call.value ()

Timestamp dependence block.number

Infinite loop for, while loop

Integer overflow integer variables

Integer underflow integer variables

Callstack depth attack
.call (), transfer () and the return

values of instructions

(2) Labeling smart contracts.

The input of the model should contain the smart contract and the corresponding vul-

nerability label. Considering the large number of smart contracts to be labeled, it is diffi-

cult to label vulnerabilities manually, so we use existing security audit tools for vulnera-

bility labeling. Different tools have different criteria for identifying and detecting vulner-

abilities. To ensure the accuracy of vulnerability signatures, we chose Oyente, Mythril,

and Securify as references for labeling vulnerabilities in smart contracts. In order to bal-

ance the conservative and strict detection rules between the different tools, we established

the following vulnerability labeling rules. For each smart contract, if at least two tools

indicate the existence of a vulnerability, we label the smart contract as “1”; otherwise, it is

“0”. Figure 3 represent the vulnerable smart contracts detected by Oyente, Mythril, and

Securify, respectively. We finally label the vulnerabilities in smart contracts in regions D,

Sensors 2022, 22, 4621 11 of 32

E, F, and G as “1” and the rest of the smart contracts as “0”. The labeled dataset can be

represented as 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}; each instance point consists of an in-

stance with a label, where 𝑥1 ∈ ℝ, 𝑦𝑖 ∈ {0,1}.

Figure 3. Guidelines for labeling vulnerabilities.

3.3. Code Embedding Layer

The code embedding layer converts the contract code into a vector representation

that can be used as input to the neural network. We describe this process in detail below.

(1) Preprocessing data, such as removing blank lines, comments, and special characters,

while retaining brackets, operators, etc. The source code is divided into small, logi-

cally executable pieces of code by extracting the relevant code pieces around a key

point and combining them.

(2) Splitting code segments with lexical analysis. Keywords, operators, and delimiters in

the code are converted to their corresponding tokens, preserving the semantic order

to convert the code segment into a list of tokens.

(3) Representing the list of tokens as a vector. There are many traditional word vector

representations, such as TF-IDF [53,54], One-Hot [55–57], etc. They cannot represent

word-to-word information. In this paper, Word Embedding [58] is used to model

word vectors by converting contract fragment tokens into vectors via Word2Vec. The

network maps tokens to integers and then converts them into fixed dimensional vec-

tors.

In Figure 4, we illustrate this process with a sample piece of reentrant code. Step ①

in Figure 4 is a complete section of the source code of the smart contract associated with

reentry vulnerability. Step ② represents the code segment where the smart contract

source code is preprocessed with data. In this phase, we remove irrelevant information,

such as blank lines and comments. At the same time, lines of code related to reentrant

vulnerabilities are retained. In step ③, we use line 5 of the code in step ② as an example

to split the code and convert it to a token sequence. This is achieved by replacing the user-

defined function name with “FUNC1” and the user-defined variable with “VAR1”. If

more different user-defined functions and variables exist, the corresponding conversions

are “FUNC2, FUNC3,, FUNCn”, “VAR2, VAR3, VARn”. Step ④ transforms the list

represented in tokens into a vector representation using Word2Vec as the input to our

model.

Sensors 2022, 22, 4621 12 of 32

Figure 4. The code embedding process. ①–④ represent the process of representing the original

smart contract code into vectors.

3.4. Feature Extraction Layer

3.4.1. Serial-Parallel Convolutional Layer

Although the convolution layer can significantly reduce the number of connections

in the network, the number of neurons in the feature mapping group is not significantly

reduced. If the classifier is connected directly after the convolution layer, the input dimen-

sion of the classifier is still very high, and it is easy to overfit. To solve this problem, a

pooling layer needs to be added after the convolutional layer to reduce the feature dimen-

sionality and avoid overfitting. The pooling layer will serve to reduce the number of fea-

tures when performing feature selection, and reducing the number of parameters may

cause the loss of key information at the same time. We propose a string-parallel convolu-

tional neural network structure (SPCNN). Our SPCNN structure is designed to reduce the

impact of the loss of key information, such as local position information, and the damage

to the sequence structure caused by the convolutional pooling operation. Additionally, in

the process of extracting features, the features within each contract and the relational fea-

tures between individual contracts are extracted to be adequate.

SPCNN consists of multiple layers of convolution, and the convolution method used

is a one-dimensional wide convolution. A padding of 0 values is used to keep the length

of the sequence at the output unchanged after convolution. We denote the dimension of

the word vector by 𝑑, and 𝑠 is the size of the sliding window. The convolution kernel is

denoted as 𝐾 ∈ ℝ𝑠×𝑑, where 𝑑 denotes the length of the convolution kernel, and 𝑠 de-

notes the width of the convolution kernel. The 𝑘 word vectors falling into 𝐾 can be de-

noted as 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … 𝑥𝑖+𝑘−1, which can be represented as a matrix 𝑋𝑖 ∈ ℝ𝑠×𝑑.

Sensors 2022, 22, 4621 13 of 32

𝑋𝑖 = [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … 𝑥𝑖+𝑘−1] (1)

The next step is to perform a convolution operation on all of the word vectors above.

The multidimensional convolution matrix 𝑋 is operated by the convolution kernel 𝐾 ∈

ℝ𝑠×𝑑 to generate a new feature map 𝐻 ∈ ℝ𝑛−𝑘+1. Each feature is denoted by ℎ𝑖, 𝑓 de-

notes the nonlinear activation function, 𝑏𝑐 ∈ ℝ represents the bias matrix, and 𝑖 ∈ 𝑛 −

𝑘 + 1.

ℎ𝑖 = 𝑓(𝐾 ∙ 𝑋𝑖:𝑖+𝑘,𝑖:𝑠 + 𝑏𝑐) (2)

𝐻 = {ℎ1, ℎ2, ℎ3, … ℎ𝑛−𝑘+1} (3)

Maximum pooling of the feature map, i.e., obtaining only the maximum eigenvalue

of each dimension within the pooling window, is performed.

𝑝𝑗 = ∑ max (ℎ𝑖)
𝑛+𝑘−1
𝑖=1 (4)

The SPCNN uses multiple convolution kernels to form feature maps, and for 𝑛 fea-

ture maps after convolution and maximum pooling, the result is:

𝑃𝑗 = [𝑝1𝑗 , 𝑝2𝑗 , 𝑝3𝑗 , … 𝑝𝑛𝑗] (5)

After a theoretical introduction to our proposed SPCNN, the practical structure of

the SPCNN is further described next. The hierarchical structure of the SPCNN consists of

five parts. The hierarchical structure of the SPCNN is given in Figure 5.

(1) Input layer: the input data are smart contract data that have been lexically analyzed

and vectorized.

(2) Convolution layer 1: Two sizes of convolution kernels (i.e., 𝑚1×𝑛1, 𝑚2×𝑛2) are used

to convolve the input data separately. Smart contracts have two scales: intra-contrac-

tual and inter-contractual. The 𝑚1 × 𝑛1 convolution kernel convolves only on the

intra-contract scale so that the internal features of each smart contract can be ex-

tracted without destroying inter-contractual information. The 𝑚2 × 𝑛2 convolution

kernel performs simultaneous convolution within and between contracts, allowing

correlation features to be extracted between individual contracts. The number of con-

volution kernels in the layer is 𝑖, the convolution step size is 𝑙1 in all directions, the

activation function is a linear correction unit (ReLu), and the padding parameter is

SAME. Concatenate layer 1 splices the features obtained from the two convolutional

channels in the corresponding rows, keeping the output sequence of the layer.

(3) Convolutional layer 2: Two sizes of convolution kernels (i.e., 𝑚3 × 𝑛3 and 𝑚4 ×

𝑛4) are each used to convolve the output of splicing layer 1. The number of convolu-

tion kernels in the layer is 𝑗, the convolution step is 𝑙2 in all directions, the activation

function is also ReLu, and the padding parameter is SAME. Concatenate layer 2

splices the features obtained from the two convolutional channels according to their

correspondence, while the output sequence retained by splicing layer 1 is spliced

with the output sequence of splicing layer 2.

(4) Two fully connected layers: The number of neurons in fully connected layer 1 is 300.

Since the model in this paper performs a binary classification task for smart contract

vulnerability detection, there are 2 neurons in fully connected layer 2. In addition, a

dropout operation is added between the two fully connected layers to prevent the

overfitting of the network.

(5) Output layer: The convolved feature matrix is output and used as input to the BiGRU

neural network.

Sensors 2022, 22, 4621 14 of 32

Figure 5. Hierarchy of the SPCNN.

3.4.2. Time Sequence Modeling Layer

Based on the internal structure of the GRU, we can calculate the hidden state ℎ𝑡 of a

single GRU according to the following equation, where ℎ𝑡 denotes the state of the data

after a reset gate, and 𝑧𝑡 denotes the state after an update gate.

𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑟 + ℎ𝑡−1𝑊ℎ𝑟 + 𝑏𝑟) (6)

𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑧 + ℎ𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) (7)

ℎ�̃� = tanh(𝑥𝑡𝑊𝑥ℎ + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑊ℎℎ + 𝑏ℎ) (8)

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ�̃� (9)

BiGRU is a bidirectional implementation of the GRU network. We denote ℎ𝑡
⃗⃗ ⃗ as the

forward propagated hidden state value and ℎ𝑡
⃖⃗ ⃗⃗ as the backward propagated hidden state

value, and then the hidden value of the output at moment 𝑡 can be expressed by Equation

(12). 𝐹𝐵𝑖𝐺𝑅𝑈 denotes the final feature representation when using BiGRU for time sequence

feature extraction.

ℎ𝑡
⃗⃗ ⃗ = 𝐺𝑅𝑈(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) (10)

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐺𝑅𝑈(𝑥𝑡 , ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (11)

ℎ𝑡 = 𝑤𝑡ℎ𝑡
⃗⃗ ⃗ + 𝑣𝑡ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑡 (12)

𝐹𝐵𝑖𝐺𝑅𝑈 = (ℎ1, ℎ2, ℎ3,….ℎ𝑡) (13)

𝑤𝑡 and 𝑣𝑡 are the weights between the hidden layers in different directions at mo-

ment 𝑡. To highlight the importance of the impact of different keywords on the reentrancy

vulnerability, a self-attention mechanism is introduced after the BiGRU layer of the model

to assign weights to different words. The input of the attention mechanism layer is ℎ𝑡,

which is the hidden vector of the output processed by the BiGRU neural network layer in

the previous layer.

First, we input the hidden layer vector to the fully connected layer (with weight 𝑊

and bias 𝑏) to obtain 𝑢𝑡, which is stated in Equation (14).

𝑢𝑡 = tanh (𝑊ℎ𝑡 + 𝑏) (14)

Sensors 2022, 22, 4621 15 of 32

Then, we use this vector to calculate the calibration vector 𝛼𝑡 (weights normalized

by the attention mechanism), which is stated in Equation (15).

𝛼𝑡 =
exp (𝑢𝑇𝑢)

∑ (exp (𝑢𝑡𝑢))𝑡
 (15)

𝑢𝑡 in the above equation is the average optimal vector corresponding to the current

time step t, which is different for each time step. This vector is obtained by training. The

output of the attention mechanism layer is expressed in Equation (16).

𝑠𝑡 = ∑ 𝛼𝑡ℎ𝑖
𝑡
𝑖=1 (16)

3.5. Classification Optimization Layer

Our ensemble approach is as follows: the feature samples extracted by the deep learn-

ing model are split and given initial equal weights, and the existing model is given higher

weights by adaptively changing the distribution of the training samples, so training sam-

ples with errors in the previous classification model receive more attention in the subse-

quent one to compensate for the shortcomings of the existing model. By changing the

weight distribution of the training data in each iteration, the data play different roles in

the learning of each weak classifier, so different data play their own roles, and the classi-

fication error rate of the base classifier constructed after each iteration decreases steadily

with the increase in the number of iterations, which improves the robustness of the model.

Under our integrated classification framework, a variety of regression classification mod-

els can be used to build weak learners with great flexibility.

In our model, we construct a set of candidate classifiers. The classifiers in our candi-

date classifier set are Softmax, AM-softmax, and SVM. We would like to state that there

can be multiple single classifiers in the candidate classifier set, and in addition to the clas-

sifiers involved in our study, Naive Bayes, KNN, etc., can be a member of the candidate

classifier set. Introducing a fairness mechanism for selecting weak classifiers in the inte-

grated classifier, we determine the kind of base classifier by comparing the classification

accuracy of single classifiers in the classifier set through one test experiment. The selection

of weak classifiers directly determines the performance of base classifiers, and integrated

classification algorithms often lack selection criteria for weak classifiers. In order to im-

prove the stability and interference resistance of the model, we add a step of a weak clas-

sifier selection process before integration. This method integrates the diversity of classifi-

ers, the accuracy of sub-classifiers, and the accuracy of combined classifiers when search-

ing and selecting weak classifiers, so the classifiers as a whole and locally have high fitness

and improve the generalization ability and interference resistance of the model. After de-

termining the base classifier, we use that base classifier for ensemble learning.

In contrast to traditional single classifiers (e.g., Softmax, Decision Trees, Parsimoni-

ous Bayes, SVM, etc.), our model uses an integrated classifier in the classification phase,

which we call the Ensemble Classifier. We select one classifier from the candidate classifier

set as the base classifier. The weights are first updated by continuously learning and op-

timizing a series of weak classifiers (base classifiers) in the set. These weak classifiers are

then combined in a sequential linear weighting fashion to form a strong classifier. This is

an incremental process whereby the 𝑖th base classifier is based on the 𝑖 − 1th classifier

by gradually adding “expert predictions”. The Ensemble Classifier learns a series of weak

classifiers by varying the weight distribution of the training data.

In the classification stage, the training data after feature extraction by the neural net-

work is represented as 𝐸 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, where 𝑥1 ∈ ℝ, 𝑦𝑖 ∈ {0,1}. First, a

single classifier is used as a candidate base classifier for the Ensemble Classifier. Second,

the set of classifiers and the weight distribution of the training data are initialized. Finally,

the single classifier with the smallest classification error is selected as the base classifier.

For the selection mechanism of the base classifier, we define the following. Given a

single classifier 𝐶𝑖 and 𝐶𝑗, let the number of samples in the sample set where 𝐶𝑖 and 𝐶𝑗

Sensors 2022, 22, 4621 16 of 32

are correctly classified at the same time be 𝑎, the number of samples where 𝐶𝑖 is correctly

and 𝐶𝑗 is incorrectly classified be b, the number of samples where 𝐶𝑗 is correctly and 𝐶𝑖

is incorrectly classified be c, and the number of samples where both classifiers are incor-

rectly classified be d. Then, the output correlation coefficient of the two classifiers is 𝜌𝒊𝒋 =
𝑎𝑑−𝑏𝑐

√(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑)
. The larger the mean value of 𝜌𝑖, the larger the value of 𝐶𝑖 taken as

the base classifier.

Figure 6 shows the learning process of the integrated classifier. The output is a global

classification model consisting of multiple basic classification models, each with a certain

weight that is used to indicate the confidence of that basic classification model. The final

classification result is generated by voting based on the predicted results of the multiple

basic classification models multiplied by the weights. The integration steps after deter-

mining the base classifier from the candidate classifier set are as follows.

Step 1: Initialize the weight distribution of the training data 𝐸.

𝑊1 = (𝑤11, 𝑤12, …𝑤1𝑖 , … , 𝑤1𝑛), 𝑤1𝑖 =
1

𝑛
, 𝑖 = 1,2, … , 𝑛 (17)

Step 2: Select the base classifier and update weights.

Step 2.1: Train the model using training data with a weight distribution 𝑊𝑚 to obtain

the base classifier, where 𝑚 = 1,2, … ,𝑀.

𝐺𝑚(𝑥): 𝑋 → {0,1} (18)

Step 2.2: Calculate the classification error of 𝐺𝑚(𝑥) on the training dataset.

𝑒𝑚 = ∑ 𝑃(𝐺𝑚(𝑥𝑖) ≠ 𝑦𝑖)
𝑛
𝑖=1 = ∑ 𝑤𝑚𝑖𝐼(𝐺𝑚(𝑥𝑖) ≠ 𝑦𝑖)

𝑛
𝑖=1 (19)

Step 2.3: Calculate the coefficients of 𝐺𝑚(𝑥).

𝛼𝑚 =
1

2
𝑙𝑜𝑔

1−𝑒𝑚

𝑒𝑚
 (20)

Step 2.4: Update the weight distribution of the training data.

𝑊𝑚+1 = (𝑤𝑚+1,1, 𝑤𝑚+1,2, …𝑤𝑚+1,𝑖 , … , 𝑤𝑚+1,𝑛) (21)

𝑤𝑚+1,𝑖 =
𝑤𝑚,𝑖

𝑍𝑚
exp(−𝛼𝑚𝑦𝑖𝐺𝑚(𝑥𝑖)) , 𝑖 = 1,2, … , 𝑛 (22)

𝑍𝑚 = ∑ 𝑤𝑚,𝑖exp (−𝛼𝑚𝑦𝑖𝐺𝑚(𝑥𝑖))
𝑛
𝑖=1 (23)

Step 3: Construct linear combinations of base classifiers.

𝑓(𝑥) = ∑ 𝛼𝑚
𝑀
𝑚=1 𝐺𝑚(𝑥) (24)

Step 4: The final Ensemble Classifier is obtained as follows.

𝐺(𝑥) = 𝑠𝑖𝑔𝑛(𝑓(𝑥)) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚𝐺𝑚(𝑥)𝑀
𝑚=1) (25)

Sensors 2022, 22, 4621 17 of 32

Figure 6. Structure diagram of the Ensemble Classifier.

In our integration algorithm (Algorithm 1), the weights of samples misclassified by

the previous round of weak classifiers need to be increased. At the same time, the weights

of correctly classified samples are reduced. We take a weighted majority voting approach,

increasing the weights of weak classifiers with small classification error rates so that they

play a larger role in the voting. Conversely, we reduce the weights of weak classifiers with

large classification error rates so that they play a smaller role in voting.

Algorithm 1 Integration Algorithm to Implement Ensemble Classifier

Input: 𝐸: Training data for classification.

Initialization: 𝑊𝑚: the weights of the training data. 𝑚 = 1,2, … ,𝑀. 𝑎 = 0.

Output: 𝐺(𝑥): Ensemble Classifier

1: for 𝑖 ≥ 0 and 𝑖< 𝑀 do

2: Calculate 𝑒𝑖 by Equation (19)

3: 𝑎 ← 𝑒𝑖

4: if 𝑒𝑖 ≤ 𝑎 then

5: 𝑎 ← 𝑒𝑖

6: Base ← 𝐺𝑖(𝑥)

7: Calculate the weight of the Base 𝑊𝑖+1 by Equation (21)

8: 𝑖 + +

9: end for

10: Calculate 𝑓(𝑥) by Equation (24)

11: Calculate 𝐺(𝑥) by Equation (25)

12: return 𝐺(𝑥)

Sensors 2022, 22, 4621 18 of 32

Softmax is one of the most common classifiers in deep learning. Although the Soft-

max classifier is easy to use and effective, it fails to guide the network to learn distinguish-

ing features. In order to efficiently learn features that are compact within classes and dis-

crete between classes, Wang et al. proposed a Softmax (AM-Softmax) classifier with addi-

tional edge cosine distances [59].

𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋) =
𝑒𝑊𝑘

𝑇𝑋

∑ 𝑒
𝑊𝑗

𝑇𝑋𝑛0
𝑗=1

=
𝑒‖𝑊𝑘‖‖𝑋‖cos𝜃𝑘

∑ 𝑒
‖𝑊𝑗‖‖𝑋‖ cos𝜃𝑗𝑛0

𝑗=1

 (26)

𝐹𝐴𝑀−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑋) =
𝑒𝑠(cos𝜃𝑘−𝑑𝑚)

𝑒
𝑠(cos𝜃𝑗−𝑑𝑚)

+∑ 𝑒
𝑠 cos𝜃𝑗𝑛0

𝑗=1,𝑗≠𝑘

 (27)

In the above equation, 𝑋 denotes the input vector of the fully connected layer, 𝑊𝑗
𝑇

is the fully connected layer weight of the 𝑗th output node, 𝑊𝑗
𝑇𝑋 is the output value of

the corresponding output node when the classification result is 𝑘, 𝑘 ∈ {1,2, … , 𝑛0}, 𝑠 is

the scale scaling factor, and 𝑑𝑚 is the additional edge cosine distance.

4. Experiments and Results

In order to conduct modular comparison experiments, we built a modular serial com-

bination framework during experiments. We call it the SCR Detection Framework. It con-

tains 15 serial combinations of CNN and RNN models, including SPCBIG-EC. By running

the SCR detection framework, it can automatically select the best-performing model in a

selective series of combinations. The structure is shown in Figure 7 below.

Figure 7. The SCR Detection Framework.

Our experiments were designed to answer the following four Research Questions

(RQs):

• RQ1: Can our SPCBIG-EC model detect multiple kinds of smart contract vulnerabil-

ities, and what is the performance of vulnerability detection?

To answer this question, we conducted experiments using the SPCBIG-EC model for

the CESC dataset that we constructed. The CESC dataset contains six typical vulner-

abilities. We used CESC for multi-task vulnerability detection.

• RQ2: Did the serial combination of SPCNN and BiGRU in the feature extraction

phase make our model more effective? By how much?

Sensors 2022, 22, 4621 19 of 32

To answer this question, two sets of experiments were carried out. (a) First, we com-

pared the reentrancy, timestamp dependency, and infinite loop vulnerability detec-

tion performance of the SPCNN model, BiGRU model, and SPCBIG-EC model in the

CESC dataset. (b) Then, we performed hybrid vulnerability testing for UCESC using

our framework to test the performance evaluation results for all combined patterns.

• RQ3: Can our proposed SPCNN for the vulnerability feature extraction phase of the

CNN module make our model more effective? By how much?

To answer this question, we used the SCR Detection Framework to evaluate the per-

formance of three models, CNN-BiGRU, SCNN-BiGRU, and SPCBIG-EC, for three

typical vulnerabilities.

• RQ4: How effective is our model when compared with state-of-the-art methods?

To answer this question, we compared SPCBIG-EC with state-of-the-art smart con-

tract vulnerability detection methods. Firstly, a comparison was made with existing

automated security auditing tools, namely, Oyenete [25], Mythril [26], Smartcheck

[27], and Securify [28]. Secondly, we compared it with deep learning-based vulnera-

bility detection methods, namely, DeeSCV [38], Eth2Vec [33], DR-GCN, TMP, GCE,

AME [35], and AFS [36].

4.1. Dataset

We collected existing smart contracts on Ethereum and constructed two smart con-

tract datasets, represented as CESC and UCESC.

We collected the source code of Solidity smart contracts from the official Ethereum

website, with a total of 203,716 smart contracts. It contains 47,398 real and unique sol files

consisting of contract code for six possible vulnerability types, namely, reentrancy vulner-

ability, timestamp dependency, infinite loop, callstack depth attack vulnerability, integer

overflow, and integer underflow. The number of sol files containing vulnerabilities is

35,151, and the number of files without vulnerabilities is 12,247. The data show a large

difference between the number of contracts that contain vulnerabilities and those that do

not. Such a heavily imbalanced dataset would lead to overfitting during training. We

needed to balance the dataset before vulnerability detection and classification, balancing

positive and negative examples while ensuring an even distribution of each type of vul-

nerability. Therefore, after obtaining these smart contracts, further sampling and pro-

cessing were required to collate a dataset that could be used for experiments. We used the

synthetic minority oversampling technique (SMOTE) [60,61] to extend the number of mi-

nority classes to be close to the number of majority classes. SMOTE is an oversampling

technique that interpolates between a small number of classes to generate additional clas-

ses. Figure 8 shows the composition of the CESC dataset. The CESC dataset consists of six

categorical datasets, the composition of which is shown in Figure 8. We would like to

clarify that the reason we distinguished the dataset into UCESC and CESC is that the

CESC required for our experiments was obtained after preprocessing UCESC, which is

the original smart contract code that has not been preprocessed, and it consists of smart

contract code containing six typical vulnerabilities that are not sorted. The UCESC dataset

underwent a series of preprocessing efforts, such as data cleaning and tagging lists, to

form a CESC dataset that can be used by our model for vulnerability detection. We also

conducted direct vulnerability detection experiments on the UCESC dataset to verify the

necessity of data cleaning for this study and to demonstrate the efficiency of our proposed

structure for different datasets.

Sensors 2022, 22, 4621 20 of 32

Figure 8. Composition of the CESC dataset.

4.2. Experimental Settings

The experimental model was built on a computer with Intel Core (TM) i7-10875H

CPU, NVIDIA GeForce GTX 2060 GPU, and 16 GB RAM.

The whole experiment was divided into a training phase and a testing phase. Our

goal in the training phase was to optimize the model parameters by learning the loopholes

to obtain a trained model. The testing phase of our work used the test data as input to the

trained model, which outputs the prediction results of vulnerability detection. The pre-

diction results were compared with the real tags to measure the performance of our

model. In this paper, we use widely used metrics, including accuracy (ACC), true positive

rate or recall (TPR), false positive rate (FPR), precision (PRE), and F1-score (F1). We calcu-

lated these values by the following mathematical representations.

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (28)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (29)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (30)

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (31)

𝐹1 =
2∗𝑃𝑅𝐸∗𝑇𝑃𝑅

𝑃𝑅𝐸+𝑇𝑃𝑅
 (32)

The concepts represented by the letters involved in the formulas are as follows. True

positive (TP): the number of samples in which true reentrancy is detected; false positive

(FP): the number of samples in which false reentrancy is detected; false negative (FN): the

number of true reentrant samples not detected; true negative (TN): the number of false

reentrant samples not detected.

In the SCR Detection Framework, we constructed neural network models that com-

bine multiple types of CNN and RNN serial structures as feature extraction modules. We

provided three CNN structures, namely, CNN, SCNN, and SPCNN, and five RNN struc-

tures, namely, vanilla RNN, GRU, LSTM, BLSTM, and BiGRU.

Sensors 2022, 22, 4621 21 of 32

4.3. Experimental Results

(1) Results for Answering RQ1: To determine whether our model can detect multiple

types of vulnerabilities, we evaluated the performance of our model on the CESC dataset.

The effectiveness is reported in Table 3.

In this set of experiments, we conducted vulnerability detection experiments on six

separate datasets from the CESC dataset. According to Table 3, our model can detect these

six vulnerabilities to some extent. SPCBIG-EC showed better detection performance when

targeting reentrancy, timestamp, infinite loop, and callstack depth attack vulnerabilities.

Their accuracy rates are almost all above 90%. In addition, the detection accuracy for reen-

trancy vulnerability is 96.66%, and the F1-score is 96.74%. For both integer overflow and

integer underflow vulnerabilities, the evaluation metrics are around 85%. One possible

reason is that reentrancy, timestamp, infinite loop, and callstack depth attack have more

salient syntactic or semantic features compared to samples of integer overflow vulnera-

bilities. SPCBIG-EC also demonstrated good detection performance when performing de-

tection tasks on UCESC datasets containing hybrid vulnerabilities. As the UCESC dataset

contains multiple vulnerabilities, its ability to learn vulnerability features decreases when

simultaneous feature extraction is performed for multiple vulnerabilities. As a result, the

accuracy and F1-scores only reach about 85%.

In summary, the experiments show that SPCBIG-EC can automatically learn seman-

tic and syntactic information by processing and analyzing the source code of smart con-

tracts. Therefore, many different types of vulnerabilities can be detected efficiently. More-

over, our model exhibited good performance in most vulnerability detection tasks. Figure

9 shows the acc-loss plots of our model for different vulnerabilities during the training

process. The stability of our model during the training of smart contracts for vulnerability

detection can be seen from the accuracy-loss images obtained from the tests during train-

ing.

Table 3. The key points corresponding to different vulnerabilities.

Dataset Vulnerability

Models

Selected

by Our

Framework

ACC

(%)

TPR

(%)

FPR

(%)

PRE

(%)

F1

(%)

CESC

Reentrancy SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

Callstack depth attack SPCBIG-EC 90.02 86.32 7.24 92.25 89.14

Integer overflow SPCBIG-EC 85.11 97.10 16.90 83.80 85.42

Integer underflow SPCBIG-EC 86.47 89.24 16.29 84.57 86.83

Sensors 2022, 22, 4621 22 of 32

Figure 9. Plots of Acc-Loss.

(2) Results for Answering RQ2: To answer the question of whether adopting a serial

combination structure of SPCNN and BiGRU in the feature extraction phase makes the

SPCBIG-EC model more effective, we conducted experiments from two perspectives.

We compared the performance of vulnerability detection using the SPCNN model,

the BiGRU model, and the SPCBIG-EC model to further illustrate the effectiveness of the

serial structures based on CNN and RNN.

As shown in Table 4, for the three typical vulnerabilities, our serial structure outper-

formed CNN or RNN alone in terms of detection performance. (a) In reentrancy vulnera-

bility detection, the evaluation metrics of the models were both improved by about 10%

after serializing the CNN with the RNN for feature extraction. Furthermore, SPCBIG-EC

achieved the highest accuracy rate of 96.66% with the highest F1-score of 96.74%. (b) In

timestamp dependency vulnerability detection, accuracy improved by around 10%, and

the F1-score increased by up to 15%. (c) There was a 15% improvement in accuracy and

up to 20% improvement in the F1-score in infinite loop vulnerability detection.

The experimental results show that the vulnerability detection capability of the

model is greatly improved by concatenating CNN with RNN. The results demonstrate

that serially connecting CNNs to RNNs is more conducive to feature extraction and can

improve the effectiveness of our model.

Table 4. Performance comparison of a single model and serial hybrid model.

Metrics

Model
ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

Reentrancy

BiGRU 85.38 86.57 11.42 85.23 85.55

SPCNN 87.14 87.12 12.23 85.45 86.77

SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp BiGRU 82.45 83.82 13.28 71.29 76.82

Sensors 2022, 22, 4621 23 of 32

SPCNN 83.48 82.56 12.84 75.27 79.19

SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop

BiGRU 80.11 83.54 21.45 73.98 76.27

SPCNN 79.79 85.14 11.84 75.17 78.86

SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

We performed hybrid vulnerability detection on UCESC. The performance of all

combined models was evaluated using the SCR Detection Framework. Table 5 shows the

results of the experiment.

From the results data in Table 5, we can see that the detection performance of the

convolutional layer with the SPCNN structure is better than that of CNN and SCNN, with

the guarantee of a consistent recurrent neural network. Furthermore, among these 15 com-

bined models, SPCBIG-EC shows stronger vulnerability detection ability. In this experi-

ment, we conducted a comparison of our own structures for vulnerability detection on the

same dataset to determine the best model structure, and the experimental results show

that the SPCNN structure has a strong advantage over CNN and SCNN; our proposed

SPCNN has a factual basis for improving vulnerability detection performance, and our

model also shows the strongest vulnerability detection capability among these 15 struc-

tures.

Table 5. The results of the detection of hybrid vulnerabilities with the SCR Detection Framework.

Metrics

Serial Neural Network
ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

CNN-RNN 75.25 62.56 12.06 83.84 71.65

CNN-LSTM 79.77 79.90 20.35 79.70 79.80

CNN-GRU 80.52 71.11 10.05 87.61 78.50

CNN-BLSTM 80.65 76.63 15.32 83.33 79.85

CNN-BiGRU 81.41 81.91 19.09 81.10 81.50

SCNN-RNN 79.02 72.36 14.32 83.47 77.52

SCNN-LSTM 78.64 82.16 24.87 76.76 79.37

SCNN-GRU 81.40 73.11 10.30 87.65 79.72

SCNN-BLSTM 82.41 72.11 10.29 90.82 80.39

SCNN-BiGRU 82.92 80.90 15.07 84.30 82.56

SPCNN -RNN 79.27 87.69 29.14 75.05 80.88

SPCNN-LSTM 80.15 80.00 19.50 80.30 80.10

SPCNN-GRU 82.03 81.66 17.58 82.28 81.97

SPCNN-BLSTM 82.66 81.16 15.82 83.68 82.40

SPCBIG-EC 85.89 85.00 9.23 91.41 85.71

(3) Results for Answering RQ3: To answer whether our proposed SPCNN structure

can make our model more effective, we computed experimental data statistics with three

vulnerabilities as examples. We chose the BiGRU model in the RNN module to detect the

performance of the structure by changing the type of CNN.

Table 6 shows the quantitative results, and we have the following observations. (a)

In reentrancy vulnerability detection, SPCBIG-EC has an accuracy and F1-score of 96%,

much higher than those of CNN-BiGRU and SCNN-BiGRU. The various indicators im-

proved by around 10%. The difference in performance between CNN-BiGRU and SCNN-

BiGRU is not significant, and the accuracy and F1-score of SCNN-BiGRU are slightly bet-

ter than those of CNN-BiGRU. (b) In timestamp vulnerability detection, SPCBIG-EC

achieved an accuracy and F1-score of around 91%, slightly higher than those of BiGRU

and SPCNN. Although the advantages are not obvious, good vulnerability detection was

achieved. (c) In infinite loop vulnerability detection, SPCBIG-EC achieved an accuracy of

Sensors 2022, 22, 4621 24 of 32

94.87% and an F1-score of 95%, much higher those than CNN-BiGRU and SCNN-BiGRU.

These metrics are in the range of 5–15% improvement compared to CNN-BiGRU and

SCNN-BiGRU metrics.

The experiments showed that the results of vulnerability detection vary greatly when

different CNNs are chosen for sequence structure. The results demonstrate that SPCNN

can improve the effectiveness of our model, especially the overall effectiveness of the ac-

curacy and F1-score. In addition, we found that the detection performance of reentrancy

and infinite loop vulnerabilities improved to a greater extent than that of timestamp vul-

nerabilities. The possible reason is that the reentrancy and infinite loop samples have a

richer data flow and control flow relationship, so feature extraction with SPCNN leads to

a greater improvement in the final detection results.

Table 6. The results of the detection of hybrid vulnerabilities with the SCR Detection Framework.

Metrics

Model
ACC (%) TPR (%) FPR (%) PRE (%) F1 (%)

Reentrancy

CNN-BiGRU 84.76 76.19 6.67 91.95 83.33

SCNN-BiGRU 86.19 93.33 20.95 81.67 87.11

SPCBIG-EC 96.66 98.04 5.71 94.55 96.74

Timestamp

CNN-BiGRU 87.61 92.72 23.42 80.73 88.83

SPCNN-BiGRU 90.47 91.77 10.83 89.5 90.62

SPCBIG-EC 91.11 96.84 14.64 86.93 91.62

Infinite loop

CNN-BiGRU 80.77 72.65 11.11 86.73 79.0

SPCNN-BiGRU 89.74 88.03 8.55 91.15 89.57

SPCBIG-EC 94.87 93.16 3.41 96.46 95.00

We further present a case study in Figure 10, where the withdraw function is a real-

world smart contract function that has a reentrancy vulnerability. We use the reentrancy

vulnerability as an example and present the labels of the detection results of the CNN-

BiGRU and SPCBIG-EC models. A vulnerability contract was located, and SPCNN de-

tected the vulnerability, while CNN did not detect the vulnerability. We reduced the con-

tract represented by tokens to the smart contract source code. We found that CNN failed

to locate the vulnerability in this contract. The vulnerability in this code is in “re-

quire(msg.sender.call.value(_weiToWithdraw)())”. This line will send the extractor the speci-

fied number of Ether. Based on this experimental phenomenon, we found that CNN does

not adequately learn and extract the logic of changing state variables in the contract code.

In contrast, the SPCNN learns sufficiently, based on semantic analysis and feature extrac-

tion, that it is logically appropriate for the contract to change the state variables before

Ethereum is invoked externally. This case study further validates the superiority of the

SPCNN structure for grammar analysis and feature extraction.

Sensors 2022, 22, 4621 25 of 32

Figure 10. Case study on the interpretability of our method. The “1” and “0” in the graph indicate

the result of vulnerability detection. A “1” indicates that a vulnerability exists in the detected con-

tract, and a “0” indicates that it does not exist.

(4) Results for Answering RQ4: To assess the value of our model, we selected state-

of-the-art methods for comparison. Firstly, a comparison was made with tools such as

Oyenete [25], Mythril [26], Smartcheck [27], and Securify [28] for reentrancy and

timestamp dependency vulnerabilities. Secondly, we compared it with deep learning-

based vulnerability detection methods, namely, Eth2Vec [33], DR-GCN, TMP, GCE, AME

[35], AFS [36], and DeeSCV [38]. These methods are described in detail in Section 2.

To highlight the need for research on smart contract vulnerability detection methods

based on deep learning techniques, we compared the performance of traditional smart

contract vulnerability detection tools with our approach. Table 7 shows the quantitative

results, and we have the following observations. Among the four traditional methods

without the deep learning phase, (a) Securify received the highest F1-score in reentrancy

vulnerability detection, with a value of 52.79%. (b) In the timestamp dependency vulner-

ability, Mythril obtained the highest F1-score with a value of 42.48%, which is quite low

in practice. This stems from the fact that these methods detect these two kinds of vulner-

abilities by crudely checking whether the statements contain call.value/block.timestamp or

not.

Table 7. Comparison results with advanced security audit tools.

Methods
Reentrancy Timestamp

ACC (%) TPR (%) PRE (%) F1 (%) ACC (%) TPR (%) PRE (%) F1 (%)

Oyenete 71.50 50.84 51.72 51.28 60.54 31.94 48.94 38.66

Mythril 60.00 39.21 68.96 50.00 64.87 34.53 58.54 42.48

Smartcheck 52.00 24.32 31.03 27.27 61.08 29.17 50.00 36.84

Securify 53.50 37.41 89.66 52.79 - - - -

SPCBIG-EC 96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62

To verify the efficiency of our approach, we compared the performance with existing

advanced smart contract vulnerability detection methods based on deep learning tech-

niques, and Table 8 shows the resulting data. Figure 11 shows the visualization of our

approach compared to existing advanced deep learning-based methods. We analyzed the

data from the experimental results. (a) In reentrancy vulnerability detection, AME reached

Sensors 2022, 22, 4621 26 of 32

the highest F1-score with a value of 87.94%, and Eth2Vec obtained an F1-score of 61.5%,

the lowest value of all methods; (b) For timestamp dependency, CGE reached the highest

F1-score with a value of 87.75%, and DR-GCN obtained an F1-score of 74.91%, the lowest

value of all methods; (c) In the infinite loop vulnerability, CGE achieved the highest F1-

score with a value of 82.13%, and DR-GCN obtained an F1-score of 66.32%, the lowest

value of all methods.

Table 8. Comparison results with existing advanced deep learning-based methods.

Methods

Reentrancy Timestamp Infinite Loop

ACC

(%)

TPR

(%)

PRE

(%)

F1

(%)

ACC

(%)

TPR

(%)

PRE

(%)

F1

(%)

ACC

(%)

TPR

(%)

PRE

(%)

F1

(%)

GR-GCN 81.47 80.89 72.36 76.39 78.68 78.91 71.29 74.91 68.34 67.82 64.89 66.32

TMP 84.48 82.63 74.06 78.11 83.45 83.82 75.05 79.19 74.61 74.32 73.89 74.10

CGE 89.15 87.62 85.24 86.41 89.02 88.10 87.41 87.75 83.21 82.29 81.97 82.13

AME 90.19 89.69 86.25 87.94 86.52 86.23 82.07 84.10 80.32 79.08 78.69 78.88

Eth2Vec 85.50 74.32 86.60 61.50 - - - - - - - -

AFS 93.07 94.60 90.00 93.21 - - - - - - - -

DeeSCV 93.02 83.46 90.70 86.87 80.50 74.86 85.53 79.93 - - - -

SPCBIG-

EC
96.66 98.04 94.55 96.74 91.11 96.84 86.93 91.62 94.87 93.16 96.46 86.93

In contrast, our method is considerably superior to the state-of-the-art methods de-

scribed above. Our method obtained a 96.66% F1-score in detecting reentrancy vulnera-

bilities, a 91.62% F1-score in timestamp dependency, and a 95% F1-score in infinite loop

vulnerabilities. These pieces of evidence reveal the great potential of applying our model

to smart contract vulnerability detection.

Figure 11. Visualization of images compared to existing deep learning-based methods.

Sensors 2022, 22, 4621 27 of 32

We used multiple tools to perform different types of vulnerability detection on thou-

sands of real-world copies. We selected several typical traditional smart contract vulner-

ability detection tools to compare the detection time with our method in order to further

illustrate the shortcomings of the traditional method and the urgent need to improve it.

At the same time, to verify the efficiency of our method, we compared the vulnerability

detection time with CGE, the vulnerability detection method based on deep learning tech-

niques with the highest comprehensive performance except for our method in Table 8.

Statistically, as shown in Figure 12, our model detected an average of 9.8 s for one smart

contract. Meanwhile, Mythril averaged 60 s, Oyente averaged about 30 s, Securify aver-

aged about 20 s, and CGE averaged about 12.4 s. This demonstrates the efficiency of our

SPCBIG-EC.

Figure 12. The comparison in detection time.

5. Analysis of Results and Outlook for Future Work

From the above experimental results, it can be concluded that our model shows good

performance when targeting a single vulnerability. This conclusion can be drawn from

Tables 3 and 8. We also find that the types of vulnerabilities where our model performs

outstandingly are reentrancy vulnerabilities, timestamp-dependent vulnerabilities, and

infinite loop vulnerabilities; especially for reentrant vulnerabilities, we achieved almost

97% detection accuracy and F1-score. On the other hand, when we used our model for

hybrid vulnerability detection, we found that our performance metrics only reached

85.89%. The possible reason is that the low accuracy of our model for detecting the three

remaining types of vulnerabilities in our study led to low performance metrics when per-

forming hybrid vulnerability detection. To test this hypothesis and to consider the effect

of the dataset on the experimental results under equivalent conditions, we performed a

comparison of vulnerability detection under equivalent conditions by using the dataset

obtained from [39]. The experimental results are shown in Table 9.

Table 9. Comparison of hybrid vulnerabilities under different datasets.

Model Dataset
ACC

(%)

TPR

(%)

FPR

(%)

PRE

(%)

F1

(%)

SPCBIG-EC
UCESC 85.89 85.00 9.23 91.41 85.71

SCVDIE-Ensemble [39] 91.80 95.25 11.67 90.00 92.10

Sensors 2022, 22, 4621 28 of 32

Figure 13 shows the accuracy-loss images when using our model for hybrid vulner-

ability detection on the dataset of [39]. The experimental results data show that the detec-

tion results of the same model are different on different datasets. We used the dataset of

[39] for hybrid vulnerability detection experiments, and the comparison shows that our

model improved the accuracy and F1-score by 6% and the recall by 10% on their dataset.

Our hybrid vulnerability detection performance improved to over 90%, outperforming

most existing methods. The possible reason for our hybrid vulnerability detection perfor-

mance not reaching higher values is the bias of our model in its ability to detect different

vulnerabilities. We found experimentally that our model obtained poor evaluation met-

rics for integer overflow vulnerability detection, a conclusion that can be drawn from Ta-

ble 3. We want to show that our model focuses on targeted vulnerability detection for

several single vulnerability characteristics, and that our approach has advantages over

existing state-of-the-art approaches for single vulnerability detection for reentry vulnera-

bilities, timestamp-dependent vulnerabilities, and infinite loop vulnerabilities. Since the

dataset of [39] is not divided into different types of vulnerability categories, we cannot

compare the performance of a single vulnerability detection with them in an equivalent

situation. We acknowledge that their study has a strong detection capability for mixed

vulnerabilities. However, our advantage is that we have stronger detection performance

for vulnerabilities that have more salient syntactic or semantic features, such as smart con-

tract reentrancy vulnerabilities. The superior detection performance of our model for

these types of vulnerabilities is due to the model’s unique string-parallel convolutional

structure (SPCNN) and integrated classification algorithm. We use the smart contract

reentry vulnerability as an example to illustrate. Considering the correlation characteris-

tics of inter-invocation between smart contracts, the smart contract vulnerability features

are extracted and identified by using a string-parallel convolutional structure with paral-

lel dual convolutional kernels, and the internal features of smart contracts and the corre-

lation features between multiple smart contracts are fully extracted.

Figure 13. Plots of Acc-Loss during hybrid vulnerability detection.

The experimental comparison of the replacement dataset and the related experiments

in Section 4 lead us to the following conclusions. The strength of our model is its strong

detection capability against smart contract reentrancy vulnerabilities, which stems from

our unique cascading model structure and integrated classification algorithm. In addition,

our model has strong detection capability against timestamp dependency vulnerabilities,

infinite loop vulnerabilities, and callstack depth attack vulnerabilities, which is better than

most similar detection models. In contrast, our model is weak in identifying integer over-

flow vulnerabilities, which is the reason why our detection ability is lower than that of

[39] when performing hybrid vulnerability detection.

Sensors 2022, 22, 4621 29 of 32

The possible reasons why our model is less sensitive to integer overflow vulnerabil-

ities are as follows. The integer overflow vulnerability is mainly due to the integer type of

Solidity, the programming language of smart contracts. Both uint8 and uint256 can only

store integers within a certain range, and when the result of the operation exceeds that

range, an overflow or underflow problem will occur, which makes certain judgment

mechanisms in the contract fail and poses a potential threat to the security of the entire

contract. Most of the integer overflow vulnerability attacks bypass the detection state-

ments in the contract by carefully constructing parameters to achieve an over-transfer. We

believe that our model lacks experience in analyzing the parameters at the stage where

the user makes the transfer. In our future research, we will continue to optimize our model

to make our approach more capable of analyzing and identifying multiple vulnerabilities

such as integer overflows.

Through this research, we realized that future research on deep learning-based smart

contract vulnerability detection should be strengthened in the following aspects. (1) Build-

ing a unified and standardized smart contract vulnerability dataset. A breakthrough in

deep learning-based smart contract vulnerability detection methods must rely on a uni-

fied and comprehensive smart contract vulnerability dataset. Currently, the existing deep

learning methods (e.g., ReChecker, TMP, and AME) can only support a small number of

contract vulnerability detection types because the dataset is poor and non-standardized.

Therefore, only a unified and standardized vulnerability dataset covering all types of vul-

nerabilities can enable deep learning models to have a better effect and thus better pro-

mote research in this area. (2) Establish a unified, scalable deep learning model. With the

number of smart contracts, the corresponding type of security vulnerability has become

more and more complicated and unpredictable. At present, the vulnerabilities in smart

contracts based on deep learning can still establish a model on the type of vulnerabilities

found, and whether it can quickly adapt to a new vulnerability type is yet to be studied.

6. Conclusions

The devices in the IoT ecosystem are the points of contact with the physical world.

IoT devices link to the cloud through some communication media. The data collected by

the sensor reaches the cloud through the core network for processing [62]. IoT devices are

more deeply embedded in the privacy of people’s lives, and their security issues cannot

be ignored. Smart contracts backed by blockchain technology have the potential to solve

these problems. While BoT technology is vigorously promoting the development of in-

dustrial innovation, its security must also be guaranteed. Thus, it is urgent to propose a

more efficient approach to smart contract security detection. Our research focuses on six

typical vulnerabilities, namely, reentrancy vulnerability, timestamp dependency, infinite

loop, callstack depth attack vulnerability, integer overflow, and integer underflow. In ad-

dition, we innovatively propose an SPCNN network structure suitable for serial combi-

natorial models. This structure aims to extract low-level features and output them in par-

allel with high-level features. It can fully integrate the multiple features of word vectors

at different levels. In order to fully extract the internal features of smart contracts and the

connection features between smart contracts, we use SPCNN with dual convolutional ker-

nels. Numerous experiments demonstrated the efficiency of the SPCBIG-EC model and

the applicability of the SPCNN to serial hybrid models. In addition, experimental data

show that our SPCBIG-EC model significantly outperforms 11 other advanced vulnera-

bility detection methods.

Author Contributions: Conceptualization, Y.L. and L.Z.; methodology, Y.L.; software, Y.L.; valida-

tion, Y.L., L.Z. and H.C.; formal analysis, Y.L.; investigation, T.J. and W.W.; resources, L.Z.; data

curation, Z.J.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visuali-

zation, Y.L.; supervision, C.Z. and Z.C.; project administration, L.Z.; funding acquisition, L.Z. All

authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 4621 30 of 32

Funding: This research was funded by the National Key Research and Development Program of

China (2021YFE0102100). National Natural Science Foundation of China under grant number

62172353; Future Network Scientific Research Fund Project No. FNSRFP-2021-YB-48; Science and

Technology Program of Yangzhou City No. YZU202003; and Six Talent Peaks Project in Jiangsu

Province No. XYDXX-108.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental data and associated code used in this study have

been deposited in the GitHub repository (https://github.com/wobulijie10086/SPCBIG-EC/tree/mas-

ter/SPCBIG-EC, accessed on 30 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020,

10, 4102. https://doi.org/10.3390/app10124102.

2. Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303.

https://doi.org/10.1109/ACCESS.2016.2566339.

3. Zhang, Y.; Wen, J. The IoT electric business model: Using blockchain technology for the internet of things. Peer Netw. Appl. 2017,

10, 983–994. https://doi.org/10.1007/s12083-016-0456-1.

4. Ali, J.; Sofi, S.A. Ensuring Security and Transparency in Distributed Communication in IoT ecosystems using Blockchain Tech-

nology: Protocols, Applications and Challenges. IJCDS 2022, 11, 1–20. https://doi.org/10.12785/ijcds/110101.

5. Hassan, M.U.; Rehmani, M.H.; Chen, J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects,

challenges, and future research directions. Future Gener. Comput. Syst. 2019, 97, 512–529. https://doi.org/10.1016/j.fu-

ture.2019.02.060.

6. Sadawi, A.A.; Madani, B.; Saboor, S.; Ndiaye, M.; Abu-Lebdeh, G. A comprehensive hierarchical blockchain system for carbon

emission trading utilizing blockchain of things and smart contract. Technol. Forecast. Soc. Chang. 2021, 173, 121124.

https://doi.org/10.1016/j.techfore.2021.121124.

7. Wang, Q.; Wang, D.; Cheng, C.; He, D. Quantum2FA: Efficient Quantum-Resistant Two-Factor Authentication Scheme for Mo-

bile Devices. IEEE Trans. Dependable Secur. Comput. 2022. https://doi.org/10.1109/TDSC.2021.3129512.

8. Jarecki, S.; Krawczyk, H.; Xu, J. OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-computation Attacks. In Advances

in Cryptology—Eurocrypt 2018; Nielsen, J.B., Rijmen, V., Eds.; Springer: Cham, Switzerland, 2018; pp 456–486. ISBN 978-3-319-

78371-0.

9. Zhao, G.; Jiang, Q.; Huang, X.; Ma, X.; Tian, Y.; Ma, J. Secure and Usable Handshake Based Pairing for Wrist-Worn Smart

Devices on Different Users. Mob. Netw. Appl. 2021, 26, 2407–2422. https://doi.org/10.1007/s11036-021-01781-x.

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. https://doi.org/10.1145/3065386.

11. Shrivastava, K.; Kumar, S.; Jain, D.K. An effective approach for emotion detection in multimedia text data using sequence based

convolutional neural network. Multimed. Tools Appl. 2019, 78, 29607–29639. https://doi.org/10.1007/s11042-019-07813-9.

12. Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A novel time series forecasting model with deep learning. Neurocomputing 2020, 396,

302–313.

13. Xing, Y.; Lv, C.; Cao, D. Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles.

IEEE Trans. Veh. Technol. 2020, 69, 1341–1352. https://doi.org/10.1109/TVT.2019.2960110.

14. Lehui, Z.; Ying, H. Overview of Integrated Equipment Fault Diagnosis Methods Based on Deep Learning. In Proceedings of the

2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,

12–14 March 2021; pp. 599–608.

15. Hua, Y.; Guo, J.; Zhao, H. Deep Belief Networks and deep learning. In Proceedings of 2015 International Conference on Intelli-

gent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 1–4.

https://doi.org/10.1109/ICAIOT.2015.7111524.

16. Liu, Y.; Zhang, Q.; Lv, Z. Real-Time Intelligent Automatic Transportation Safety Based on Big Data Management. IEEE Trans.

Intell. Transport. Syst. 2021. https://doi.org/10.1109/TITS.2021.3106388.

17. Wang, Y.; Tang, L.; He, T. Attention-Based CNN-BLSTM Networks for Joint Intent Detection and Slot Filling. In Chinese Com-

putational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data; Sun, M., Liu, T., Wang, X., Liu, Z.,

Liu, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 250–261. ISBN 978-3-030-01715-6.

18. Qian, P.; Liu, Z.; He, Q.; Zimmermann, R.; Wang, X. Towards Automated Reentrancy Detection for Smart Contracts Based on

Sequential Models. IEEE Access 2020, 8, 19685–19695. https://doi.org/10.1109/ACCESS.2020.2969429.

19. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing

2019, 337, 325–338. https://doi.org/10.1016/j.neucom.2019.01.078.

https://github.com/wobulijie10086/SPCBIG-EC/tree/master/SPCBIG-EC
https://github.com/wobulijie10086/SPCBIG-EC/tree/master/SPCBIG-EC

Sensors 2022, 22, 4621 31 of 32

20. Amiet, N. Blockchain Vulnerabilities in Practice. Digit. Threat. 2021, 2, 1–7. https://doi.org/10.1145/3407230.

21. Destefanis, G.; Marchesi, M.; Ortu, M.; Tonelli, R.; Bracciali, A.; Hierons, R. Smart contracts vulnerabilities: A call for blockchain

software engineering? In Proceedings of the 2018 International Workshop on Blockchain Oriented Software Engineering

(IWBOSE), Campobasso, Italy, 20 March 2018; pp. 19–25.

22. Sun, T.; Yu, W. A Formal Verification Framework for Security Issues of Blockchain Smart Contracts. Electronics 2020, 9, 255.

https://doi.org/10.3390/electronics9020255.

23. Mazorra, B.; Adan, V.; Daza, V. Do not Rug on me: Zero-Dimensional Scam Detection. arXiv 2022, arXiv:2201.07220.

24. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.-Y. Blockchain-Enabled Smart Contracts: Architecture, Applications,

and Future Trends. IEEE Trans. Syst. Man Cybern Syst. 2019, 49, 2266–2277. https://doi.org/10.1109/TSMC.2019.2895123.

25. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIG-

SAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 254–269.

26. Hegedűs, P. Towards Analyzing the Complexity Landscape of Solidity Based Ethereum Smart Contracts. Technologies 2019, 7,

6. https://doi.org/10.3390/technologies7010006.

27. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck. In Proceedings of

the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain and ICSE ‘18: 40th International

Conference on Software Engineering, Gothenburg, Sweden, 27 May 2018; pp. 9–16.

28. Tsankov, P.; Dan, A.; Cohen, D.D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart Contracts.

2018. Available online: http://arxiv.org/pdf/1806.01143v2 (accessed on 15 October 2018).

29. Song, J.; He, H.; Lv, Z.; Su, C.; Xu, G.; Wang, W. An Efficient Vulnerability Detection Model for Ethereum Smart Contracts. In

Network and System Security; Liu, J.K., Huang, X., Eds.; Springer: Cham, Switzerland, 2019; pp. 433–442. ISBN 978-3-030-36937-8.

30. Wang, W.; Song, J.; Xu, G.; Li, Y.; Wang, H.; Su, C. ContractWard: Automated Vulnerability Detection Models for Ethereum

Smart Contracts. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1133–1144. https://doi.org/10.1109/TNSE.2020.2968505.

31. Menglin, F.U.; Lifa, W.U.; Zheng, H.O.N.G.; Wenbo, F.E.N.G. Research on vulnerability mining technique for smart contracts.

J. Comput. Appl. 2019, 39, 1959.

32. Yu, X.; Zhao, H.; Hou, B.; Ying, Z.; Wu, B. DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnerability

Detection. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22

August 2021; pp. 1–8.

33. Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability De-

tection on Ethereum Smart Contracts. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Crit-

ical Infrastructure and ASIA CCS ‘21: ACM Asia Conference on Computer and Communications Security, Virtual, Hong Kong,

China, 7 June 2021; pp. 47–59.

34. Huang, J.; Zhou, K.; Xiong, A.; Li, D. Smart Contract Vulnerability Detection Model Based on Multi-Task Learning. Sensors 2022,

22, 1829. https://doi.org/10.3390/s22051829.

35. Liu, Z.; Qian, P.; Wang, X.; Zhu, L.; He, Q.; Ji, S. Smart Contract Vulnerability Detection: From Pure Neural Network to Inter-

pretable Graph Feature and Expert Pattern Fusion. arXiv 2021, arXiv:2106.09282.

36. Wang, B.; Chu, H.; Zhang, P.; Dong, H. Smart Contract Vulnerability Detection Using Code Representation Fusion. In Proceed-

ings of the 2021 28th Asia-Pacific Software Engineering Smart Contract Vulnerability Detection Using Code Representation

Fusion, Taipei, Taiwan, 6–9 December 2021; pp. 564–565.

37. Liao, J.W.; Tsai, T.T.; He, C.K.; Tien, C.W. Soliaudit: Smart contract vulnerability assessment based on machine learning and

fuzz testing. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Secu-

rity (IOTSMS), Granada, Spain, 22–25 October 2019.

38. Mi, F.; Wang, Z.; Zhao, C.; Guo, J.; Ahmed, F.; Khan, L. VSCL: Automating Vulnerability Detection in Smart Contracts with

Deep Learning. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney,

Australia, 3–6 May 2021; pp. 1–9.

39. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. A Novel Smart Contract Vulnerability Detection Method

Based on Information Graph and Ensemble Learning. Sensors 2022, 22, 3581. https://doi.org/10.3390/s22093581.

40. Tetko, I.V.; Livingstone, D.J.; Luik, A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf.

Comput. Sci. 1995, 35, 826–833.

41. Liu, J.; Yang, Y.; Lv, S.; Wang, J.; Chen, H. Attention-based BiGRU-CNN for Chinese question classification. J. Ambient Intell.

Humaniz. Comput. 2019.

42. Qiu, S.; Wang, D.; Xu, G.; Kumari, S. Practical and Provably Secure Three-Factor Authentication Protocol Based on Extended

Chaotic-Maps for Mobile Lightweight Devices. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1338–1351.

https://doi.org/10.1109/TDSC.2020.3022797.

43. Jiang, Q.; Zhang, N.; Ni, J.; Ma, J.; Ma, X.; Choo, K.-K.R. Unified Biometric Privacy Preserving Three-Factor Authentication and

Key Agreement for Cloud-Assisted Autonomous Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 9390–9401.

https://doi.org/10.1109/TVT.2020.2971254.

44. Eberz, S.; Rasmussen, K.B.; Lenders, V.; Martinovic, I. Evaluating Behavioral Biometrics for Continuous Authentication. In Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Communications Security and ASIA CCS ‘17: ACM Asia

Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017; pp. 386–399.

Sensors 2022, 22, 4621 32 of 32

45. Sangaiah, A.K. Deep Learning and Parallel Computing Environment for Bioengineering Systems; Academic Press: Cambridge, MA,

USA, 2019; ISBN 0128172932.

46. Rong, X. Word2vec parameter learning explained. arXiv 2014, arXiv:1411.2738.

47. Goldberg, Y.; Levy, O. word2vec Explained: Deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv 2014,

arXiv:1402.3722.

48. Lilleberg, J.; Zhu, Y.; Zhang, Y. Support vector machines and word2vec for text classification with semantic features. In Pro-

ceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing,

China, 6–8 July 2015.

49. Islam, M.S.; Sultana, S.; Roy, U.K.; Al Mahmud, J.; Jahidul, S. HARC-New Hybrid Method with Hierarchical Attention Based

Bidirectional Recurrent Neural Network with Dilated Convolutional Neural Network to Recognize Multilabel Emotions from

Text. J. Ilm. Tek. Elektro Komput. Dan Inform. 2021, 7, 142–153.

50. Yu, Y.Q.; Fan, L.; Li, W.J. Ensemble additive margin softmax for speaker verification. In Proceedings of the ICASSP 2019-2019

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019.

51. Gao, B.; Pavel, L. On the properties of the softmax function with application in game theory and reinforcement learning. arXiv

2017, arXiv:1704.00805.

52. Bouchard, G. Efficient bounds for the softmax function, applications to inference in hybrid models. In Presentation at the Work-

shop for Approximate Bayesian Inference in Continuous/Hybrid Systems at NIPS-07; Citeseer: Princeton, NJ, USA, 2007.

53. Zhang, W.; Yoshida, T.; Tang, X. A comparative study of TF * IDF, LSI and multi-words for text classification. Expert Syst. Appl.

2011, 38, 2758–2765.

54. Liu, C.Z.’ Sheng, Y.X.; Wei, Z.Q.; Yang, Y.Q. Research of text classification based on improved TF-IDF algorithm. In Proceedings

of the 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), Lanzhou, China, 24–27 August

2018.

55. Pham, D.-H.; Le, A.-C. Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis.

Int. J. Approx. Reason. 2018, 103, 1–10.

56. Ng, P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv 2017, arXiv:1701.06279.

57. Braud, C.; Denis, P. Comparing word representations for implicit discourse relation classification. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015.

58. Zhang, M.; Li, Z.; Fu, G.; Zhang, M. Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, Baltimore, Maryland, 22–27 June 2014; Volume 2.

59. Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930.

60. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, mark-

ing the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905.

61. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357.

62. Xu, G.; Dong, J.; Ma, C.; Liu, J.; Cliff, U.G.O. A Certificateless Signcryption Mechanism Based on Blockchain for Edge Compu-

ting. IEEE Internet Things J. 2022. https://doi.org/10.1109/JIOT.2022.3151359.

