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Abstract: When unattended substations are popular, the knob is a vital monitoring object for unat-
tended substations. However, in the actual scene of the substation, the recognition method of a knob
gear has low accuracy. The main reasons are as follows. Firstly, the SNR of knob images is low due
to the influence of lighting conditions, which are challenging to extract image features. Secondly,
the image deviates from the front view affected by the shooting angle; that knob has a certain de-
formation, which causes the feature judgment to be disturbed. Finally, the feature distribution of
each kind of knob is inconsistent, which interferes with image extraction features and leads to weak
spatial generalization ability. For the above problems, we propose a three-stage knob gear recognition
method based on YOLOv4 and Darknet53-DUC-DSNT models for the first time and apply key point
detection of deep learning to knob gear recognition for the first time. Firstly, YOLOv4 is used as
the knob area detector to find knobs from a picture of a cabinet panel. Then, Darknet53, which can
extract features, is used as the backbone network for keypoint detection of knobs, combined with
DUC structure to recover detailed information and DSNT structure to enhance feature extraction and
improve spatial generalization ability. Finally, we obtained the knob gear by calculating the angle
between the line of the rotating center point and the pointing point and horizontal direction. The
experimental results show that this method effectively solves the above problems and improves the
performance of knob gear detection.

Keywords: knob gear recognition; target detection; key point detection; image classification; YOLOv4;
Darknet53

1. Introduction

With the power system’s rapid development, the substations’ scale has become
larger [1]. The traditional method of employing personnel to inspect is no longer suitable
for managing much equipment in substations [2,3]. Hence, unattended substations develop
rapidly [4]. Among them, automatic knob gear detection is one of the crucial tasks to
inspect large-scale equipment in substations automatically. It can automatically obtain
the operational status of large-scale and complex equipment, thereby replacing manual
inspection and transcription operations. Although there are some methods of knob gear
detection, it is still challenging due to the complexity of the actual scene of unattended
substations. Therefore, we need to improve the accuracy of knob gear recognition as much
as possible based on satisfying the real-time monitoring of substation knobs.

At present, there are few studies on knob gear recognition. By analyzing and sum-
marizing the found articles on knob gear recognition, we generally divided the knob gear
recognition methods into two types. The first is an image processing method based on
OpenCV [5–8], which binarizes the image, removes background interference, and obtains
knob contour information through Hough detection. Although the methods based on

Sensors 2022, 22, 4722. https://doi.org/10.3390/s22134722 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134722
https://doi.org/10.3390/s22134722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6067-0514
https://doi.org/10.3390/s22134722
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134722?type=check_update&version=1


Sensors 2022, 22, 4722 2 of 19

OpenCV can identify the gears of knobs, their performance in complex environments is
relatively poor, and they are not universal. Different shapes of knobs require different
parameters. Although it is the same type of knob, it will also have a large error due to
environmental factors such as lighting [9]. The second method is influenced by the excellent
performance of a convolutional neural network (CNN) [10] on image classification [11],
and a general object detection algorithm based on CNN is proposed [9,12–20]. This kind
of algorithm [21,22] has two stages. The first stage is to detect the target of the knob, and
the second stage is to classify the knob. This general detector improves gears’ detection
accuracy and meets real-time detection requirements but ignores the fine-grained features
of images. When the image is in an oblique view, the model will make mistakes in judging
the features.

Based on the above article, the images collected in the actual scene were analyzed, and
we found the following three problems.

1. Firstly, the quality of images collected in the actual scene of the substation has different
levels. The main reason is that the poor lighting conditions cause some images to have
a low signal–noise ratio (SNR), which affects the image extraction features. As shown
in Figure 1c,d the image in (c) is evident due to the excellent lighting conditions, and
the image features are easier to extract. In contrast, it is already challenging to see the
features of the knob in (d) due to poor lighting conditions.

2. Secondly, many oblique views are in the images collected from the substation. The
knob will be deformed to a certain extent, resulting in inaccurate feature extraction
and weak spatial generalization ability. Figure 2 shows the original image collected
from the substation. There are three knobs in the same image, of which (a) and (b) are
oblique views, and (c) is a front view. Experiments show that if we use the two-stage
gear detection model in the article [21] which first locates the knob area and then
directly classifies the knob, the model will have a high probability of misidentifying
(a) and (b) as the upper left direction, the direction of (a) is up, and the direction of (b)
is to the left.

3. Thirdly, due to the variety of knobs, the spatial distribution of key points of each kind
of knob is different, as shown in Figure 3. This results in a relatively weak spatial
generalization ability of the trained model. Even if the regression coordinate error is
only a few pixels, it will still cause misjudgment of the knob gear.

For the first image quality problem, we use the DUC (dense upsampling convolu-
tion) [23,24] structure to generate pixel-level predictions, which can compensate for the loss
in the length and width dimensions through the channel dimension. PixleShuffle [25] in
DUC can convert a low-resolution input image into a high-resolution image by upsampling,
thereby compensating for the problem of fine-grained feature loss due to low image SNR.
The second and third problems are essentially the same problem. They are both problems
of weak spatial generalization ability caused by interference in feature extraction. It is
necessary to strengthen feature extraction and improve spatial generalization ability. We
further introduce the DSNT (differentiable spatial to numerical transform) [26–29] module
in which the coordinate regression of the knob key points is enhanced through the normal-
ized Gaussian heatmap so that the error of the regression coordinates of the key points is
controlled within 1 pixel as much as possible, and the spatial generalization ability of the
model is enhanced. Both DUC and DSNT are essential in our model.

Our method achieves better performance than the current knob gear detection methods.
These contributions can be summarized as follows.

1. We propose a three-stage knob gear detection method YOLOv4 and Darknet53-DUC-
DSNT model for the first time and apply key point detection of deep learning to
the knob gear detection for the first time, and the results are more accurate than the
two-stage detection.

2. We combine the DUC structure to solve the loss of detail information due to low
image SNR.
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3. We use the DSNT structure to solve the problem of the key point coordinate regression
deviation and weak spatial generalization ability caused by image squint and different
feature distributions of key points.

(a) (b)

(c) (d)

Figure 1. Images under different lighting conditions. (a) Image with good lighting conditions. The
upper left corner of the image shows the time of acquisition: Monday, 14 December 2020. The
lower right corner of the picture shows the location of the acquisition: the first hyperbaric chamber.
(b) Image with poor lighting conditions. The upper left corner of the image shows the time of
collection: Sunday, 13 December 2020. The lower right corner of the picture shows the location of the
acquisition: the first hyperbaric chamber. (c) Knob image cropped from (a) with high SNR. (d) Knob
image cropped from (b) with low SNR.

Figure 2. Collected original image at the substation site. (a) The oblique view where the actual
direction is up and is misjudged as the upper left direction. (b) The oblique view where the actual
direction is left and is misjudged as the upper left direction. (c) Front view.
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Figure 3. Ten different types of knobs with different feature distributions of key points.

The remainder of this article is organized as follows. Section 2 is to investigate the
related work on the knob gear detection methods. Section 3 explicitly describes the three-
stage knob gear recognition model proposed by us. Section 4 presents model experiments
and results. Section 5 is the conclusion of this article.

2. Related Work

At present, there are few studies on knob gear recognition. We summarized the found
articles on knob gear recognition and can generally divide the methods into two types. The
first is the image processing methods based on OpenCV [5–7], such as the method proposed
by Rong Cai et al. [5] that divided the knob gear recognition into two parts: rough positioning
and precise positioning. They used template matching for the rough positioning [30] method
to locate the approximate position of the knob switch in the panorama. After completing
the rough positioning, they carried out the precise positioning of the knob area. Precise
positioning uses mean-shift filtering [31] to connect pixels of similar patterns in the image.
It then uses the flooding method [8] to divide the connected pixels into different regions to
separate the target and the background and generate a binary image. Finally, it finds the
contour that meets the conditions in which pixels of the shape are the set of rotating center
pixels. Rong Cai’s method can only find a collection of key points rather than being accurate
to a specific key point, which will cause a significant error in the results. Yanming Wu et
al. [6] proposed first to classify different buttons by color and then use the Hough circle
algorithm [32] to detect the outline of a circular knob that obtains coordinates of the center of
the circle for knob positioning. Then it pastes a blue rectangular bar on the knob, and binarizes
the image to obtain the outline of the rectangle and coordinates of the vertices of the rectangle.
Yanming Wu’s method is only suitable for detecting circular knobs, and it is necessary to
manually attach a rectangular bar to the knob to obtain the vertex coordinates of the rectangle.
This method is complicated and not universal. Yulun Wu [7] proposed to extract the knob
indicator line of the image through three steps: gray processing, binarization, and erosion. At
the same time, they removed the interfering information of the image, and finally used the
Hough line transform [33] to identify where the knob indicator line was located and obtained
the angle information to determine the knob gear. The image processing methods based
on OpenCV have a common disadvantage: the algorithm is not universal and is often only
applicable to a specific type of knob that uses different parameters for different knobs. Even
with the same knob, the model parameters must be constantly adjusted if the background
factors such as lighting conditions are not the same.

The second method is based on deep learning. Mengan Shi et al. [21] proposed first using
the YOLO-tiny-RFB model for knob target detection, then the method based on MobileNet [34]
is used for knob area to classify various states of knob gear accurately. This method improves
the accuracy of knob recognition and has good generalization. Still, the article states that the
model ignores the fine-grained features of the image, and the shooting angle of vision also
significantly impacts the model’s judgment. The model [21] cannot accurately determine the
correct direction of the knob when it deviates from the frontal viewing angle, or the knob has
deformation. Zhiling Zhu et al. [22] integrated the recognition algorithm of OpenCV and
deep learning. Firstly, they used the improved Canny algorithm [35] to extract the actual edge
and combined the perspective transformation to correct the instrument panel image. Secondly,
they used the enhanced YOLOv4 algorithm to segment the knob area accurately. Finally, they
extracted the pixel contour of the knob groove, the PCA algorithm fit the contour rectangle,
and the pose was measured. This method corrects the panel image and solves the problem
in [21] that the model cannot accurately judge the gear of the knob when the knob is deformed
due to the deviation of the shooting angle. However, the article [22] still uses the OpenCV



Sensors 2022, 22, 4722 5 of 19

method to measure the pose, which leads to the fact that the gear detection is still affected by
factors such as the type of knob and illumination, reducing the model’s generality.

Aiming at the problems of low image SNR caused by the influence of illumination
in the actual scene of the substation and weak spatial generalization caused by image
strabismus and different distribution of knob features, we innovatively combine the
YOLOv4 [15–17] target detection algorithm with the Darknet53 [36–38] feature extrac-
tion network, the DUC module, and the DSNT module to form a knob gear detection
network. We conduct experiments on the knob image data collected in the substation,
comparing it with other researchers’ knob gear detection methods. Experiments show that
our algorithm can effectively improve the detection accuracy of fine-grained features of
images and has better performance than the current knob gear detection methods.

3. Knob Gear Recognition Model

Figure 4 shows the overall framework of the knob gear recognition model. First of
all, since the original image collected at the substation is a complete cabinet panel image
that includes components such as miniature lights, knobs, digital meters, and so on, it
is impossible to identify the gear of knobs on the original image directly. Hence, the
knob area must be positioned and cropped out by YOLOv4 first. Then, feature extraction
and coordinate regression is performed on the cropped knob data through the key point
detection algorithm and it predicts the coordinates of two key points of the knob. Finally,
after predicting the coordinates of the two key points, the angle between the straight
line of the two key points and the horizontal direction is calculated, and it is determined
which gear the angle is in to obtain the knob gear. In the example shown in Figure 4,
the angle is 139◦, then the gear is right top, and the angle is 94◦, then the gear is top.
Section 3.1 introduces the knob area positioning algorithm based on YOLOv4 in detail.
Section 3.2 presents the Darknet53-DUC-DSNT detection algorithm of knob key points in
detail. Section 3.3 introduces the classification method of knob gears.

Figure 4. The overall framework of the knob gear recognition model. Panel (a) is the knob po-
sitioning module; (b) is the detection module of the key point of the knob; (c) is the knob gear
classification module.

3.1. The Knob Area Positioning Based on YOLOv4

In this article, YOLOv4 [15,18] is used as the area positioning network to locate and
segment the knob area. Compared with other models, although Mask-RCNN [19] and
Cascade R-CNN [20] have high detection accuracy but slow speed, small models are fast but
not accurate. Some models require many GPUs for parallel training because the networks
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are too large, which requires high hardware. YOLOv4 is a real-time and high-precision
target detection model and can be trained on only one GPU. YOLOv4 is used to detect
knobs on our original collected images, and the recognition accuracy is at least 98%, which
fully meets the needs of target detection in this article.

The YOLOv4 target detector is divided into the backbone responsible for extracting
features, the neck responsible for transmission to the target detection part, and the head
responsible for target detection. YOLOv4 uses the feature extraction network CSPDarknet53
that references CSPNets (cross-stage partial networks) [39] based on Darknet53. It first
divides the feature map of the base layer into two parts and then merges them through a
cross-stage hierarchy. It guarantees accuracy and solves the problem of repeated gradient
information for network optimization in other large convolutional neural networks.

The role of the neck is to enrich the information input to the head through adding
or concatenating bottom-up and top-down adjacent feature maps by element. Therefore,
the input of the head contains rich bottom-up spatial information and top-down semantic
information. The neck mainly uses the SPP-Net (spatial pyramid pooling network) [40]
structure to solve how feature maps of different sizes enter the fully connected layer. The
max-pooling kernel size of SPP-Net is k = {1× 1, 5× 5, 9× 9, 13× 13}, and the pooled
feature maps from different kernel sizes are concatenated together as output. SPP layers can
increase the receptive field of the backbone network more effectively than max pooling with
single kernel size and then fuse feature map through PANet (path aggregation network) [41]
structure. After that, the neck passes the image features to the prediction layer to predict
the image features.

As shown in Figure 5, the CSPDarknet53 backbone network extracts the features of the
original images collected from the substation. Then, the features are transferred to the neck.
The neck uses SPP-Net and PANet to generate a hierarchical structure of feature maps with
different spatial resolutions to detect objects of different scales, increase the receptive field
and perform feature map fusion, and enrich spatial and semantic information. Finally, this
information is sent to the head responsible for object detection for prediction, generating
bounding boxes and predicting categories, and locating the knob area.

Figure 5. YOLOv4 knob area positioning algorithm.

3.2. The Knob Key Point Detection Based on Darknet53-DUC-DSNT

The Darknet53-DUC-DSNT model structure diagram for knob key point detection is
shown in Figure 6. The three-channel image is input into Darknet53 for feature extraction,
and then the detailed information is recovered through the DUC structure. Finally, the
spatial generalization ability is enhanced through the DSNT structure to obtain the key
point coordinates. The exact process is as follows.

Firstly, we use Darknet53 [18] as the backbone network for keypoint detection, which has
higher training accuracy than Darknet19 [42–44] and higher efficiency than ResNet101 [45,46]
and ResNet152 [47–50] networks. Combining the characteristics of ResNet [51], Darknet53
avoids the gradient problem caused by the deep network while ensuring the strong expres-
sion of features. Therefore, considering the accuracy and efficiency, we chose Darknet53
as the backbone network. In the article [18], the input picture size recommended by the
author is 416× 416, but according to the pictures collected in the actual scene, we set
the input picture size to 224× 224. After the first convolution of Darknet53, the feature
map size does not change, but the number of channels becomes 32. A large number of
DarkResidualBlocks are stacked in the following Darknet53 network. There are five groups
of repeated DarkResidualBlock structures in total, and the repetition times are 1, 2, 8, 8, and
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4, respectively. A convolution with a stride size of 2 and a kernel size of 3× 3 is inserted
between every two DarkResidualBlocks to complete the downsampling operation. The
entire backbone network is reduced in dimension 32 times, and the final output features
map dimension is 7. DarkResidualBlock uses a lot of 1× 1 convolution and 3× 3 convo-
lution for channel expansion or reduction. Residual uses 1× 1 convolution to shrink the
channel and then uses 3× 3 convolution to restore the channel, whose essence is matrix
decomposition for reducing the number of parameters.

Figure 6. Darknet53-DUC-DSNT model structure for knob key point detection. The input image is
extracted through Darknet53, upsampled through 4 DUCs, and finally returns key point coordinates
through DSNT.

Then, since there are many images with low SNR and the images will lose many details
due to downsampling after Darknet53, we introduced the DUC structure to restore the lost
information. After the feature map passes through the last DarkResidualBlock structure of
Darknet53, the output channel becomes 1024, which is necessary to compress the number
of channels to 512 through a 1× 1 convolution and then input to the DUC structure. This
model uses 4 DUCs, upsampling the feature map four times through PixleShuffle in the
DUC; each upsampling factor (upscale) is 2, converting the low-resolution feature map to a
high-resolution feature map through convolution and multi-channel recombination and
recovering detailed information.

Finally, it is input into the DSNT structure for coordinate regression prediction. After
the feature map passes through the DUC structure, the Gaussian heatmap of each channel
is obtained through a 1× 1 convolution. Then the Gaussian heatmap of each channel is
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normalized so that the normalized Gaussian heatmap has only one peak and finally this
peak is converted to obtain the coordinates of the key point. The advantage of the DSNT
module is that it can predict the low-resolution Gaussian heatmap and make the gradient
flow from the coordinate points to the Gaussian heatmap without adding extra computation.
DSNT learns heatmaps indirectly by optimizing the loss of predicted coordinates output by
the entire model, thereby enhancing spatial generalization.

To sum up, the general idea of the model is to extract the features of the knob image
through Darknet53 first. After the image passes through Darknet53, we found that many
details were lost, resulting in low recognition accuracy, so we used the DUC structure
for upsampling to restore the details. Although the detailed information of the feature
map was restored, the spatial generalization ability was weak, resulting in recognition
accuracy still not being high, so the DSNT structure was introduced to enhance the spatial
generalization ability. The final Darknet53-DUC-DSNT detection model of knob key points
has good performance and high recognition accuracy and controls the regression error of
key points within 1 pixel.

3.2.1. DUC

The article [23] proposed dense upsampling convolution, a method of manipulating
convolutional correlation operations. The specific structure of the DUC is shown in Figure 7.
Assuming that the height of the original image is H, the width is W, and the color channel
is C, the dimension becomes h× w× c after Darknet53, where h = H/d and w = W/d,
and d is called the downsampling factor. The DUC operation is based on convolution;
after convolution, the dimension of the output feature map is h× w× (d2 × L), and then
the size of H ×W × L is obtained by reshaping, where L is the number of categories
of key points. It can be seen that the idea of DUC is to compensate for the loss in the
length and width dimensions through the channel dimension. DUC divides the entire
label map into sub-parts of the same size as the input feature map. All the sub-parts
are superimposed d2 times to generate the entire label map. For convolutional neural
networks, the semantic information of large objects appears in the deeper feature map, and
the semantic information of small objects appears in the shallower feature map. Since the
Darknet53 network is relatively deep, a large part of the detailed information will be lost,
which is very unfavorable for the detection of fine-grained features of images. The DUC
amplifies the downsampled feature map to the desired size by learning some amplified
filters. Each of its dense convolutions is learning the prediction of each pixel, thereby
recovering the details of the image.

Figure 7. DUC structure.

3.2.2. DSNT

The key point detection of the knob is essentially a numerical coordinate regression
task, which returns the coordinates of two key points of a knob. At present, there are two
methods for mainstream regression of key points.
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1. The fully connected layer is used to return the coordinate points directly. The advan-
tage of this approach is that the training speed is breakneck, and it is an end-to-end
full differential training. The disadvantage is that the spatial generalization ability
is weak, the weight obtained by the full connection method depends heavily on the
distribution of training data, which is very easy to cause overfitting, and the accuracy
is not high in the case of high resolution.

2. The predictive Gaussian heatmap method. The advantage of this method is that the
accuracy is usually higher than that of method 1. The disadvantage is that the method
is not a fully differential model from input to output, and the accuracy is lower in
low resolution.

The different feature distributions of different kinds of knobs and the existence of
many oblique views interfere with feature extraction and reduce the spatial generalization
ability. Therefore, inspired by the article [26], the DSNT module used in this article can
have full differential training and better spatial generalization capabilities.

Suppose that the input of DSNT is (batchSize, H, W, 3), and the output is (batchSize, H/
2, W/2, 2), representing the regression of 2 key points, represented by Z. DSNT acts on
each channel, and the output is (batchSize, 2, 2), representing the two key points’ x and
y coordinates. The Gaussian heatmap output by each channel is normalized, defined as
Ẑ, where Ẑ is an m× n matrix, and the expression is (1). The activation function used for
normalization is the softmax; the formula is (2). The purpose of normalization is to make
the input of DSNT a discrete probability distribution.

Ẑ = φ(Z) (1)

Z′i,j = exp(Zi,j) (2)

Define two m× n matrices X and Y, where m = W, n = H, i = 1 . . . m, j = 1 . . . n.

Xi,j =
2j− (n + 1)

n
(3)

Yi,j =
2i− (m + 1)

m
(4)

x = 〈Ẑ, X〉F (5)

y = 〈Ẑ, Y〉F (6)

Equations (3) and (4) can redistribute the coordinate values of the X and Y matrices to
(−1, 1). If the normalized Gaussian heatmap has only one peak, then the transformation
methods of (5) and (6) can directly obtain the x and y values. Since Ẑ is normalized, the
probability distribution condition is satisfied and can obtain the joint probability distribu-
tion Formula (7) of random variables X and Y.

Pr(c = [Xi,j Yi,j]) = Ẑi,j (7)

where c is the output coordinate of a channel, and the coordinate value obtained after
DSNT transformation is the mean value of the joint distribution of Formula (7), as shown
in Formula (8).

µ = E[c] (8)

Combined with the above formula, the output value of the DSNT module can be
obtained, as shown in Formula (9).

DSNT(Ẑ) = µ = [〈Ẑ, X〉F 〈Ẑ, Y〉F] (9)

The DSNT structure diagram is shown in Figure 8.
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Figure 8. DSNT structure.

3.3. Knob Gear Classification

Our knob gear recognition model is a three-stage model, including knob positioning,
key point detection, and gear classification. After positioning and detection, we obtain the
coordinates of two key points of the knob: the rotating center point and the pointing point.
Gear classification is divided into two steps: calculate the angle and then judge the gear.

The first step is constructing a straight line between two key points and calculating the
angle between the straight line and the horizontal direction. We use Formulas (10) and (11)
to calculate the angle; (x1, y1) are the coordinates of the center point of the knob, and
(x2, y2) are the coordinates of the pointing point of the knob. The atan2 function returns
the azimuth angle from the origin to the point (y2 − y1, x2 − x1), that is, the angle with the
x-axis, in radians, and the value range is [−π, π]. Then we convert radians to degrees .

θ = atan2(y2 − y1, x2 − x1)×
180
π

(10)

atan2(y, x) =



arctan( y
x ) x > 0

arctan( y
x ) + π y ≥ 0, x < 0

arctan( y
x )− π y < 0, x < 0

π
2 y > 0, x = 0
−π

2 y < 0, x = 0
unde f ined y = 0, x = 0

(11)

The second step is to determine which gear the angle falls in and find the gear of the
knob. According to the actual situation, the judgment of the gear is allowed to have an
error of ±5◦. The gear and angle range are shown in Table 1.

Table 1. Gear and angle range.

Direction Angle Range/◦

Top (85, 95)
Bottom (−95, −85)

Left (−5, 5)
Right (−180, −175) or (175, 180)

Left Top (40, 50)
Left Bottom (−50, −40)
Right Top (130, 140)

Right Bottom (−140, −130)
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4. Experiment
4.1. Experimental Environment

The experimental platform of this article is the Ubuntu 20.04.3 LTS operating system,
and the equipment used for model training is two NVIDIA GeForce RTX 2080, both of
which have 8G video memory and CUDA 11.4. The programming language is Python 3.6,
and the deep learning framework is Pytorch 1.2.

4.2. Experimental Dataset and Data Augmentation

This experimental dataset comes from the daily inspection collection of the Guyang
Xingshun West Wind Farm substation. This dataset belongs to a dataset in a specific
scenario of engineering applications involving the relevant intellectual property rights of
the company and is a non-public dataset. In the knob area positioning network based on
YOLOv4, the dataset has 1025 cabinet panel pictures. We identified the knob area from
1025 pictures and segmented them to obtain a total of 1480 knob pictures. We randomly
sampled knob datasets at a ratio of 7:1:1:1 for rotation, additive Gaussian noise, filtering,
and sharpening, and can obtain a total of 20,766 images after data augmentation. We
randomly selected the knob dataset according to the ratio of 8:1:1 to form the training set,
validation set, and test set. The knob dataset in the detection network of knob key points
based on Darknet53-DUC-DSNT is shown in Table 2.

Table 2. Knob experiment dataset.

Dataset Quantity

Initial knob total dataset 1480
Augmented knob total dataset 20,766
Augmented knob training set 16,618

Augmented knob verification set 2079
Augmented knob test set 2069

To ensure the model’s generalization and balance the judgment of various knobs,
the initial knob dataset needs to be augmented. Since the knob gears collected from the
substation only have two to three gears, the number of gears is minimal. The dataset is
randomly rotated from −180◦ to 180◦ to balance the number of pictures of each gear of
the knob and generate eight gears: top, bottom, left, right, left top, left bottom, right top,
and right bottom. Random additive Gaussian noise, Gaussian filtering, and sharpening
processing are applied to the dataset to balance image quality and reduce the impact of
lighting conditions. The knob dataset after data augmentation has a total of 20,766 pictures,
and the distribution of various types of knobs before and after augmentation is shown in
Table 3.
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Table 3. Dataset distribution before and after knob augmentation.

Name Picture Before After Name Picture Before After

Knob1 479 2146 Knob6 116 2070

Knob2 539 2152 Knob7 24 2040

Knob3 140 2070 Knob8 24 2040

Knob4 66 2080 Knob9 29 2025

Knob5 60 2100 Knob10 3 2043

4.3. Performance Evaluation Criteria

Aiming at the detection model of knob key points based on Darknet53-DUC-DSNT, we
formulate the performance evaluation index based on the root mean square error (RMSE)
and the error range that can be tolerated in practical engineering. RMSE is used to measure
the deviation between the test value and the actual value, and its formula is shown in
Formula (12). h(xi) is the predicted value, yi is the actual value, and m is the number of
key points.

RMSE(X, h) =

√
1
m

m

∑
i=1

(h(xi)− yi)2 (12)

We test on the test set of knobs, combined with the acceptable error range of the actual
engineering, limiting the error range between 0 and 1.0. If the RMSE value obtained by
the test is greater than 1.0, we consider the test result to be outside the acceptable error
range, and the picture is a negative sample. If the RMSE value obtained by the test is less
than or equal to 1.0, we consider the test result to be within the acceptable error range,
and the picture is a positive sample. Finally, we calculate the average RMSE of all the
pictures in the knob test set, and combine the proportion of positive samples to the total
samples to represent the accuracy of comprehensively judging the model’s performance.
The smaller the average RMSE, the smaller the error between the predicted and actual
values. The larger the number of positive samples, the higher the proportion of accurate
prediction results.

For the classification of knob gears, we use three indicators of recall, precision, and
F-score to evaluate the classification results of several models. The true positive (TP), false
negative (FN), and false positive (FP) are used to calculate the recall, precision, and F-score.
Recall indicates the proportion of the predicted positive samples that are actually positive
samples, as shown in Equation (13). Precision represents the proportion of positive samples
that are expected to be correct, and the calculation formula is (14). F-score is the weighted
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harmonic average of precision and recall. In our article, F1 measures precision and recall
comprehensively. The calculation formula of F1 is (15).

Recall =
TP

TP + FN
× 100% (13)

Precision =
TP

TP + FP
× 100% (14)

F1 =
2× Recall × Precision

Recall + Precision
× 100% (15)

4.4. YOLOv4 Knob Area Positioning Results

We used the labeling tool to mark the knob area of the cabinet panel to generate the
corresponding XML file. Then, the YOLOv4 trained the cabinet panel dataset and generated
the model file after completing the training. We input the test picture, and it predicted
and returned the coordinates and category of each knob. Figure 9 has the original cabinet
panel images. Figure 10 shows the results of YOLOv4 area positioning, and we can see that
the recognition accuracy of the two knobs reaches 98% and 99%, respectively, which fully
meets our needs. Figure 11 has two cropped knob area images.

Figure 9. Original cabinet panel images collected on substation.

Figure 10. YOLOv4 knob areas positioning results.

Figure 11. Cropped knob area images.
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4.5. Darknet53-DUC-DSNT Knob Key Point Detection Results and Comparison

In order to verify the accuracy of the detection model of knob key points based
on Darknet53-DUC-DSNT, with the DUC and DSNT both being essential components,
we conducted ablation experiments, comparing the Darknet53-DUC-DSNT model with
the Darknet53 model, Darknet53-DUC model, and Darknet53-DSNT model. The model
comparison results are in Table 4.

Table 4. Comparison results of key point detection models.

Knob
Model

Darknet53 Darknet53-DUC Darknet53- DSNT Darknet53-DUC-DSNT

Knob1

Accuracy 17.76% 22.90% 12.62% 80.84%
Avg RMSE 2.190 1.862 12.847 0.717

Result

Knob2

Accuracy 63.80% 76.47% 63.80% 98.19%
Avg RMSE 1.059 0.810 2.260 0.394

Result

Knob3

Accuracy 44.77% 42.26% 97.91% 98.74%
Avg RMSE 1.572 1.171 0.414 0.413

Result

Knob4

Accuracy 84.44% 100.00% 100.00% 100.00%
Avg RMSE 0.700 0.416 0.162 0.154

Result

Knob5

Accuracy 100.00% 99.03% 90.82% 100.00%
Avg RMSE 0.371 0.339 0.404 0.156

Result

Knob6

Accuracy 81.69% 93.90% 51.64% 100.00%
Avg RMSE 1.054 0.547 1.146 0.200

Result

Knob7

Accuracy 46.60% 70.68% 73.30% 100.00%
Avg RMSE 1.103 0.762 1.352 0.320

Result

Knob8

Accuracy 66.67% 78.51% 71.49% 100.00%
Avg RMSE 0.924 0.775 1.395 0.292

Result

Knob9

Accuracy 36.36% 55.08% 64.17% 99.47%
Avg RMSE 1.271 0.997 2.990 0.382

Result

Knob10

Accuracy 8.99% 46.03% 67.20% 100.00%
Avg RMSE 1.515 1.067 4.992 0.274

Result

All knobs Accuracy 54.20% 66.63% 67.79% 96.35%
Avg RMSE 1.185 0.884 2.795 0.335

We input the test image to the detection model of the knob key point, and it predicted
and returned the coordinates of each knob. The green pixels are the marked points, and the
red pixels are the predicted points. The experimental results can be concluded as follows:
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1. The knob key point model proposed in our article has the best prediction effect, the
predicted points almost coincide with the marked points, and the average RMSE of
all knobs is less than 1. All types of knobs achieved good detection results, whether
front or oblique.

2. Although the accuracy rates of the Darknet53, Darknet53-DUC, and Darknet53-DSNT
models are very low, the average RMSE is not high, indicating that the average
prediction error of each picture is not high. Still, the error exceeds 1 pixel, leading to
low accuracy.

3. Compared with the Darknet53 model, Darknet53-DUC improves the detection ac-
curacy by 0.301 pixels on average. For each kind of knob, the average RMSE of the
Darknet53-DUC model is smaller than the average RMSE predicted by the Darknet53
model, indicating that DUC effectively enhances the feature extraction ability, which
improves the detection accuracy.

4. Compared with the Darknet53 model, the average RMSE of Darknet53-DSNT is higher,
indicating that using DSNT under the premise of losing detailed features of the image
will cause the opposite effect. Hence, DUC is essential, and we must first restore the
image feature information.

5. The average RMSE of the Darknet53-DUC-DSNT model is 0.549 pixels lower than
that of Darknet53-DUC, indicating that the use of DSNT in the case of image detail
feature recovery can effectively enhance the spatial generalization ability, so DSNT is
also essential.

4.6. Knob Gear Classification Results and Comparison

The Darknet53-DUC-DSNT model, Darknet53 model, Darknet53-DUC model, and
Darknet53-DSNT model all performed for 300 iterations and set the learning rate to 0.001.
In the model of method [21], due to the small MobileNet, to prevent overfitting, we only
performed 100 iterations and set the learning rate to 0.001.

We compare the Darknet53, Darknet53-DUC, Darknet53-DSNT, Mengan Shi [21], and
our model and test the results of five models for classification. The results of the knob gear
classification are shown in Figures 12–14.
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Figure 12. Recall results of knob gear classification. Comparison of Darknet53, Darknet53-DUC,
Darknet53-DSNT, Mengan Shi [21], and our model.
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Figure 13. Precision results of knob gear classification. Comparison of Darknet53, Darknet53-DUC,
Darknet53-DSNT, Mengan Shi [21], and our model.
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Figure 14. F1 results of knob gear classification. Comparison of Darknet53, Darknet53-DUC,
Darknet53-DSNT, Mengan Shi [21], and our model.

It can be seen from Figure 12 that the model proposed in this paper has the highest
recall in each gear, and the average recall is also the highest. It can be seen from Figure 13
that the model proposed in this paper has a slight disadvantage in the precision of t (top
gear) compared with the Darknet53-DSNT model, but the precision in other gears is the best,
and the average precision is also the best. As can be seen from Figure 14, the comprehensive
results of the recall and precision, the prediction results of the model proposed in this paper
are the best in each gear, and the average F1 is also the highest.

From the results of F1, it can be concluded that the Darknet53-DSNT model improves
the performance of the Darknet53 model by 3.04%, and the Darknet53-DUC model im-
proves the performance of the Darknet53 model by 11.58%. We combine DUC and DSNT
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to enhance the performance of the Darknet53 model by 19.97%, and the performance of
our three-stage model is 9.52% higher than that of the two-stage model proposed in the
paper [21].

5. Conclusions

We are aiming at the problems of missing image features, interference in feature
extraction, weak spatial generalization ability of the model, false knob gear detection, and
incompatibility of the algorithm. We combine the YOLOv4 target detection algorithm
with the improved Darknet53 key point detection algorithm to form a knob gear detection
model. The YOLOv4 is used to detect the knob area of the cabinet panel image collected
from the substation and crop the knob area. We proposed the Darknet53-DUC-DSNT
model to detect the key points of the knob image, regress the coordinates of two key
points, and calculate the angle to obtain the knob gears. Our model dramatically improves
detection performance while ensuring real-time performance. We also propose a model
evaluation index based on the RMSE and acceptable error range of the actual engineering
of the substation. In the subsequent work, we will focus on reducing the model size and
improving the detection speed. Therefore, it is necessary to conduct further research on
substation data and integrate more image recognition methods into practical application
scenarios to improve the algorithm’s generality and the model’s performance.
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