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Abstract: Trends for the digital transformation of metrology and regulation of metrology through
IT have some keywords in common with the main properties of the blockchain, such as traceability,
immutability, and machine-readable documents. The possible applicability of the blockchain as an in-
novative IT solution for metrology regulation is known in the scientific community. Still, blockchain
implementation must consider the entire metrology pyramid—the technical aspects and the le-
gal framework intrinsic to metrology. This is also valid for possible IoT blockchain applications.
In resolving the issues, this paper applies a bottom-up approach, starting from IoT devices analyzed
as oracles and building up to the sole definition of measurement units, thereby discussing tech-
nical aspects concerning relevant standardization documents. The resulting trust model concept
encompasses the vertical and horizontal traceability of the measurement results (oracle data), where
normative standards and legal requirements are crucial for building trust. Conclusively, for practical
implementations, it will be necessary to analyze blockchain properties and applicability with a view
to the standard requirements, as shown for WELMEC.

Keywords: blockchain; IoT; metrology

1. Introduction

Blockchain as a technology lays a foundation for Web 3.0, mainly due to its distributed
nature of decision making and verifying, i.e., making any intermediaries or authorities
obsolete. To establish trust in blockchain technology, it is necessary to ensure the tripod:
security, authenticity, and integrity. Once the data are on the internet, we can, with rea-
sonable certainty, be sure that the tripod is strong and secure in the case of the blockchain.
Namely, the blockchain is a growing list of records (blocks) that are securely linked to-
gether: each block contains a cryptographic hash of the previous block, a timestamp, and
transaction data, as shown in Figure 1. Consequently, the data in any given block cannot be
tampered with without altering all subsequent blocks. Of course, it is doable, but various
consensus mechanisms are defined to make it too risky and unprofitable [1,2].

To interact with blockchain in a secure way, public-key (asymmetric) cryptography
is used. For example, a user publishes his public key to expose himself on the blockchain
for interaction with other users, e.g., expecting to receive a cryptocurrency payment.
The paying user makes a transaction using the public key as the address. The receiving
user can access those assets using his private key only, which is unknown to the public.

Thus, the blockchain technology itself tackles those issues mainly successfully, but
there is a critical weakness of the starting point in the case of IoT applications—to establish
trust in data measured by IoT devices, or said in blockchain terminology, to verify offline
data collected through so-called hardware oracles. Namely, as emphasized in [3], a recent
systematic literature review on the subject, less than 10% underlined the limitations of the
oracle problem. In a more detailed state-of-the-art analysis, we have made an overview of
relevant references, as shown in Appendix A.
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This paper’s goal is to tackle the issue of hardware oracles, with emphasis on a holistic
approach typical for metrology hierarchy, starting from the comparison and synergy of
blockchain technology and the digital transformation of metrology in Section 2. Section 3
shows oracle types and their relevance for IoT applications. This paper’s main contribution
is presented in Section 3, where we show oracle peculiarities for IoT blockchain applications,
and in Section 4, which defines the trust model concept for IoT blockchain, starting from the
IoT device level, where we analyze the possibility of implementing a WELMEC standard
using the blockchain, and go through levels of metrology hierarchy up to the sole definition
of the measurement unit. This paper, in general, shows how to integrate IoT architecture
into the blockchain (and vice versa), but according to the already existing and globally
accepted metrology hierarchy. Section 5 summarizes the main conclusions.

2. Blockchain as a Technical Solution for the Digital Transformation of Metrology

If we go back to basics and look beyond the buzzwords, the oracle problem boils
down to the problem of trust in measured physical quantity—a problem well known for
centuries and targeted by metrology. Modern metrology as a scientific discipline has its
roots in Metre Convention established in 1795. The following important years were 1960,
the year of the creation of the International System of Units (SI), and 2019, when four SI
base units were redefined.

In all these years, the master premise for establishing trust in measurement results
was (metrological) traceability—the property of a measurement result whereby the result
can be related to a reference through a documented unbroken chain of calibrations, each
contributing to the measurement uncertainty [4,5].

To establish trust in the data chain from an IoT device through a communication
channel to the user, we can apply the same metrological principles and rely on well-defined
metrology standards and procedures in doing so. It is a lucky coincidence, or, more
accurately, a consequence of technological development, especially in the IT domain, that
metrology is going through the process of digital transformation itself [6–8].

According to [9], the digital transformation of metrology should provide technical
solutions to the following trends:

- The move to an increasingly paperless world, including reduced use of paper money;
- Continued introduction of digitization in all areas;
- The redefinition of the SI being likely to lead to increased availability of intrinsic standards;
- The IoT leading to increased size and complexity in measuring systems, with a prolif-

eration of sensors; and
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- Artificial intelligence becoming an increasingly important feature in the software of
measuring instruments.

According to [9], the digital transformation of metrology requires a holistic approach
that includes all relevant aspects and activities—(re)calibration, (re)testing, (re)certification,
(re)verification/inspection, market surveillance, accreditation, and standardization—and
this holistic approach should be applied to IoT-related challenges as well in order to
establish trust in IoT data and widen IoT applicability and interoperability. Thereby, the so-
called FAIR+T approach is recommended for the data—data should be: findable, accessible,
interoperable, re-usable, and traceable.

Regarding the blockchain IoT applications, there are numerous technical solutions
discussed [10,11], also including possible IIoT applications [12]. Thereby, it seems that
blockchain technology has needed properties for the FAIR+T approach, as shown in Table 1,
to answer the most technical challenges of digital transformation of metrology.

Table 1. Blockchain as an answer for digital representation in metrology processes.

Requirements for Digital Representation in Metrology
Processes [5,9] Blockchain Properties Recommendations/Possible Issues

Contain all relevant information for conformity assessment,
verification, market surveillance in a machine-readable way Data comprised

in transactions

The amount of data could be a
problem. It is needed to use/store
data in databases outside the
blockchain

Contain all relevant information for customers to gain trust
and confidence in the products and quality measures

Know the relevant standards and regulations, and provide
machine-readable information about it

Blockchain uses
machine-readable
information only

It is necessary to make relevant
standards and regulations also
machine-readable

Provide machine-readable interfaces for users and
manufacturers to enable “smart quality assurance”

-
Combine machine-readable documents and certificates,
enable automation of digital QI processes

Be secured and validated to provide access to information
only to eligible parties

Blockchain uses asymmetric
cryptography to grant access
to users

To limit who can have access, a
private blockchain network is
recommended [13–15]

Not requested, but it could be an additional benefit

Smart contracts embed
terms and conditions of a
contract between two or
more parties [16–18]

Automated decision making and
recording of the decision on
the blockchain

Although not requested by digital transformation, there are also smart contracts, as
an additional inherent mechanism in the blockchain from which measurement traceabil-
ity could profit. Smart contracts were first introduced and popularized mainly through
Ethereum [16,17] within the blockchain boom. Smart contracts are on blockchain-distributed
computer programs, which are executed automatically when the defined terms and condi-
tions are fulfilled.

This functionality is beneficial for numerous different areas [18,19], but the literal
understanding of “smart contracts” as “contracts” is problematic because, in the case of a
dispute, courts might rely on the underlying intent of the parties rather than the written
code [18]. However, in metrology, smart contracts could be used for automated decision
making, e.g., about (un)successful calibration process of an IoT device, based on exact
values with clear thresholds, and for recording the decision on the blockchain in the form
of a digital calibration certificate (DCC) [20,21]. In doing so, the trust in measured values,
i.e., in oracles (IoT devices) as inputs for smart contracts has a crucial role.
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3. Oracle Types and Relevance for IoT Applications

The needed holistic approach is imperative for applying blockchain to the whole
metrology pyramid. Because the measurement results are the foundation of the pyramid,
in analyzing the applicability of blockchain, we will take a bottom-up approach, i.e., start
with the IoT devices as measuring instruments (MI) and work up the pyramid. Thereby,
we will follow the hierarchy, i.e., the first three levels, defined in [22], as shown in Figure 2.
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According to [22], there are general rules for establishing hierarchy schemes for mea-
suring instruments. The primary purpose of these hierarchies is to establish trust in mea-
surement results and consequently in products and services based on them. This should
also be the priority for IoT devices as blockchain oracles.

The problem of confidence in the measured results at the level of IoT devices within
blockchain technology comes down to the so-called oracle problem [23,24]. Therefore, the
terms “oracle” and “IoT device” will be used interchangeably.

In the blockchain ecosystem, oracles are trustable entities that feed the blockchain
network with information from the external world. In the context of metrology, the oracles
are IoT devices connected to the blockchain on one side and compliant with the metrology
regulations on the other [24].

In general, oracles take on several key functions [25], but in the case of metrology/IoT
applications, the most relevant are:

• Monitoring the blockchain network to check for incoming user or smart contract
requests for measured data.
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• Performing some type of computation, such as calculating a median or more
complex parameters from multiple oracle submissions (e.g., extended Kalman
filter, see Section 3.5), and calculating a critical value for threshold defined in the
calibration procedure.

• Verifying (sign) and sending measured (or calculated) data to the blockchain for
processing by the smart contract.

There are several relevant options and parameters for oracles, as shown in the follow-
ing paragraphs, where we also emphasize the peculiarities of IoT applications.

3.1. Origins of Data That Oracles Provide to Blockchain-Based Applications

Data that oracles provide to the blockchain are [23]:

• Web content;
• Sensor data.

It is clear that for IoT applications, the sensor data are dominant. However, it is
also possible for oracles to provide web content, e.g., data about users and details of the
certificate documents.

3.2. Types of Oracles for Use in Blockchain-Based Applications Regarding the Input/Output

Types of oracles depend on the input/output and their role [23]:

• Software oracles—oracles that provide online information to the blockchain,
e.g., additional data about the calibration document and laboratory.

• Hardware oracles—oracles that provide information from physical devices, in our
case from IoT device, to the blockchain. According to the previous point (Section 3.1),
i.e., dominant sensor data, it is expected that hardware oracles have higher usage in
IoT applications than software oracles.

• Inbound oracles—oracles that provide smart contracts with data from the external
world, e.g., from accreditation institutions.

• Outbound oracles—oracles that send information to the outside world, e.g., to users
interested in measurement traceability.

• Consensus-based oracles—data passed to the blockchain are treated as a result of
a consensus of multiple oracles, e.g., if it is required to decide about data based on
multiple hardware oracles (sensors).

3.3. Number of Sources That Are Used by Oracles

Depending on the number of sensors, the oracles can be:

• One sensor -> single-source oracle;
• Multiple sensors -> multiple-source oracle.

The application and the needed level of trust determine which approach has to be
used. Of course, the single-source oracle is, in general, more often needed and more
straightforward to implement. However, multiple-source oracles are required if one wants
to decide based on multiple sensors, aggregated data, or needs data from multiple sensors
to raise trust or ensure redundancy.

Thereby, as described in Section 3.5, it is recommended to use different sensor types to
ensure data credibility.

3.4. Validation of the Data That Oracles Provide to Blockchain-Based Applications

The main idea and driving force for the blockchain is the verification of data that do
not need any intermediaries or authority in general but is based on a consensus reached
among the blockchain users themselves. For example, the goal of Bitcoin, as the first and
the most prominent blockchain application, was to enable online payments directly without
going through a financial institution [1].

Although the applicability of the blockchain as electronic cash is becoming doubtful
and there are some pending challenges in general, e.g., related to security and perfor-
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mance [26], the blockchain’s main inherent specificity, compared to centralized systems, is
the distributed consensus-based verification, which avoids the central authority. The most
prominent consensus types are Proof of Work (PoW), Proof of Stake (PoS) and Proof of
Authority (PoA) [2,27]. There are numerous alternative approaches, but in general, the main
goal of consensus is, as already mentioned in the Introduction, to attempt to make fraud
too risky and unprofitable for the verifier. For example, PoW verifiers invest high amounts
of computing power and, in general, it is not profitable to invest it for false verification [18].
On the other hand, in PoS, the blockchain tokens are invested as a stake, i.e., the verifiers
risk losing them if they verify incorrect data (transactions).

PoA somewhat deviates from this logic. Namely, the PoA is a consensus method
that allows a designated number of blockchain actors to validate transactions, limiting
the idea of a broad consensus. Thereby, the actors are staking their identity, i.e., if they
undertake some malicious activities, their identity would be disclosed and, consequently,
their reputation ruined, as well as their possible future active role in reaching consensus,
i.e., validating blockchain transactions.

Due to the strict hierarchical structure of metrology processes with clear authorities,
it is natural to use the PoA for measurement results. However, the blockchain loses
distributed consensus-based verification as its main comparative advantage. Nevertheless,
the blockchain keeps its other specific properties, such as distributed and immutable data
storage. Thus, the decision about the consensus type should be made regarding specific
applications, considering their requirements. For instance, the Proof-of-Reputation could
also be an alternative [2].

3.5. Security of Data Sent by Oracles

Encryption is essential for ensuring the security of transferred data and the authenti-
cation of users. In brief, the blockchain infrastructure can [9,14,15]:

- Provide integrity, authenticity, and non-repudiation of legally relevant (LR) information [28];
- Store and attest public keys from IoT devices and all other participants;
- Avoid a trusted-third-party cost with digital certificates;
- Provide a solution that does not depend on a trusted third party.

Additionally, the security of measuring devices (oracles) must be ensured using secure
IoT communication protocols [29,30] and anti-tampering protection.

Namely, to guarantee that oracles will sense and measure (record) true values of the
measured quantity, it is necessary to minimize the possibilities of tampering. The tampering
could happen on three different levels:

• Tampering oracle software—software tampering could be mitigated by creating a hash
based on software code, i.e., any unauthorized change of code would be detected by
unmatched hashes. However, there is also a possibility for an authorized change of
code, e.g., through updates carried out online. To allow it, it is needed to have a public
key infrastructure (PKI), so that each oracle (and its code) can be accessed online if
the user has a corresponding key [14,15]. Thereby, it is needed to follow relevant
standards as well. For instance, WELMEC [28] distinguishes legally relevant (LR) and
legally non-relevant software (LNR). Of course, LR is the main target to be protected
from unauthorized changes, but the protection of LNR could also raise the trust in
measurement results.

• Tampering oracle hardware—anti-tampering techniques are generally divided into
four categories: tamper prevention, tamper detection, tamper response and tamper
evidence. They include various methods and safety mechanisms such as encapsu-
lation and coating of the hardware device [31], anti-tamper switches, sensors and
circuitry [32], unique hardware properties of the device [33], secure cryptographic
processors and device boot procedure that is designed specifically to detect tampering
that has occurred while the oracle has been without power supply [34].

• Tampering sensor input—the most challenging issue is detecting the tampering of
sensor input. For instance, if we want to know the temperature of a warehouse, truck
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trailer in transport, etc., the question is how we can be sure that the sensor is not mali-
ciously placed in a temperature-controlled location that is isolated from the location
intended for measurements. The solution could be based on consensus-based oracles
(see Section 3.2). However, using multiple sensors of the same type (e.g., classical tem-
perature sensors) is not a practical solution because they can be simply manipulated
in the same way as single sensors. A better approach would be combining different
sensor types, which would complicate possible malicious manipulation, for instance,
classical temperature sensors combined with computer vision to detect a change in
sensor surroundings and with infrared cameras as additional sources for temperature
data on surrounding surfaces. The final estimation of the measured value could be
completed using extended Kalman filters or some other method to combine data
from different sensors [35,36]. In this way, the in situ inspections of measuring instru-
ments and field surveillance [22] could be replaced by remote checks via blockchain
smart contracts. Of course, this kind of system would be fairly complicated, and it is
important to analyze for which possible applications it could be cost-effective.

4. Trust Model Concept for IoT Blockchain
4.1. Applying the Blockchain Technology to the IoT Device Level

To ensure trust in the IoT device (measuring instrument) as a blockchain oracle,
it is necessary to rely on corresponding standards, emphasizing the device itself as an
origin of trust. Of course, a set of standards depends on particular device and built-in
sensor. To present the concept of applying a device-related standard in the context of the
blockchain, we will analyze the WELMEC standard for determining software risk categories
in a measuring device [28]. Table A2 in Appendix B shows Ethereum and Hyperledger
Fabric [16] blockchain platforms that can be integrated for metrology applications and
whether they can be used to determine software risk categories according to WELMEC
categories. Conclusions made for Ethereum are applicable for some other platforms, such
as Cardano or Solana [37,38].

The following WELMEC requirement sets that are relevant and covered in the table
analysis are: long-term storage of measurement data (L), the transmission of measurement
data (T), software download (D), and software separation (S). Each set of these requirements
is only applicable if they have a corresponding function.

According to Table A2 in Appendix B, blockchain technology meets the majority
of WELMEC’s risk assessment standards because of its inherent qualities such as data
distributivity, security, and integrity. The second part of the requirement was met through
the concept of smart contracts. On the other hand, blockchain technology does not meet all
WELMEC requirements. L2 and L7 do not fit into the underlying concept of blockchain
technology since data must obtain a consensus among network members to be stored
within a network. Furthermore, once data are finalized on the blockchain network, they
can no longer be changed or lost. This exception can be made by a central authority using
permissioned blockchains such as Hyperledger fabric, but it may jeopardize the integrity
of the data stored within the blockchain network (L3).

To ensure scalability, it is recommended to provide data users with information about
each individual property (max. 23 properties according to Table A2 in Appendix B). In this
way, corresponding measured data have a higher or lower trust level. Additionally, the IoT
device can provide information about its measurement error and alerts if a hardware or
software tampering has occurred, as shown in Figure 3 (see Section 3.5).

All these values can be used as indicators for measured data trust and its value on
potential data market as an estimation made by data seller/buyer or automatically by a
smart contract which has clear defined thresholds for each of parameters, e.g., to remove
the measured data from the market if a tampering event happened. The topic of a possible
data market is also a significant one in the context of IoT data, but due to the length of this
paper, it will not be analyzed here. However, interested readers can find more information
in the literature [39–41].
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4.2. Establishing the Complete Trust Hierarchy

The IoT device as the origin of trust is essential as the starting point, but the blockchain
should ensure traceability of measurement results from the sensors up to the definition
of the measurement unit, through all three levels [22], providing insight into the cali-
bration documents (certificates) as links between adjacent levels. The documents can be
available online and fetched through software oracles to relieve the ledger of the data
amount. Thereby, the PKI and digital signatures must be used to ensure authenticity [14,15].
Nowadays, there are several competing DCC formats, as shown in Figure 4 [20,42,43], and
time will tell which one will prevail and be accepted by the metrology community and
institutions. The finally embraced format will not have an impact on possible blockchain
applicability. Namely, the blockchain task is to record the existence of a certificate (which
must be validated by issuing institutions), and the certificate format is not crucial.
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However, within the blockchain, the calibration process could be additionally au-
tomatized by using the calibrating instruments as oracles and implementing the allowed
error levels (and resulting decisions) as a smart contract code. However, several peculiar-
ities should be taken into account. Namely, contrary to the MIs on-site (Section 4.1), the
instruments at levels 3 to 1 are used for calibration in a laboratory environment. More-
over, accredited laboratories carry out the measurements, resulting in a higher level of
trust. Consequently, for the laboratory environment, anti-tampering solutions described in
Section 3.5 are welcomed but not necessary in such a strict form, e.g., there is no need for
consensus-based (multi-sensory) oracles. Furthermore, PoA can be used as a consensus
method; there is no need for PoR or some other, even more complex algorithm.

The final implementation of blockchain through all levels could give an additional
boost to the transparency of measurement results and resulting trust. Each measurement
result could be immediately linked to measurement results at higher (calibration) levels, up
to the definition of the measurement unit, as shown in Figure 5:

• Sensor—single sensor (or multi-sensor data as a result of extended Kalman filters [35,36])
• IoT device as hardware oracle provides measured data to the blockchain. Due to its

possible large amount, data can be recorded off-chain and the blockchain stores just a
hash as proof of data content.

• Blockchain—as recommended in Table 1, the blockchain considered for metrology-
related applications is in general private, ensuring who can have access to data and
write to the blockchain. However, it is not excluded that one could use also a hybrid
blockchain in cases when data owner (or generator) wants parts of the data to be
publicly visible, or when the scope of users is very broad, e.g., in use-cases for supply
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chains with high number of participants. A consortium blockchain could be an
option for the trust model that is administrated by more entities, e.g., for inter-NMI
applications. Who can be a verifying blockchain node and the process of authorizing
a node depends on the blockchain type, but in any case, it is administered by one
entity (in private and hybrid blockchain) or more entities (in consortium blockchain).
Consequently, public blockchain is more limited regarding the possible use-cases for
IoT blockchain applications.

• Software oracle provides additional data about oracles, users and institutions, e.g., links
to oracle datasheets, general information about a laboratory, and NMI.

• Inbound oracle provides data to smart contracts to institutions for sensor verification
(smart contract 2). On the other side, it provides data to smart contracts for triggering
sensor recalibration (smart contract 3).

• Outbound oracle provides data to authorized users (according to their access levels).
• Smart contract 1 provides the blockchain data about IoT device (hardware oracle)

WELMEC compliance and possible tampering events, triggering corresponding events,
e.g., rejection of data.

• Smart contract 2 triggers sensor (re)calibration based on inbound oracle, i.e., based on
digital calibration certificate issued by institutions.

• Smart contract 3 triggers (re)certification procedure carried out by accreditation insti-
tution (issuing digital calibration certificate and recording it on a blockchain).

• Digital calibration certificate issued by an accreditation institution and recorded on
a blockchain.
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In addition to this vertical traceability, it is also possible to show horizontal traceabil-
ity, i.e., results of previous calibration periods. Although legally not so relevant as the
vertical one, horizontal traceability could be important from a transparency point of view.
It gives the final user information about the calibration history and maintenance of the
measuring instrument.

All this information about vertical and horizontal traceability, including the infor-
mation about measured data, as shown in Figure 3, is relevant for the value of measured
data if offered in a data market (see Section 4.1). Thereby, the amount and type of fulfilled
standards are important as well, where we can distinguish different levels of legal strictness
(Table 2) between purely voluntary standards and various forms of technical regulations,
which have legal relevance. There is a set of laws independent of a standard and their
implementation within the trust model concept is, in general, not possible, due to its lesser
level of logical unambiguity [18]. Thus, the trust model concept primarily envelops five out
of six normative standards and legal requirements (Table 2).
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Table 2. Normative standards and legal requirements according to [44].

Standard-Based Requirements (Scope of the Trust Model)

Voluntary Standards

Technical Regulations

No link with
legal requirements

Can be taken into
account by
the courts,

e.g., WELMEC
7.2 Software Guide

Conformity is a
guarantee, but not
the only way that
requirements have

been met

Conformity
required by law,

e.g., ISO/IEC
17025—Testing
and calibration

laboratories

Law based on
a standard

Laws independent
on a standard,
e.g., national

metrology laws

There is some progress in applying the blockchain for levels 3 to 1, e.g., for the inter-
NMI blockchain network [14], and also at the level of measuring instruments, e.g., in
evaluating LR software in U-type instruments [45]. However, to fully accept blockchain
technology, it is necessary to completely adapt the legal framework [13].

If we invert the procedure, i.e., try to adapt the blockchain solution to the legal
framework, it is necessary to comply with relevant standards and regulations. Government
institutions or international organizations define legal control of MI and type approval,
including paperwork and code inspection, validation and verification, and metrological
supervision, which includes quality, market, and field monitoring [6,46]. For software-
controlled MI design, deployment, and inspection, refs. [28,47] are the most widely used
standards. All software modules that contribute to or influence measurement findings are
legally relevant, according to [28]. This covers not only the software modules that generate
and process measurement data, such as oracles, but also underlying blockchain technology
for transferring, storing, and representing generated MI data.

5. Conclusions

The blockchain has several properties that correspond to the digital transformation
needs of metrology. However, trust in measurement results requires a holistic approach—
there must not be any weak link in the traceability chain. Thus, no partial solutions are
beneficial in the long term.

To achieve a long-term self-sustainable solution, it is necessary to synchronize the
blockchain applications and development with the process of digital transformation of
metrology. Thereby, the solution has two levels: the IoT device level (oracle) and the level of
traceability. To build trust in the IoT device itself, it is recommended to use usual normative
standards and legal requirements, as shown in the WELMEC example. For traceability
level, an active role of accredited laboratories and NMIs is required. For both levels there is
a possibility to automatize procedures using smart contracts, as presented in the concept of
a complete trust hierarchy.

In both cases, there are several critical points for possible future research directions:

- The legal framework must be changed to legalize blockchain usage in metrology procedures.
- In order to be completely accepted and widely used, the blockchain-based trust

concept in metrology must be legally mandatory. In contrast, i.e., just as an alternative
in addition to the well-established tradition of the paperwork, the blockchain-based
trust concept would not prevail due to the conservative nature of metrology.

- The concept, as well as its building blocks (for example, what kind of DCC format
should be used) must be also adopted by the users. In doing so, the question remains
of should the adoption be pushed top-down (i.e., starting from defined laws and
regulations and applying them in practice) or bottom-up (i.e., waiting for which
concept and elements will be accepted by the user community and then define laws
and regulations also corresponding to user habits).

- Harmonization between the legal framework and technical capabilities (and limitations)
of the blockchain, e.g., evaluating the content of smart contracts in comparison to the le-
gal documents and resolving possible disputes in case of later identified discrepancies.
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- Should such IoT devices as oracles communicate directly with the blockchain or
should more IoT devices be connected to the internet via a gateway. In the first case,
the IoT device is more costly due to its higher hardware and software complexity,
but the lower number of communication intermediaries (gateways) in such kind of
structure increases the data security.

- In terms of possible applications, data recorded on the blockchain contribute to the
transparency and traceability, e.g., in supply chains, which raises trust in correspond-
ing products and also their value. However, it is needed to further explore the
possibilities for measured data itself to become a product, i.e., an object of trade in
the data market. Additionally, in this case, the trust model is again very important,
because more trust in the measured data means a higher price of the data as a product.

Due to the importance of metrology in industry, economy and everyday life in general,
it is not expected that the legal framework will change soon. In the meantime, a sound basis
for further changes is the development of possible technical solutions, the adaptation of
standardization documents and various initiatives and discussions driven by international
metrology associations and scientific communities. This paper aims to be one step in
this direction.

In the future, the authors will focus on integrating IoT devices into blockchain proto-
cols as oracles according to WELMEC regulations. The research will also include possible
multi-sensor solutions to reach full trust in quantities measured via oracles. A further
research direction is possible tokenization of measured data in order to offer it on a data
market, where the different extent of IoT standard compliance, verified on a blockchain,
will impact the measured data market value.
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Appendix A. References Relevant to the State of the Art

There are numerous papers on IoT blockchain applications and the digital transfor-
mation of metrology. We have categorized all referenced papers according to the six most
relevant topics for our paper (Table A1). Thereby, references from IB and OB categories
also belong to the B category, but references were not repeated in the latter due to space
optimization. In the same way, TM is a subcategory of M, and BTM is a subcategory of TM
and B. For the category “Miscellaneous”, i.e., references that do not have a focus on of our
most relevant six categories, the main topic is listed in the table.

Table A1. Categories of referenced papers.

Blockchain in general (B) [1,2,16–19,26,37,38]

IoT blockchain application (IB) [10–12,27]

Oracle issue of blockchain (OB) [3,23,25]

Metrology in general (M) [4,5,22,28,33,44,47]

Digital transformation of metrology (TM) [6–9,20,21,42,43]

Blockchain as possible infrastructure for digital transformation of metrology (BTM) [13–15,24,45,46]

Miscellaneous

anti-tampering and security [29–33]

multi-sensor approach [35,36]

data market [39–41]

Although important for each particular use case, no reference has a holistic approach,
and this kind of approach is crucial if one wants to establish a full trust hierarchy as
explained in more detail in Section 2, and thoroughly analyzed throughout our paper,
which is trying to close precisely this gap.

Appendix B. Blockchain Platforms and WELMEC Regulations

Table A2 shows which criteria of WELMEC regulations can be fulfilled by Ethereum
and Hyperledger Fabric.

Table A2. Blockchain platforms and WELMEC regulations.

Ethereum Hyperledger Fabric

L1. Completeness of measurement data stored yes yes

L2. Protection against accidental or unintentional changes no yes

L3. Integrity of data yes partial

L4. Traceability of stored measurement data yes yes

L5. Confidentiality of keys yes yes

L6. Retrieval, verification, and an indication of stored measurement data yes yes

L7. Automatic storing no no

L8. Storage capacity and continuity yes yes

T1. Completeness of transmitted data yes yes

T2. Protection against accidental or unintentional changes no yes

T3. Integrity of data yes partial

T4. Traceability of transmitted measurement data yes yes

T5. Confidentiality of keys yes yes

T6. Receiving, verification and handling of transmitted measurement data yes yes

T7. Availability of transmission services yes yes

T8. Transmission delay yes yes
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Table A2. Cont.

Ethereum Hyperledger Fabric

S1. Realization of software separation partial partial

S2. Mixed indication yes yes

S3. Protective software interface yes yes

D1. Download mechanism yes yes

D2. Authentication of transmitted software yes yes

D3. Integrity of downloaded software yes yes

D4. Traceability of legally relevant software download yes yes
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