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Abstract: Change detection (CD) is a particularly important task in the field of remote sensing
image processing. It is of practical importance for people when making decisions about transitional
situations on the Earth’s surface. The existing CD methods focus on the design of feature extraction
network, ignoring the strategy fusion and attention enhancement of the extracted features, which
will lead to the problems of incomplete boundary of changed area and missing detection of small
targets in the final output change map. To overcome the above problems, we proposed a hierarchical
attention residual nested U-Net (HARNU-Net) for remote sensing image CD. First, the backbone
network is composed of a Siamese network and nested U-Net. We remold the convolution block
in nested U-Net and proposed ACON-Relu residual convolution block (A-R), which reduces the
missed detection rate of the backbone network in small change areas. Second, this paper proposed
the adjacent feature fusion module (AFFM). Based on the adjacency fusion strategy, the module
effectively integrates the details and semantic information of multi-level features, so as to realize the
feature complementarity and spatial mutual enhancement between adjacent features. Finally, the
hierarchical attention residual module (HARM) is proposed, which locally filters and enhances the
features in a more fine-grained space to output a much better change map. Adequate experiments on
three challenging benchmark public datasets, CDD, LEVIR-CD and BCDD, show that our method
outperforms several other state-of-the-art methods and performs excellent in F1, IOU and visual
image quality.

Keywords: change detection; remote sensing images; feature fusion; attention mechanism; adjacent
strategy; hierarchical structure

1. Introduction

Change detection (CD) is a remote sensing image interpretation task to obtain a
change map by comparing different temporal images of the same geographical region.
Monitoring changes in specific areas of the Earth’s surface is crucial for some individuals
and institutions to make critical decisions. Therefore, CD has received much attention as
a research hotspot in the field of remote sensing. With the quick advancement of remote
sensing technology, it has become gradually easier to obtain remote sensing images that
can be used for CD, which promoted the development of CD to a certain extent. At present,
CD is widely used in land use monitoring [1], disaster assessment [2], urban development
planning [3], environmental monitoring [4], and other fields.

Based on the unit of analysis of the model, traditional CD methods can be classified as
pixel-based [5] and object-based [6] methods. The pixel-based method usually generates
the change map based on the pixel differences between different temporal images. This
method requires data to go through several image pre-processing steps, including radiation
correction [7], geometric correction [8], etc. For the processed data, the appropriate CD
method is used to obtain a set of differential features, and finally generate the change
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map with a threshold segmentation or clustering method. Celik et al. [5] uses principal
component analysis (PCA) [9] extract orthogonal feature vectors, and then implements CD
by k-means clustering algorithm [10]. However, the pixel-based method does not fully con-
sider the relationship of feature contextual information during processing, and inevitably
leads to the generation of various types of noise and isolated change pixels, which influ-
ence the quality of change maps. The object-based method uses structural and geometric
information between different temporal images to generate change maps, which largely
suppresses the generation of isolated noise, but the method also has high requirements
for the registration of different temporal images. These two methods not only require
a lot of manual intervention in the image pre-processing stage, but also rely heavily on
the experience of professionals for threshold setting. Therefore, there is an immediate
requirement to developing automatic and efficient CD algorithms.

In the early years, due to the scarcity of labeled data, research in the field of remote
sensing image interpretation started in an unsupervised direction and has continued until
now [11,12]. Considering the nature of unsupervised methods, most unsupervised methods
use the physical properties of the data. For example, in the field of land cover classification,
the texture representation of medium resolution imaging spectrometer data can be used
to better reveal the land cover type [13], and in recent studies, Hidden Markov Models
have been successfully applied to fully polarized land cover classification [14,15], and good
results have been obtained. However, data-driven deep learning methods developed
rapidly in various computer vision fields in recent years due to the increasing accessibility of
data, such as target detection [16], target tracking [17], super-resolution reconstruction [18],,
and semantic segmentation [19], and most of the methods have achieved better results
than traditional methods. Therefore CD methods are gradually evolving from traditional
methods to deep learning-based methods. Since convolutional neural networks (CNN) [20]
are most commonly applied in computer vision tasks, networks based on CNN such as
VGG [21], U-Net [22], and ResNet [23] are widely introduced to the field of remote sensing
CD to obtain better change maps.

Owing to the resemblance between the CD and the semantic segmentation tasks,
early CD models were obtained through simply modification of the semantic segmentation
model, so most of them are single-stream structures. Single-stream CD models have been
used until now due to their simple modification and smaller computational expenditure.
However, the disadvantages of the single-stream CD model were gradually emerged, so the
Siamese network [24] was introduced into the CD domain to form the Siamese CD model.
Therefore, we divide the deep learning-based remote sensing CD model into single-stream
model [25–28] and Siamese model [29–32]. In the single-stream CD model, Zheng et al. [25]
used U-Net as the backbone network and two three-channel images are concatenated into
one six-channel image as input, embedding newly designed cross-layer blocks into the
encoder stage of the backbone network, integrating multi-level context information and
multi-scale features; Peng et al. [26] concatenated a pair of bi-temporal images and inputs to
the U-Net++ network, the global information is used to produce feature maps with higher
spatial accuracy, and the multi-level feature maps are then assembled to produce change
map with high accuracy. Unlike the single-stream CD model, the bi-temporal images are
processed separately by the Siamese backbone, after which the two sets of depth features
undergo a series of processing to obtain the change map. Chen et al. [29] proposed a Siamese
spatial–temporal attention network, designed a CD self-attentive mechanism to simulate
the spatio-temporal relationship between feature context, and finally obtained a better
change map. Zhang et al. [30] proposed an image fusion network, highly representative
deep features are extracted through a Siamese network, and then inputted the depth
features into the differential identification network under deep supervision to obtain the
change map.

Although the existing deep learning-based CD approaches outperform most tradi-
tional approaches, there are still many limitations in terms of structure and functionality.
First, in terms of structure, most models follow a U-shaped codec structure [22]. The prob-
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lem of back-propagation gradient disappearance is solved to a certain extent using the
skip connection mechanism, but because the connection is too sloppy, the features of the
two convolution layers being connected have large semantic differences, which leads to
increased learning difficulty of the network. Second, in terms of function, the problems of
small target miss detection, low robustness to pseudo-change, and irregular edges of the
extracted change regions are prevalent on most CD models, and these problems are also
urgent problems in CD.

To address the above problem, we propose a model and named it Hierarchical Atten-
tion Residual Nested U-Net (HARNU-Net) according to its characteristics. First, the im-
proved U-Net++ [33] is being used as the backbone network for feature extraction, and the
four levels of output features extracted by U-Net++ are fed into the Adjacent Feature Fusion
Module (AFFM), and the AFFM can combine multi-level features and context information
to make the output change map contain more regular change boundaries. Then, the fused
four features are fed into the hierarchical attention residual module (HARM) separately.
HARM can enhance features in finer-grained space, and effectively suppress problems
such as small target miss detection and pseudo-change interference. Finally, the four pro-
cessed features are concatenated at the channel level and processed to acquire a precise
change map.

The major contributions of this paper are as follows:

1. We proposed a novel and powerful network for remote sensing image CD, called
HARNU-Net. Compared with the baseline network U-Net++, our network signif-
icantly reduces the miss detection rate of small change regions and shows strong
robustness on pseudo-change cases.

2. We proposed HARM for effective enhancement of features in a finer-grained space,
using the feature transferability of the hierarchy to effectively filter out redundant
information and provide powerful feature representation and analysis capabilities
for the model. As a plug-and-play module, HARM can be easily transplanted to
other models.

3. The AFFM proposed by us can effectively integrate multi-level features and context
information, so as to reduce the learning difficulty of the model during the training
process, and make the boundary of the output change map more regular.

The rest of the paper is structured as follows. Section 2 introduces the related work of
the research. The proposed method is described in detail in Section 3. In Section 4, the com-
parative experiments between our model and other seven CD models are introduced in
detail, and a sequence of ablation experiments verify the reliability and validity of our
proposed module. The paper is concluded in Section 5.

2. Related Work

The introduction of deep learning into the field of CD accelerated the development
of the field. The mature CD model makes people gradually get rid of the tedious task of
manually labeling change regions. Since the emergence of Siamese network, because its
structural is particularly suitable for CD task, it has been applied into the field of CD
by more and more researchers. Zhan et al. [34] first brought the Siamese network to the
CD task and proposed a Siamese CD model. At that time, the features extracted by their
model were more abstract and robust than those generated by traditional methods. Fully
Convolutional Network (FCN) [35], which is widely applied to dense prediction tasks, is
also adopted in the CD task. Rodrigo et al. [36] proposed three CD models based on FCN,
which are the first end-to-end trainable models proposed in the CD domain. In recent
years, variants of FCN such as U-Net and U-Net++ are broadly applied in the field of CD.
Peng et al. [26] used U-Net++ to design an end-to-end CD model, which uses multi-level
semantic feature map to generate the change map.

Most of the design of CD models focus on the feature extraction phase, while the impor-
tant feature fusion phase is often ignored or only using coarse feature fusion strategy [26,27,37].
Although a well-designed feature extraction part in a CD model can assist the model obtain
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more detailed information for CD tasks, the lack of good feature fusion strategy may
lead to deterioration of the final CD results. Neural networks as a hierarchical structure
network, it is not same in the semantics of output features at different levels. In many
works, visualizing the features at different levels of neural networks can help us better
understand how the intermediate layers of neural networks work. Typically, low-level
features are larger in size and contain more local detail information, but lack the concept
of global semantics; high-level features after more convolution layers become smaller in
size, thus better summarize the global content of the image. In previous studies, to sur-
mount the lack of detailed and global information in a single feature, researchers have
used simple skip connection operations similar to those in FCN and U-Net to integrate
high-level features with low-level features. For example, Li et al. [37] proposed a CD model
with U-Net structure. Their model only simply connects the features of different semantics.
Although the skip connection operation may bring some performance gains to the model,
some connections in the simple skip connections not only will not enhance the capabilities
of the network, but also may have a negative impact on the network. We propose AFFM to
address this issue. According to the adjacency strategy, AFFM performs complementary
fusion operations on the features of different layers. This feature fusion approach preserves
the feature information at each level, and complements the missing elements of features at
various levels from adjacent features. At last it builds the foundation for the final output of
the change map with regular boundaries.

When looking at a picture, human beings can quickly find the contents they pay
attention to in complex scenes and ignore invalid information. This mechanism for divert-
ing attention to the most important regions of an image and ignoring irrelevant parts is
called attention mechanism [38]. Researchers introduced this mechanism to the field of
computer vision successfully. In recently, the attention mechanism has shown the great
success in various fields, such as image classification [39], semantic segmentation [40],
person re-identification [41], etc. In the field of CD, Wang et al. [42] added the fused
attention module of channel and spatial features to the decoding part of the proposed CD
network, which proved that using the fusion attention module can improve the accuracy of
the output results; Chen et al. [43] designed a dual-attentive concatenated FCN network,
which showed better capabilities by capturing the long-range dependencies between fea-
tures, and obtained more discriminative feature representations. Although all of the above
methods achieved good results, they all neglected to partially strengthen and weaken the
features on a finer-grained space, which led to frequent misses in detecting small change
regions. Our HARM employs an attention mechanism based on finer feature segmentation,
which effectively enhances the feature representation in fine-grained space and provides
excellent performance in small change region detection.

3. Methodology

In this section, the general network architecture of HARNU-Net is introduced in
Section 3.1, the improved backbone network is introduced in Section 3.2, the proposed
adjacent feature fusion module (AFFM) and the hierarchical attention residual module
(HARM) are introduced in Sections 3.3 and 3.4, respectively, and the loss function is
introduced in Section 3.5.

3.1. Network Architecture

The proposed HARNU-Net uses a pair of bi-temporal remote sensing images as input
and finally outputs a binary change map. The network uses a standard codec architecture
with a series of feature processing modules. The entire network structure can be split into
three parts as shown in Figure 1. The general structure of these three parts is as follows:

(1) Feature extraction part : An improved U-Net++ is used as the backbone network,
and its encoder part is adjusted to a Siamese structure to meet the bi-temporal images
input requirements of the CD task.



Sensors 2022, 22, 4626 5 of 26

(2) Feature fusion part: Unlike the most of previous approach of using only the output
features of the last decoder layer of U-Net++, we innovatively use the output features
of the four stages of the network to serve the final result. We consider the similarity
and complementarity between adjacent features of different layers, so we use AFFM
based on the adjacency strategy for complementary fusion of features.

(3) Feature reinforcement part: The four groups of features are reinforced separately using
HARM designed by the Convolutional Block Attention Module (CBAM) [44] with a
hierarchical structure, and the change maps are output after the final processing.
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Figure 1. Architecture of the proposed HARNU-Net. (a) is the backbone of HARNU-Net, used
for feature extraction. (b) is an improved convolutional block, proposed to enhance the backbone
network performance. AFFM is used for feature fusion, HARM is used for feature filtering and
enhancement. Detailed structure of AFFM and HARM are shown in Figures 2 and 3.

Figure 2. Architecture of Adjacent Feature Fusion Module (AFFM).
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Figure 3. Architecture of Hierarchical Attention Residual Module (HARM).

3.2. Improved Backbone Network

The network with codec structure based on U-Net and U-Net++ performs well on
various semantic segmentation tasks, and we introduce the U-Net++ into the CD task
because of the resemblance between the CD task and the segmentation task. Bi-temporal
remote sensing images usually contain many complicated feature information, and the
data have high intra-group variability and low inter-group variability [45], which makes it
extremely hard to differentiate between changed and unchanged areas in the CD process.
Using the dense skip connection mechanism of U-Net++ can better preserve detailed
information during feature extraction and avoid confounding effects. Compared with
the simple skip connection mechanism of U-Net, the dense skip connection mechanism
can avoid the semantic gap caused by long connections that span too large, thus making
the learning difficulty of the whole network much less. Given the specificity of the CD
task, we embed the Siamese network into the encoder stage of the backbone network.
A pair of bi-temporal remote sensing images are sent to two encoder branches to extract
image features, and the two branches share the same weight parameter. Using the same
convolutional branch for two different images to extract features, and activating weights at
the same location in the feature map, which makes the network to effectively distinguish
between changed and unchanged areas in subsequent processing.

As shown in Figure 1, the features extracted from two images by convolution blocks
of the same layer are concatenated at the channel level, and then concatenated with the
features on the decoder through the dense skip connection mechanism. For example,
the features F0,0

A ∈ RC×H×W and F0,0
B ∈ RC×H×W obtained from a pair of bi-temporal

images A,B processed by convolutional blocks X0,0
A and X0,0

B are first concatenated at the
channel level to form the bi-temporal feature F0,0 ∈ R2C×H×W , and then F0,0 is concatenated
with the feature F1,0

B ∈ RC×H×W output from convolutional block X1,0
B at the channel level

and fed to convolutional block X0,1 to generate the first stage feature F0,1 ∈ RC×H×W . Since
the pooling operation is included in each stage of the encoding operation to condense the
information of the features, F1,0

B is upsampled to comply with the concatnation specification
before the channel fusion operation with F0,0.

It is also worth saying that assuming that each node Xi,j of U-Net++ is called a convo-
lutional block, we modified the internal structure of the convolutional block. As shown in
Figure 1b, we designed the convolutional block as a residual structure [23] and introduced
the ACON activation function [46] in it, the modified convolutional block can adaptively
choose whether to activate specific neural nodes or not, effectively improving the overall
performance of the network. We call this convolutional block ACON-Relu Residual Con-
volutional Block (A-R). Let Fi,j ∈ RC×H×W be the output of A-R Xi,j, where i indicates the
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number layers of down-sampling layers and j indicates the number layers of up-sampling
layers, then the formula for Fi,j is as follows:

Res(·) = R(B(C(A(B(C(·))))) + C(·)) (1)

Fi,j =



M
(
Res

(
xi−1,j)) j = 0

Res
([

xi,0
A , xi,0

B , DC
(

xi+1,j−1)]) j = 1

Res
([

xi,0
A , xi,0

B ,
[

xi,k
]j−1

k=1
, DC

(
xi+1,j−1)]) j > 1

(2)

where the function Res(·) represents the overall operation of the A-R, R(·) represents the
Relu activation operation, B(·) represents the Batch Normalization operation, C(·) denotes
the convolutional operation, A(·) denotes the ACON activation operation, M(·) denotes
the max pooling down-sampling operation, DC(·) denotes the deconvolution up-sampling
operation, and [ , ] denotes the channel concatenation operation for the features in it. When
j = 0, it means that the input features are downsampled in the encoder stage to extract
features with higher-dimensional information, and when j > 0, it means that the features
between adjacent levels are fused to generate more complete features containing local detail
information and global semantic information.

In our proposed backbone network, the A-R in the encoder stage further deepens the
features by gradually expanding the number of channels of the features, and the A-R in the
decoder stage further condenses the features by gradually reducing the number of channels
of the features. The size of the features output from the A-R located at the same hierarchical
position is the same. The down-sampling operation halves the height and width of the
feature map and keeps the number of channels constant, and the up-sampling operation
doubles the height and width of the feature map and keeps the number of channels constant.
Table 1 lists the feature map size information for each A-R input and output of the whole
backbone network.

Table 1. Input and output size of the backbone network.

A-R
Size (Channel × Height × Width)

Input Output

X0,0
A 3 × 256 × 256 48 × 256 × 256

X0,0
B 3 × 256 × 256 48 × 256 × 256

X0,1 192 × 256 × 256 48 × 256 × 256

X0,2 240 × 256 × 256 48 × 256 × 256

X0,3 288 × 256 × 256 48 × 256 × 256

X0,4 336 × 256 × 256 48 × 256 × 256

X1,0
A 48 × 128 × 128 96 × 128 × 128

X1,0
B 48 × 128 × 128 96 × 128 × 128

X1,1 384 × 128 × 128 96 × 128 × 128

X1,2 480 × 128 × 128 96 × 128 × 128

X1,3 576 × 128 × 128 96 × 128 × 128
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Table 1. Cont.

A-R
Size (Channel × Height × Width)

Input Output

X2,0
A 96 × 64 × 64 192 × 64 × 64

X2,0
B 96 × 64 × 64 192 × 64 × 64

X2,1 768 × 64 × 64 192 × 64 × 64

X2,2 960 × 64 × 64 192 × 64 × 64

X3,0
A 192 × 32 × 32 384 × 32 × 32

X3,0
B 192 × 32 × 32 384 × 32 × 32

X3,1 1536 × 32 × 32 384 × 32 × 32

X4,0
B 384 × 16 × 16 768 × 16 × 16

Xi,j
A(B): i, j denote the i-th and j-th levels of the encoder and decoder, respectively, and A(B) denotes the processing

of the A(B)-temporal picture in Figure 1a.

3.3. Adjacent Feature Fusion Module

The advancement of remote sensing CD in recent years is to some extent due to
the research of researchers in various feature fusion strategies. However, many existing
feature fusion methods underestimate the significance of semantic association [47], ignore
the semantic differences between features when performing the integration of high-level
and low-level features, which can lead to irrelevant noise in the fused features and thus
impact the precision of the change map. To better solve computer vision tasks, we need
to make our final extracted features contain both local detail information and global
semantic information, and it is difficult to satisfy this requirement using only single-
level features output from deep networks. Considering this situation, we propose AFFM,
which innovatively uses the four level features derived from the backbone network for
feature fusion, and then passes them to the next module for further processing. AFFM
focuses on the complementary fusion between adjacent features, which achieves feature
complementarity and mutual spatial enhancement between adjacent features, greatly
reduces the overall learning difficulty of the network.

For N input feature maps F = { fi, i = 1, 2, ..., N}, AFFM will generate N fused feature
maps of the same shape Fr = { f r

i , i = 1, 2, ..., N}. As shown in Figure 2, AFFM first sums
the elements of adjacent features, after which the obtained preliminary fused features
are concatenated at the channel level with the original features, and finally the combined
features are output after feeding into the 1 × 1 convolutional transform channel. Since
the final output of the CD task is a binary change map, we think that the element-wise
summation operation in AFFM can effectively alleviate the coarseness of each layer of
features using the correlation between different layers of features, and the channel re-
fusion with the original features prevents the loss of effective features, and finally achieves
the effective fusion of details and semantic information of different layers of features.
The specific operation formula of AFFM is shown as follows:

f r
i =


C([ fi ⊕ fi+1, fi]) i = 1
C([ fi−1 ⊕ fi ⊕ fi+1, fi]) 1 < i < N
C([ fi−1 ⊕ fi, fi]) i = N

(3)

where C(·) denotes 1× 1 convolution,⊕ denotes element-wise summation, and [] denotes a
channel concatenation operation for the features in it. In short, AFFM first makes the initial
fusion of two or three adjacent features by element-wise summation, so that the features
focus more on the common part elements and complement the missing part elements, then
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performs channel fusion with the original features to prevent the loss of useful features,
and finally adjusts the channels after 1×1 convolution before outputting.

3.4. Hierarchical Attention Residual Module

The HARM is the key innovation and main component of HARNU-Net. It is re-
sponsible for finer filtering and reinforcement of the features output from AFFM. Most
attentional CD networks in the past have been obsessed with filtering and reinforcing fea-
tures at the feature level [30,42], inspired by Res2Net [48], as shown in Figure 3, we propose
HARM by reinforcing features at a finer scale. In the process of network transmission,
features contain a lot of low-dimensional and high-dimensional information, but not all
the information contained in features is conducive to the CD [47,49], and if the invalid
information in the features is not removed well in the CD process, it will exponentially grow
the difficulty of training the network [44]. Therefore, we introduce CBAM in the design
of HARM, which consists of a channel attention module (CAM) and a spatial attention
module (SAM) together.

Channel attention module: The core idea of this module is to produce a channel
attention map using the relationship between feature channels. We can use the channel
attention map to recalibrate the weights of the corresponding features at the channel level.
As shown in Figure 4, CAM first performs adaptive max pooling and adaptive average
pooling with output scale of 1, respectively, on the input features F ∈ RC×H×W to aggregate
spatial information, and this operation will yield two C-dimensional pooling features
Fmax1 ∈ RC×1×1 and Favg1 ∈ RC×1×1, which are then fed to a shared multilayer perceptron
(MLP), and the two features are output after element summation and Sigmoid activation to
generate the required channel attention map Mc ∈ RC×1×1. In short, the CAM is computed
as follows:

Mc(F) = σ(MLP(AvgPool(F))⊕MLP(MaxPool(F))) (4)

where F denotes the input features, ⊕ denotes the element-wise addition, σ denotes the
Sigmoid activation function, and the MLP weights are shared. Using the channel attention
map, the features can be refined at the channel level by multiplying the channel attention
map with the corresponding features, the effect of suppressing irrelevant channels and
strengthening relevant channels can be achieved, and the globally optimized features can
be obtained at the channel level.

σ
MaxPool

AvgPool

MLP

Channel Attention

MC

Input feature

Channel Attention Module

Element-wise Summation

σ Sigmoid activation function

C H WF   1 1

1

C

maxF  

1 1

1

C

avgF  

1 1C

cM  

1 1

1

C

mlpF  

1 1

2

C

mlpF  

Figure 4. Architecture of CAM.

Spatial attention module: The core idea of this module is to produce a spatial attention
map using the spatial association of the feature. Unlike channel attention, applying spatial
attention allows recalibrating the weights at the spatial level of the corresponding features.
As shown in Figure 5, SAM first performs maximum pooling and average pooling to the
input features F′ ∈ RC×H×W along the channel direction, and this operation will yield two
two-dimensional features Fmax2 ∈ R1×H×W and Favg2 ∈ R1×H×W , after which these two
feature maps are fed into a layer of convolution after concatenation at the channel level,
and finally activated by Sigmoid to obtain the desired spatial attention map Ms ∈ R1×H×W .
In short, the SAM is computed as follows:
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Ms
(

F′
)
= σ

(
f 7×7([AvgPool

(
F′
)
; MaxPool

(
F′
)]))

(5)

where F′ denotes the input features, [ ; ] denotes the channel concatenation, σ denotes the
Sigmoid activation function, and f 7×7 denotes the convolution operation with a convolution
kernel size of 7 × 7. The weight value of each pixel position can be adjusted by multiplying
the 2D features generated by the spatial attention module with the corresponding features,
and the spatial layer of the final output feature map will be adaptively tailored to fit the
task. In short, in the CD task, the position weights of the unchanged pixels of the SAM-
processed features will be weakened and the position weights of the changed pixels will be
strengthened, so that the network can be better suited to the needs of the CD task.

Channel-refined 

feature

[ MaxPool, AvgPool ]

conv 

layer

Spatial Attention

MS

Spatial Attention Module

σ

σ Sigmoid activation function

' C H WF  
1 H W

sM  

Figure 5. Architecture of SAM.

As shown in Figure 6, CBAM consists of CAM and SAM in order, not only tells the
network which channel location information and spatial location information to focus
on the features, but also suppresses or ignores irrelevant channel location information
and spatial location information, enhances the feature representation of the model at key
locations, and reduces the negative impact of redundant information on the model in
making decisions. This attention-based feature enhancement approach allows the network
to autonomously explore the optimal representation of the input features at the channel
and spatial levels, and the CBAM is calculated as follows:

CBAM(F) = Ms(Mc(F)⊗ F)⊗ (Mc(F)⊗ F) (6)

where F denotes the input features and ⊗ denotes the element-wise multiplication. Mc(F)
and Ms(F) denote the corresponding channel attention map and spatial attention map
generated based on the features F, respectively.

Channel Attention

Moudle Spatial 

Attention

Moudle

Convolutional Block Attention Module

Figure 6. Architecture of CBAM.

In HARM, we divide the input feature mapping F ∈ RC×H×W with C channels equally
into X feature mapping subsets at the channel level, denoted by Fs

i ∈ R C
X×H×W , where

i ∈ {1, 2, ..., X}. Each Fs
i has the same space size as F except that the channels become

C/X. We apply the same CBAM processing to each Fs
i , and with a residual structure to
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guarantee that the useful information in the original features is not easily and blindly
removed. The output produced by Fs

i after processing is denoted by Ys
i ∈ RC/X×H×W ,

where i ∈ {1, 2, ..., X}. Except for Fs
1 , all other Fs

i receive a subset of the feature mapping
processed in the previous layer as an extension of the information in that subset of the layer
before being processed by CBAM. After the enhancement process of all feature mapping
subsets is completed, we will concatenate X output features and the final output obtained
is represented by FR ∈ RC×H×W . The specific formula of HARM is as follows:

ys
i =


CBAM

(
Fs

i
)
⊕ Fs

i i = 1

CBAM
(

Fs
i ⊕

(
CBAM

(
Fs

i−1
)
⊕ Fs

i−1
))
⊕ Fs

i i > 1
(7)

FR = [ys
1, ys

2, . . . , ys
i ] i ∈ {1, 2, . . . , X} (8)

where CBAM (·) denotes the sequential channel and spatial enhancement of features, ⊕
denotes element-wise summation, and [] denotes the concatenation of feature mapping
subsets at the channel level. By the above operation, the output feature FR of HARM
contains the content of the change map after being finely processed. Through extensive
experiments, it is found that HARM performs best when the number of branches is 3,
i.e., X = 3.

3.5. Loss Funtion

Remote sensing images CD is a typical binary classification task, and applying cross-
entropy loss is a common practice for most binary classification tasks. However, in the
CD task, there is a serious disequilibrium among the number of changed pixels and
the unchanged pixels [50], and often the number of unchanged pixels is much greater
than the number of changed pixels, which leads to the fact that CD networks applying
general cross-entropy loss will seriously favor a certain class of pixels during the training
process [51], making it harder to update the network to the global optimum. Therefore,
more consideration is now given to applying weighted cross-entropy loss, which can better
balance the class imbalance problem in CD tasks by applying different weight values to the
classes. In addition, the dice coefficient loss, which is more applied in the medical image
segmentation field [52,53], can also weaken the impact caused by the category imbalance
problem better. Based on the above considerations, we choose to use the hybrid loss
function of Fang et al. [54] to optimize our network parameters in the training process. This
hybrid loss function is composed of both weighted cross-entropy loss and dice coefficient
loss. Formally, this loss function is determined by the equation:

L = Lwce + Ldice (9)

To describe the weighted cross-entropy loss in more detail, we consider the pixel
points in the predicted change map as a set Ŷ, which can be expressed as [54]:

Ŷ = {ŷ1, ŷ2, . . . , ŷk|k = 1, 2, . . . , H ×W} (10)

where ŷ1 denotes a pixel point in Ŷ, H and W denote the height and width of Ŷ , consistent
with the size of the bi-temporal image pair of the input network. The weighted cross-
entropy is expressed in detail as [54]:

Lwce =
1

H ×W

H×W

∑
k=1

weight [ class ] ·
(

log

(
exp(ŷ[k][ class ])

∑1
l=0 exp(ŷ[k][l])

))
(11)

the value of “class” is 0 or 1, which corresponds to unchanged and changed pixels, respec-
tively. In addition, the definition of dice coefficient loss can be expressed as follows [54]:
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Ldice = 1− 2 ·Y · softmax(Ŷ)
Y + softmax(Ŷ)

(12)

where Y denotes the ground truth.

4. Experiment and Analysis
4.1. Datasets and Pre-Processing

Training deep CD models requires a lot of labeled images, and large and challenging
CD datasets are indispensable for the sake of accurately proving the effectiveness of the
model. To evaluate the reliability and validity of our model, we performed a sequence of
experiments on three well-known and frequently used CD datasets. These three datasets
and the pre-processing are described in detail below.

(1) Change Detection Dataset (CDD) [55]: The dataset contains 11 bi-temporal image
pairs obtained from Google Earth (DigitalGlobe) with seasonal changes, of which seven
image pairs have a size of 4725 × 2700 pixels and four image pairs have a size of 1900 ×
1000 pixels with a resolution of 0.03-1 m/pixel. As shown in Figure 7, the change objects
include various size objects, such as buildings, roads, cars, etc. We used 16,000 image pairs
of size 256 × 256 generated from these 11 bi-temporal image pairs by cropping and rotating
as data for the experiments, of which 10,000 pairs were devoted to training, 3000 pairs to
validation, and 3000 pairs to testing.

(2) Building Change Detection Dataset (BCDD) [56]: The dataset contains 1 bi-temporal
image pair of size 32,507× 15,354 pixels acquired by QuickBird satellite, with the acquisition
location in Christchurch, New Zealand. In the study area included in this aerial image pair,
a magnitude 6.3 earthquake occurred in February 2011, so there was a large growth of large
sparse buildings in the following years, bi-temporal image pairs were collected before and
after the earthquakes. The authors downsampled the resolution from 0.075 m/pixel to 0.3
m/pixel to facilitate the study. As shown in Figure 7, We cropped this image pair without
overlap into 7434 image pairs of size 256 × 256 and randomly assigned these image pairs
to the training, validation, and test sets in a ratio of 8:1:1.

(3) LEarning, VIsion and Remote sensing-Change Detection (LEVIR-CD) [29]: The
dataset contains 637 pairs of images collected by the authors through Google Earth API in
20 different areas of several cities in Texas, USA, which have a size of 1024× 1024 pixels and
a resolution of 0.5 m/pixel. As shown in Figure 7, LEVIR-CD focuses on small and dense
building variations and includes many pseudo-changes caused by season and light, which
helps to validate the reliability of the model. For the experiments, considering the limitation
of computer GPU memory, we cropped the original image pairs into 10,192 non-overlapping
image pairs of size 256 × 256, and used 7120 pairs were devoted to training, 2048 pairs to
validation, and 1024 pairs to testing according to the random allocation principle.

Detailed information on the above three CD datasets can be found in Table 2. We also
collected the number of changed and unchanged pixels contained in the three datasets
and calculated the ratio, and it can be seen that the ratio between the two types is very
disparate, the phenomenon is common in the CD datasets.

Table 2. Main indicators of the three dataset we used.

Datasets Resolution Size
Number of Pixels

Change Objects
Number of Samples

Changed Unchanged Ratio Train Validation Test

CDD 0.03–1 m/pixel 256 × 256 134,068,750 914,376,178 1:6.82 buildings,
roads, cars, etc. 10,000 3000 3000

BCDD 0.3 m/pixel 256 × 256 21,352,815 477,759,663 1:22.37 Sparse large
buildings 5948 743 743

LEVIR-CD 0.5 m/pixel 256 × 256 30,913,975 637,028,937 1:20.61 Dense small
buildings 7120 1024 2048
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T1 T2 GTT1 T2 GT T1 T2 GT

Figure 7. Illustration of samples from three dataset. The samples from left to right are in order
from CDD, BCDD,LEVIR-CD. T1 and T2 indicate the bi-temporal image pairs. GT indicates the
ground truth.

4.2. Evaluation Metrics and Implementation Details

To estimate the capability of our proposed HARNU-Net, we use five evaluation
metrics, Precision (Pre), Recall, F1-Score (F1), Intersection over Union (IoU) and Overall
Accuracy (OA), all in the range of [0, 1], with larger values denoting higher performance..
The expressions of these five metrics are as follows:

Pre =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2 Pre ·Recall
Pre+Recall

(15)

IoU =
TP

TP + FP + FN
(16)

OA =
TP + TN

TP + TN + FP + FN
(17)

where TP, FP, TN, FN denote true positive, false positive, true negative and false negative,
respectively. In the CD task, the fewer false detections in the predicted results, the higher
the Pre; the fewer missed results, the higher the Recall, but it is difficult to achieve both
high Pre and high Recall, and OA indicates the overall classification correctness. Both F1
and IoU are comprehensive metrics for evaluating the CD model, where F1 balances the
conflict by considering both Pre and Recall [56], and IoU is the ratio of the intersection of
the predicted result and ground truth to the concatenated set [57]. Higher values of F1 and
IoU indicate better overall performance of the model.

Our proposed model is realized under the pytorch framework. All experiments we
performed were made on an Intel Xeon Gold 5120 @ 2.20 GHz and an NVIDIA TITAN RTX
(24 GB). Considering the limitation of GPU memory, in the process of model training, batch
size is fixed to 12, Adam [58] is applied as the optimizer, the initial learning rate is set to
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0.001 and decreases by half after every 10 epochs. In order to prevent over fitting, epoch is
set to 100. The weight values of the network are initialized by Kaiming normalization [59].

4.3. Analysis of Experimental Results
4.3.1. Comparison Methods

To verify the superior performance of our proposed methods, seven state-of-the-art
CD methods were chosen for comparison on three datasets, and a brief description of the
selected methods is given below:

(1) FC-EF [36]: The bi-temporal images are sent to the network as one image after
early fusion, and the overall structure follows the idea of FCN with a four skip connection
structure. The first layer of the network has 16 output channels, and the number of
channels is doubled layer by layer in the encoder stage and then halved layer by layer in
the decoder stage.

(2) FC-Siam-conc [36]: The encoder of the FCN network is transformed into a Siamese
structure, and the two branches of the encoder stage share weights. The features of the two
encoder stages are connected to the features of the decoder through four skip connection to
fully fuse the features at different levels.The rest of the structure is the same as FC-EF.

(3) FC-Siam-diff [36]: The structure is the same as that of FC-Siam-conc, with the
difference that the features connected to the decoder features are the differential features
obtained by the difference of the two encoder features.Therefore, this network has one third
less channels than FC-Siam-conc for the decoder at the same stage.

(4) CDNet [60]: A single-stream FCN network architecture consisting of four systolic
blocks and four extension blocks with Soft-max classifier. The network is structured as a
conventional codec structure with skip connection to efficiently combine coarse and fine
information. Notably, the network used a convolution operation with a kernel size of 7 to
extract features, and always kept the channels at 64 in the middle layer of the network.

(5) STANet [29]: Two Resnet18-based branching networks are used for extracting
the features of bi-temporal image pairs, then the two features are fed into the spatial-
temporal attention module to generate spatial-temporal relationship features used to
describe contextual features, and finally the output features are fed into the metric module
to generate the final change map.

(6) BIT [61]: Proposed a bi-temporal images transformer(BIT) to effectively model the
spatial-temporal domain within the context, and pioneered the introduction of transformer
into the field of CD. The network replaces the last convolution stage of ResNet18 with BIT,
after which refined features are fed to the prediction head to generate change maps.

(7) SNUNet [54]: Uses a densely connected Siamese nested U-shape network to
effectively reduce the loss of deep localization information, and designs an integrated
channel attention module to further optimize the processing of features.

The main difference between our method and the above seven methods is that we
fully use the output features from the four stages of Nested U-Net, while the other methods
only use the features output from the last decoder, and on top of that we apply HARM to
the four features for a fine-grained feature-enhanced representation, all these operations
facilitate us to output a better change map.

Table 3 summarizes the main features of these seven models. For the sake of experi-
mental fairness, we use a set of public codes to implement the above CD models, and all
experiments are conducted in the same experimental environment with loss functions
and batch sizes set as described in the original literature. It is notable that we choose
SNUNet/48, the best performing SNUNet network, as the comparison method.
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Table 3. Key characteristics of comparative methods.

Models Year Architecture Main Strategy Loss Function

FC-EF 2018 Single-stream, FCN Skip connection, multi-level fusion WSCE loss 1

FC-Siam-conc 2018 Siamese, FCN Siamese-concatenation, skip connection,
multi-level fusion WSCE loss

FC-Siam-diff 2018 Siamese, FCN Siamese-difference, skip connection,
multi-level fusion WSCE loss

CDNet 2018 Single-stream, FCN Stacking contraction, expansion blocks Weighted cross-entropy loss
STANet 2020 Siamese, ResNet BAM,PAM Batch-balanced contrastive loss

BIT 2021 Siamese, ResNet Bi-temporal image transformer Cross-entropy loss
SNUNet 2021 Siamese, UNet++ Densely connected, ECAM WSCE loss, dice loss

1 represent Weighted Softmax Cross-Entropy loss.

4.3.2. Analysis Experiments on CDD

Quantitative Analysis : To assess the superiority of our proposed method, we did a
comparison with seven other CD methods on the CDD dataset, and the main metrics F1
and IoU showed an improvement of 0.43% to 41.73% and 0.82% to 56.18%, respectively,
and Table 4 presents the results of the quantitative comparison. Clearly, our HARNU-Net
achieves the best results in all metrics, shows the superior performance of our model.
In specific analysis, the earlier FC-EF, FC-Siam-conc and FC-Siam-diff are no longer adapt-
able to scenarios with more complex changing objects due to their simpler structures and
extracting features only by convolution operation. From the results, it can be seen that these
three methods are seriously unbalanced in terms of Pre and Recall, resulting in poor results.
Similarly, CDNet also suffers from this problem and thus leads to low metrics. STANet
greatly reduces the missed detection rate of changed objects with its spatio-temporal atten-
tion module, but it also incorrectly identifies many unchanged regions as changed regions
resulting in low Pre and thus affecting the main metrics. Both BIT and SNUNet have good
metrics, but their IoU metrics are low due to problems such as too coarse handling of
features. Our HARNU-Net actively avoids the above errors and thus performs well in
dealing with scenarios with multiple classes of changed objects.

Table 4. Quantitative results on the three dataset. The best two results are in bold and underline. All
scores are expressed as a percentage (%).

Model
CDD BCDD LEVIR-CD

Pre/Recall/F1/IoU/OA Pre/Recall/F1/IoU/OA Pre/Recall/F1/IoU/OA

FC-EF 76.56/43.49/55.47/38.38/91.76 82.28/70.66/76.03/61.33/97.92 82.27/66.28/73.41/58.00/97.55
FC-Siam-conc 88.00/53.58/66.61/49.93/93.66 40.09/73.84/51.97/35.11/93.63 86.81/67.66/76.05/61.36/97.83
FC-Siam-diff 88.49/51.53/65.14/48.30/93.49 38.82/71.80/50.40/33.69/93.40 86.55/74.38/80.00/66.68/98.11

CDNet 91.93/84.87/88.26/78.98/97.34 92.16 /83.18/87.44/77.68/98.88 88.38/85.08/86.70/76.52/98.67
STANet 88.97/94.31/91.56/84.44/97.95 91.25/86.18/88.64/79.61/98.97 80.99/91.21/85.79/75.12/98.46

BIT 95.86/94.59/95.22/90.88/98.88 86.07/85.61/85.84/75.19/98.68 91.95 /88.57/90.23/82.19/99.02
SNUNet 96.82/96.72/96.77/93.74/99.24 88.35/87.80/88.07/78.69/98.89 91.66/88.48/90.04/81.89/99.00

Ours 97.10/97.30/97.20/94.56/99.34 92.70/88.72/90.67/82.93/99.15 91.23/89.37/90.29/82.30/99.02

Visual Analysis: To contrast the results more visually, we list the visualization results
of eight CD methods, including our method, in Figure 8. To more fully assess the capabilities
of each model, we chose six different scenarios to test the models, specifically sparse cars
(first row), irregular fine roads (second row), large area changes with fine roads (third row),
irregular buildings (fourth row), large buildings with fine roads (fifth row), and dense cars
(sixth row). The visualization results show that our results give the best visual results,
especially excellent on fine targets and irregular targets, which can better avoid the miss
detection of small changed areas and present the boundaries of irregular targets completely.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 8. Visualization results on the CDD dataset. (a) T1 images. (b) T2 images. (c) Ground Truth.
(d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet. (i) BIT. (j) SNUNet. (k) Ours.
White indicates correctly detected changed areas, black indicates correctly detected unchanged areas,
red indicates incorrectly detected unchanged areas as changed areas, and green indicates unpredicted
changed areas.

4.3.3. Analysis Experiments on BCDD

Quantitative Analysis: The results of the presentation of our method on the BCDD
dataset compared with the other seven methods in Table 4. It is clear that our method
yields the best results in all metrics, with improvements of 2.03% to 40.27% and 3.32% to
49.24% in the main metrics F1 and IoU, respectively, which are mainly attributed to the
finer-grained enhancement of the features by HARM. From the results we can see that
the FCN-based FC-EF, FC-Siam-conc and FC-Siam-diff perform poorly, indicating that the
network without the deeply improved FCN structure is no longer well adapted to today’s
CD tasks. The CDNet achieves the second best result in terms of Pre, but also misses many
pixels resulting in a low Recall. STANet’s F1 achieves the second best result, which may be
attributed to the fact that its PAM focuses more on multi-scale information. SNUNet has a
good balance among the metrics, but its lack of focus on feature enhancement in the spatial
domain. Although our model yields the best results on all metrics, the IoU is only 82.93%,
which indicates that the BCDD dataset is still challenging.

Visual Analysis: The BCDD dataset mainly concerns the variation in large sparse
buildings, but several different types of changed buildings were also chosen to fully assess
the capabilities of the model under various conditions, as shown in Figure 9 for visual
analysis. The dense regular building (third row) and the small independent building (fourth
row) were selected specifically to test the model’s ability to handle regular boundaries
and detect small independent targets. From the results of the first row, it can be seen that
the three FCN-based structures FC-EF, FC-Siam-conc and FC-Siam-diff fail to adapt to
the changed scenarios of large buildings, showing problems such as pretzel noise and
incorrect detection of roof texture; CDNet can roughly detect the changes of buildings,
but the boundary of its prediction map is very uneven; STANet and SNUNet also have
different degrees of omission and misdetection. In particular, the visualization result in
the fourth row, the roof of the changed building is almost indistinguishable from the
neighboring roads due to the effect of lighting when shooting, so it is a great challenge
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for the performance of the model. All models except ours fail to detect the changing
contours of small independent buildings well, which further illustrates the superiority of
HARNU-Net performance.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 9. Visualization results on the BCDD dataset. (a) T1 images. (b) T2 images. (c) Ground Truth.
(d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet. (i) BIT. (j) SNUNet. (k) Ours.
White indicates correctly detected changed areas, black indicates correctly detected unchanged areas,
red indicates incorrectly detected unchanged areas as changed areas, and green indicates unpredicted
changed areas.

4.3.4. Analysis Experiments on LEVIR-CD

Quantitative Analysis: We compared our method with seven other methods on the
LEVIR-CD dataset. These methods include STANet, and the LEVIR-CD dataset was
proposed by the very authors of STANet in [29]. As observed from Table 4, although our
model does not achieve optimal results on Pre and Recall, the main metrics F1 and IoU
outperform the other methods and have an improvement of 0.06% to 16.88% and 0.11% to
24.3%, respectively. STANet achieves the best results on the Recall, but also has more false
detections as a result, as shown by the low Pre. BIT achieves the best result in Pre and the
second best result in F1, which should be attributed to the superiority of its transformer
module in handling dense small targets, and BIT’s metrics are extremely close to ours.
HARNU-Net takes full consideration of the fusion of multi-scale features, and with the
fine enhancement of features by HARM, it shows a superior performance in CD of dense
small targets.

Visual Analysis: To show the superiority of our model for the small target detection
and dense target boundary delineation, we visualized and analyzed the results of these
eight models, as shown in Figure 10. Again, we select some independent small target (first
and fourth rows) and sparse small target (fifth and sixth rows) samples considering the
comprehensiveness of the test samples. Obviously, the results in the first and fourth rows
show that all methods except ours are unsuccessful in detecting changes in independent
small targets, and our method also delineates regular change boundaries for small targets.
The visualization result in the second and third rows demonstrate that although most
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methods can detect changes in dense buildings, they all have some problems in boundary
delineation. In contrast to other methods, HARNU-Net has more clear and more precise
boundaries. Although BIT and SNUNet perform well in some scenes, they still have
misdetection in the face of pseudo-change caused by illumination, so their performance in
terms of robustness still falls short of our method.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 10. Visualization results on the LEVIR-CD dataset. (a) T1 images. (b) T2 images. (c) Ground
Truth. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet. (i) BIT. (j) SNUNet.
(k) Ours. White indicates correctly detected changed areas, black indicates correctly detected un-
changed areas, red indicates incorrectly detected unchanged areas as changed areas, and green
indicates unpredicted changed areas.

4.4. Ablation Study

To assess the usefulness of each module proposed in our paper, we conducted a
sequence of ablation experiments on the CDD dataset. Specifically, we use the unmodified
U-Net++ network as the baseline and only the output of X0,4 as the source of the final
results; the other ablation experiments are baseline+A-R, baseline+AFFM, baseline+HARM,
baseline+AFFM+HARM, and baseline+A-R+AFFM+HARM. To show the role of each
module more visually, we visualize the results of the six experiments in Figure 11. We can
see that the change maps presented in column d are generated by baseline, and these change
maps have many problems such as missing change regions and small target omission
detection, which are extremely poor visual effects. Compared with baseline, the baseline+
A-R method has been able to initially detect the contours of some small road changes and
fill in some of the missing change regions, which is due to our deep modification of the
convolutional block of U-Net++, and further indicates that our proposed A-R significantly
enhances the U-Net++ performance. The baseline+AFFM method effectively fuses the four
levels of features output by backbone under the role of AFFM, so that the network has the
ability to exploit both high- and low-level information and feature contextual association,
and has been able to detect most of the changed regions, but there is still the problem of
discontinuous changed regions. From column g we can see that the visual effect of the
change map output by the baseline+HARM method has been basically the same as that of
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Ground Truth, but there is still the problem of unclear boundary when detecting some small
changed objects. Therefore, baseline+AFFM+HARM and baseline+A-R +AFFM+HARM
aim to solve the problems of discontinuous changed regions and unclear boundaries, etc.
From the results in columns h and i, we can see that the change map is already very
similar to the visual effect of Ground Truth, the detection of fine roads is more accurate
and continuous, and the boundary delineation of changed regions is also more accurate.
We also compare the attentional heat map generated by the baseline model UNet++ and
our model HARNU-Net, as shown in Figure 12. It can be seen that our model focuses
more accurately on the real change region than the baseline, effectively eliminating the
effect of pseudo-change. By evaluating the visualization results of the above methods,
the usefulness of each module proposed in this paper is effectively illustrated.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11. Visualization results of ablation experiments performed on CDD dataset. (a) T1 im-
ages. (b) T2 images. (c) Ground Truth. (d) Baseline. (e) Baseline + A-R. (f) Baseline + AFFM.
(g) Baseline + HARM. (h) Baseline + AFFM + HARM. (i) Baseline + A-R + AFFM + HARM. White
indicates the predicted change area, black indicates the predicted unchanged area.

In addition, we also counted and compared the evaluation metrics of these experiments
in Table 5. The rightmost column indicates the speed of change map generation for the CDD
test set when we applied different methods on a single NVIDIA Titan RTX. Comparing with
baseline, the other five experiments have 0.45% to 4.29% and 0.78% to 7.79% improvement
in the main metrics F1 and IoU, respectively. In Table 5, after improving or adding any of
the modules, all metrics have corresponding improvements. After adding all modules to
the baseline to form our HARNU-Net, F1 and IoU are improved by a maximum of 4.29%
and 7.79%, respectively, which illustrates the innovation and effectiveness of our proposed
three modules. Although our model achieves the best evaluation metrics, it is inferior in
terms of visualization speed, the shortcoming that will be the focus of our subsequent
research. We show a line graph of the validation results F1 for each ablation experiment,
as shown in Figure 13. We can see that after about the 20th epoch, each experiment performs
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better than the baseline (black curve), and the validation results for our “complete body”
(red curve) performs much better than the baseline.

(a) (b) (c) (d) (e)

Figure 12. Comparison of attentional heat maps before and after baseline model improvement. (a) T1
image, (b) T2 image, (c) ground truth, (d) attentional heat map generated by the baseline model
UNet++, (e) attentional heat map generated by HARNU-Net.

Table 5. Ablation experiments of the modules in our model on the CDD dataset and the speed
of change map generation. The highest score is marked in bold. The five evaluation metrics are
expressed in percentage (%).

Baseline A-R AFFM HARM
CDD

Pre Recall F1 IoU OA Sheets/Sec.

X 94.99 90.93 92.91 86.77 98.36 41.10
X X 94.77 92.00 93.36 87.55 98.46 21.28
X X 95.32 93.31 94.31 89.22 98.67 38.96
X X 96.70 96.66 96.68 93.57 99.22 29.70
X X X 96.94 97.06 97.00 94.17 99.29 26.41
X X X X 97.10 97.30 97.20 94.56 99.34 18.40

X indicates that the method is used in this experiment.
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Figure 13. Validation results F1 of ablation experiments on CDD dataset. Smaller rectangular boxes
show a clearer result.

4.5. Analysis of the Role of HARM

As our main innovation and a key component of HARNU-Net, we have made a
detailed comparison and research on HARM to elaborate the rationality and usefulness
of HARM in detail. Specifically, we compared HARM with several popular attention
modules, studied the rationality of the hierarchical structure in HARM, and tested the effect
of HARM acting on other networks. The specific experimental analysis is shown below.

4.5.1. Attention Module Comparison

To investigate the importance of HARM for HARNU-Net, we compare HARM with
several popular attention modules, namely CAM [44], SAM [44], CBAM [44], and SE [62].
We insert these attention modules into HARNU-Net to replace HARM, keeping the other
structures and various hyperparameters intact, in order to compare which attention module
contributes more to network. As observed from Table 6, the method applying HARM has
0.93% to 2.83% and 1.74% to 5.21% higher F1 and IoU, respectively, than the other methods.
This confirms that our HARM is more reasonable than the direct application of various
types of attention modules. With the help of HARM, our HARNU-Net can significantly
overcome the interference of various types of pseudo-change and accurately capture the
true position of the changed objects.

Table 6. Ablation experiments performed on the CDD dataset applying different attention modules
to our model. The highest score is marked in bold. All scores are expressed as a percentage (%).

CDD

Pre Recall F1 IoU OA

CAM 95.17 93.58 94.37 89.35 98.68
SAM 95.5 94.01 94.75 90.02 98.77

CBAM 96.18 94.6 95.38 91.17 98.92
SE 96.71 95.84 96.27 92.82 99.13

HARM 97.1 97.3 97.2 94.56 99.34
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4.5.2. Rationality of the Hierarchical Structure

To validate the rationality of the hierarchical structure in HARM, we validated five
branching schemes with 1, 2, 3, 4, and 6 branches on the BCDD dataset. Results presented
in Table 7 indicate that the optimal performance is obtained when the number of branches
is 3, after which the performance gradually decreases as the number of branches increases.
However, multiple branches always outperforms single branches, which indicates that the
transfer and interaction of information between hierarchies is contributing in enhancing
the capability of HARM. The possible reason the performance starts to degrade after the
number of branches reaches 3 is that the number of channels of features is fixed and
limited, and each branch contains less channel information as the number of branches
increases, which can cause the initial branches to be over-enhanced during the transfer of
the hierarchy, resulting in the loss or distortion of useful information. Considering that
a multi-branch module limited by the hierarchy would slow down the model, we only
conducted experiments containing up to six branches. It was finally concluded that the
best trade-off between the number of branches and the number of channels was achieved
at a branch count of 3, resulting in the best performance. We also show a line graph of the
validation results F1 for the model with different branches of HARM, as shown in Figure 14.
The black curve represents the single-branch scheme, which always has lower validation
results than the multi-branch scheme, where the red curve represents the best validation
results for the three-branch scheme.

Figure 14. Validation results F1 for different branches of HARM on the BCDD dataset. Smaller
rectangular boxes show a clearer result.
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Table 7. Ablation Experiment of rationality analysis of the hierarchical structure in HARM on the
BCDD dataset. The highest score is marked in bold. All scores are expressed as a percentage (%).

HARM_ Branch
BCDD

Pre Recall F1 IoU OA

1 88.87 84.94 86.86 76.77 98.8
2 90.64 86.08 88.3 79.05 98.94
3 92.7 88.72 90.67 82.93 99.15
4 86.22 88.77 87.47 77.75 98.81
6 89.92 86.1 87.97 78.53 98.9

4.5.3. Validity of HARM

To verify the effectiveness of HARM, we added HARM to three classical CD networks
derived from FCN variants, FC-EF, FC-Siam-conc and FC-Siam-diff, and did experiments
on the LEVIR-CD dataset for comparison with the original networks. From Figure 15 we
can see that FC-EF increases F1 by 3.10% and IoU by 3.95% after adding HARM; FC-Siam-
conc increases F1 by 2.27% and IoU by 3.01% after adding HARM; FC-Siam-diff increases
F1 by 2.14% and IoU increased by 3.01% after adding HARM. This confirms that HARM
can significantly enhance the performance of the CD network and help the network capture
more changed objects. We further recognize the contribution of the hierarchical structure
to HARM.

Figure 15. Ablation experiments performed on the LEVIR-CD dataset applying HARM to other
models. All scores are expressed as a percentage (%).

5. Conclusions

In this paper, we proposed a Hierarchical Attention Residual Nested U-Net (HARNU-
Net) for remote sensing images CD. To enhance the capacity of the backbone network
U-Net++, we proposed A-R by remodeling its convolutional blocks, and A-R helped the
backbone network replenish the missing part of information in feature extraction. Mean-
while, in order to enhance the fusion of features at all levels, we used AFFM to fuse the
features from the backbone network according to the adjacent strategy, which effectively
realized the mutual enhancement between feature contexts. In addition, to strengthen the
feature characterization at finer granularity, we proposed HARM to achieve the elimination
of invalid information of features at the channel and spatial dimensions at a finer granu-
larity space, which provided the output of change maps with better visual effects. In our
experiments, we compared HARNU-Net with seven other state-of-the-art CD methods
on three CD datasets, and our method yielded the best results in terms of metrics and
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visualization results. Finally, we validated the usefulness of each module by ablation
experiments. However, in our study, we found that our model has a disadvantage in terms
of speed, so in the subsequent work our research focus will be on the implementation of
model lightweighting and high-speed.
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