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Abstract: Effectively integrating the local features and their spatial distribution information for
more effective point cloud analysis is a subject that has been explored for a long time. Inspired by
convolutional neural networks (CNNs), this paper studies the relationship between local features and
their spatial characteristics and proposes a concise architecture to effectively integrate them instead of
designing more sophisticated feature extraction modules. Different positions in the feature map of the
2D image correspond to different weights in the convolution kernel, making the obtained features that
are sensitive to local distribution characteristics. Thus, the spatial distribution of the input features of
the point cloud within the receptive field is critical for capturing abstract regional aggregated features.
We design a lightweight structure to extract local features by explicitly supplementing the distribution
information of the input features to obtain distinctive features for point cloud analysis. Compared
with the baseline, our model shows improvements in accuracy and convergence speed, and these
advantages facilitate the introduction of the snapshot ensemble. Aiming at the shortcomings of the
commonly used cosine annealing learning schedule, we design a new annealing schedule that can be
flexibly adjusted for the snapshot ensemble technology, which significantly improves the performance
by a large margin. Extensive experiments on typical benchmarks verify that, although it adopts
the basic shared multi-layer perceptrons (MLPs) as feature extractors, the proposed model with a
lightweight structure achieves on-par performance with previous state-of-the-art (SOTA) methods
(e.g., MoldeNet40 classification, 0.98 million parameters and 93.5% accuracy; S3DIS segmentation,
1.4 million parameters and 68.7% mIoU).

Keywords: lightweight network; deep learning; point cloud classification; point cloud segmentation

1. Introduction

With the wide application of various three-dimensional (3D) sensors, as a basic 3D
data format, point clouds are frequently appearing in many actual scenes, including 3D
modeling [1–7], indoor navigation [8], and autonomous driving [9,10]. Therefore, the
demand to understand the shapes represented by 3D point clouds through deep neural
networks has gradually emerged.

Unlike the regular grid structure of the two-dimensional (2D) image, the point cloud
is a set of unordered spatial points, making it unsuitable for the convolution operation
based on the local patch arranged by the grid index. Although deep learning networks
such as CNNs have obtained remarkable achievements in processing 2D images [11–14], it
is non-trivial to directly transplant the success of CNN to 3D point cloud analysis. Some
alternative approaches have been proposed to alleviate this critical issue. Some methods
such as [15–21] attempt to transform the point cloud into regular voxel format in order to
apply 3D CNNs and inherit the advantages of 2D CNNs. However, the performance of
voxelization methods is primarily limited by the cubical growth in the computational cost
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with the increase in resolution. There are also other methods such as [22–26] to render the
point cloud from multiple perspectives to obtain a set of images to directly introduce the
CNN to process 3D point cloud analysis, which leads to spatial information loss and causes
difficulties for tasks such as semantic segmentation.

Since the conversion of point clouds causes information loss and brings extra burdens
on storage and computation, it is feasible to directly use the point cloud as the input of
deep networks. The point cloud analysis network closely follows the development of
image processing technology. The core problem of point cloud analysis is aggregating
and extracting features within the perceptual field. There are many methods devoted to
designing sophisticated local feature extraction modules, representative works are MLP-
based (such as PointNet [27] and PointNet++ [28]), convolution-based (PointConv [29]),
graph-based (DGCNN [30]), relation-based (RPNet [31]), and transformer-based (point
transformer [32]; PCT [33]) methods. These methods have contributed to the advancement
of the point cloud analysis community. However, the pursuit of sophisticated local feature
extractors also has its limitations. Delicate modules often correspond to complex modules,
resulting in huge computational costs, which hinders the application of these methods
to 3D point cloud analysis. In addition, the performance gains from more sophisticated
extractors have also been saturated recently. Experiments in [34] show that under similar
network frameworks, the performance improvements brought by most refined local feature
extractors are not significantly different. Therefore, this paper aims to design a lightweight
and efficient network instead of pursuing more refined feature extractors.

It is feasible to rethink MLP-based methods, analyze their inherent limitations, and
modify them to improve feature extraction capabilities significantly. The advantage of
simple MLP-based methods is that they do not require complex operations such as building
graphs to extract edge features or generating adaptive convolution kernels. In addition,
shared MLP regards all points in the receptive field as equivalent, extracts point features,
and then obtains local aggregated features through a symmetric function, which makes the
MLP-based methods less computationally expensive and can well adapt to the disorder of
point clouds. However, treating all points as equivalent tends to ignore the difference in
the spatial distribution, which leads to the deterioration of features. Looking back at the
process of CNN using convolution kernels to perform convolution operations on the image
patch to extract local features, the weight values in the convolution kernels are usually
different, which means that pixels at different positions in the feature map correspond
to different weights. Even if the features at different locations are the same, different
activation values will be output due to different weights, so the distribution characteristics
of elements in the local area also have a potential impact on the extraction of local features.
Local features are not only the aggregation of input features in the local receptive field but
also potentially encode the spatial distribution information of each element in the local area,
see Figure 1a. When performing MLP-based point cloud analysis, shared MLP is usually
implemented with a 1 × 1 convolution kernel, which is equivalent to forcing the weights of
the convolution kernels corresponding to each position in the local area of the 2D image
to be the same. Thus, the feature extraction is independent of the relative position of the
pixels, which seriously weakens the feature extraction ability of the convolution kernel, see
Figure 1b.

Typical MLP-based methods such as PointNet [27] first extract features for each point
independently and then aggregate over the global receptive field to obtain shape-level fea-
tures. In addition to ignoring local geometric properties, PointNet [27] completely ignores
spatial distribution information when aggregating all point features. PointNet++ [28] is an
upgraded version of PointNet [27], PointNet++ [28] uses mini-PointNet to aggregate point
features in local areas, and only splices the features and relative coordinates in the input
layer of mini-PointNet, so PointNet++ [28] does not inherently overcome the limitations
of PointNet [27]. Although DGCNN [30] is a graph-based method, it still uses the MLP
operation for local feature extraction. DGCNN [30] is aware of the role of spatial distribu-
tion information, so it adds the relative coordinates of the neighborhood points and the
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absolute coordinates of the centroid to the input, which makes the local features depend
on the absolute position of the centroid, thus reducing the representation ability of the
local features. In addition, DGCNN [30] dynamically builds graphs in Euclidean space and
feature space, which introduces much computational consumption. Although CNN-based
methods can extract local characteristics based on the spatial distribution information
of points, the process of adaptively learning convolution kernels is still computationally
expensive compared to MLP-based methods. A concise and effective way to alleviate the
limitation of shared MLPs ignoring spatial distribution information is to explicitly provide
the relative coordinates of the current receptive field at each MLP layer (for PointNet [27],
the receptive field is the entire point cloud, so global coordinates need to be provided).
Although this modification is simple, experiments validate its effectiveness. This design
allows us to achieve outstanding performance with fewer layers and a more lightweight
network.

Figure 1. Two local feature extraction methods: (a) The convolution kernel provides different weights
for input features at different locations, potentially encoding the spatial distribution information of
the input features; (b) Points at different locations share the same MLP feature extractor, so shared
MLP ignores the spatial distribution information.

Moreover, the vanilla version of the proposed model with an exponential decay
learning schedule exhibits rapid convergence, see Figure 2, which implies that performance
gains are limited for most epochs beyond the initial growth, accompanied by unnecessary
cost of computing resources. We introduce the snapshot ensemble technology to the
proposed model to address this issue. Snapshot ensemble can integrate a series of trained
models in one complete training session without additional computation cost and fully
utilize the model’s rapid convergence to improve the performance further. However,
for the snapshot ensemble, the commonly used cosine annealing learning rate cannot be
flexibly adjusted when the annealing cycle is fixed, so we propose a novel learning schedule
denoted as Rectified-Tanh (Re-Tanh) with an adjustable parameter that can flexibly adapt to
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different scenarios. Ablation studies also demonstrate that the learning strategy is beneficial
to improving the performance of the ensemble model.

Figure 2. Accuracy curve (red) of the proposed model on the ModelNet40 classification task with an
exponential decay learning schedule. Our model converges rapidly and steadily.

The main contributions of this paper can be summarized below:

• We take PointNet [27] and PointNet++ [28] as examples to study the difference in
mechanism between shared MLP and CNN convolution kernels, analyze the defects
of shared MLP, and reveal that the distribution information in the perceptual field is
critical for feature extraction.

• We propose a lightweight structure based on supplementing distribution information
to extract discriminative features in a concise manner.

• We introduce the snapshot ensemble to the model and propose a flexible learning
schedule to improve the performance.

• We evaluate our model on typical tasks, and the model with the minor parameters
achieves on-par performance with the previous SOTA methods. Particularly, the mod-
els for ModelNet40 classification (93.5% accuracy) and S3DIS semantic segmentation
(68.7% mIoU) have only about 1 million and 1.4 million parameters, respectively.

2. Related Work
2.1. Methods Based on 3D Voxel

Due to the success of CNN in the field of image processing, it is an intuitive attempt to
represent the point cloud with a regular voxel grid. VoxNet [16,17] uses two states of 0 and
1 to indicate whether the voxel is occupied. In order to reduce over-fitting, the approach
in [23] predicts the corresponding partial subvolumes of the voxelized data from various
directions and uses orientation pooling to fuse the shape features with different directions
and converts the analysis of 3D voxels into the extraction of 2D features. The approach
in [35] designs a voxel-based variational autoencoder, and the obtained features are used
for shape recognition. Voxel-based methods have achieved excellent performance in object
recognition tasks, but it has inherent shortcomings. The 3D point cloud is distributed on
a 2D manifold, so the 3D voxel data obtained by voxelizing the 2D manifold is highly
sparse, and some fine-grained information is lost due to quantization. Moreover, the
size of voxel data grows cubically with the resolution, which restricts a higher resolution
of voxel data. All these factors will cause a considerable consumption of storage and
computation resources. Some methods [19–21,36–38] have been used to alleviate these



Sensors 2022, 22, 4742 5 of 21

difficulties, but they still cannot fundamentally eliminate these limitations. The recently
proposed Minkowski Engine [39] is an extension of sparse convolutional networks to high-
dimensional space, which facilitates the use of deep networks commonly used in 2D vision
for point cloud analysis. Minkowski Engine [39] significantly reduces the storage and
computing requirements, enabling voxel-based methods to be applied to higher resolution
voxel inputs. Following paper [39], some works [40–42] based on Minkowski Engine have
demonstrated excellent performance in point cloud analysis.

2.2. Methods Based on Multi-View

Another strategy for transplanting the success of CNN to the point cloud is to render
the point cloud into images from multiple perspectives, thereby transforming the point
cloud analysis into 2D image processing. The method in [22] uses multiple paralleled
shared CNNs to process each view and then uses the view-pooling mechanism to fuse
features from multiple views to obtain global features. The approach in [23] extracts partial
subvolume features of voxel data from spherical projections from multiple perspectives
and then designs an orientation pooling layer for generating global features. Ref. [43]
aggregates similar features from multi-views through a recurrent clustering and pooling
module, which enhances the recognition performance of multi-view 3D objects. In [44], a
framework with multi-view attention-convolution pooling utilizes Res2Net to extract the
features from multiple views to alleviate the information loss and strengthen the connection
between these views. MVTN [45] designs a multi-view transformation network to exploit
the optimal viewpoint s adaptively. FSDCNet [46] proposes a view selection method based
on fixed and random views to alleviate overfitting caused by the typically fixed viewpoints.
Although the efficiency is improved relative to 3D CNN, the conversion of a complete
object into a set of discrete rendering images by projection brings about the loss of spatial
distribution information and additional requirements for storage resources, and the view-
based methods are non-trivial to be extended to the point cloud segmentation tasks, which
restricts the further development of such methods.

2.3. Methods Based on Point

Unlike converting point clouds into other formats, some methods have emerged in
recent years that directly use point clouds as input. PointNet [27] is a pioneering work in
such methods. PointNet [27] extracts the features of each point through shared MLPs and
aggregates the features of each point through a symmetric function to obtain shape-level
features. Since the point feature is directly transferred to the shape feature, the geometric
characteristics of the local regions are ignored, which limits the performance of Point-
Net [27]. Starting from PointNet [27], new methods have been proposed to pursue more
delicate feature extraction methods in order to explore more fine-grained geometric fea-
tures. PointNet++ [28] is an enhanced version of PointNet [27]. PointNet++ [28] focuses on
local feature extraction and aggregates local features through hierarchical networks and en-
larged receptive fields. PointWeb [47] uses the difference between the point pairs to weigh
the corresponding edges in local regions, thereby extracting more fine-grained features.
PCNN [48] designs a learnable parameterized kernel function that can adaptively operate
on non-grid-structured data. A-CNN [49] proposes multiple local regions composed of
concentric rings and design rules to determine the order of points inside the regions to
run CNN-like convolution operations to extract local features. AdaptConv [50] generates
adaptive kernels based on dynamically learned features to improve the graph convolution
in local regions. DGANet [51] builds local dilated graph-like regions and dilated graph
attention modules to extract local features for point clouds. OECNN [52] proposes an
orientation-encoding convolution module by searching for the same points in eight direc-
tions and arranging them to exploit the local features. GAPointNet [53] embeds a graph
attention mechanism in cascaded MLP layers to exploit local geometric characteristics in
point clouds.
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In addition to features within local regions, long-range dependencies between lo-
cal regions are also important. Besides the typical methods that indirectly obtain inter-
region relationships through hierarchical networks and enlarged receptive fields, some
methods simultaneously learn intra-region and inter-region relationships. The shape-
oriented CNN [54] simultaneously learns the intra-shape relationship inside each local
region and also learns the inter-shape relationship by capturing the long-range depen-
dence between the potential local shapes, which enhances the effectiveness of the features.
Point2SpatialCapsule [55] designs two modules named geometric feature aggregation
and spatial relationship aggregation to explicitly capture the geometric characteristics of
local regions and the spatial relationship between them. Point2Node [56] dynamically
integrates the correlation between nodes and itself, local and non-local nodes in a high-
dimensional graph, and designs a data-aware gate mechanism to aggregate the learned
features adaptively. SK-Net [57] proposes an end-to-end framework that jointly optimizes
the learnable key points and the extraction of features and then integrates local features and
their spatial distribution information to perform point cloud analysis. GS-Net [58] groups
distant points with similar and relevant geometric characteristics to aggregate information
from nearest feature vectors in both Euclidean space and Eigenvalue space, which can
integrate point features from a global perspective. Hybrid-CNN [59] proposes a novel
convolution operation named HyConv to capture richer local features and obtain hybrid
distribution information in both spatial and feature domains. FFPointNet [60] designs a
module named ChannelNet to exploit global shape features and fuses the local and global
features for better contextual representation. CGFM-Net [61] proposes a local geometric
feature modulation (GFM) block to learn local contextual features and designs a novel
global fusion mechanism to preserve the structural information.

Our experiments show that shared MLP is sufficient to process point clouds with high
performance compared to refined feature extractors while retaining the advantage of an
MLP with low computational complexity and low space complexity. In addition, inspired
by CNN and those point-based methods that pay attention to the spatial distribution
relationship between regions, our network explicitly provides the spatial distribution infor-
mation of features by supplementing the coordinates in the receptive field, which enables
us to obtain performance on par with the SOTA methods with a lightweight network.

3. Methodology

In this section, we first introduce the methods of feature extraction and the supplement
of distribution information, then review the snapshot ensemble and illustrate the proposed
annealing schedule, and finally, we illustrate the network architecture in detail.

3.1. Extracting Local Features
3.1.1. K-Nearest Neighbor Points Search

For a 2D image, a local region of a particular pixel contains pixels located within a
certain Manhattan distance from the central pixel that can be determined directly by the
index. For a point cloud, a collection of unordered points without a regular grid structure,
it is not feasible to directly determine the neighboring points with the index. The general
method is k nearest neighbor (kNN) search which outputs a fixed number of nearest points
around the centroid point in metric space.

Generally, a point cloud containing N points can be regarded as a point set denoted
as P = {p1, p2, . . . , pN}, in which an element pi = (xi, fi) contains a point with its 3D
coordinates xi ∈ R3 and additional point feature vector fi such as normal, RGB and so on.
For kNN research, the input point set is a N × (d + C) tensor where N, d, and C represent
the number of points, the dimensions of coordinates and features, and the outcome is a
point set of size N

′ × k× (d + C), where N
′

is the number of sampling points and k is the
number of neighboring points in each local region.
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3.1.2. Local Feature Extraction

When the kNN search is completed, the neighboring points of a certain centroid point
xi are denoted asN (xi). Our experiments found that shared MLP, even simple, is sufficient
to obtain outstanding performance. Therefore, we choose shared MLP used in PointNet [27]
and PointNet++ [28] as the local feature extractor in the trade-off between performance and
model complexity. Given a neighbor set N (xi) with k neighbor points {xi1, xi2, . . . , xik},
the coordinates of points are firstly translated into local coordinates relative to the centroid
point to make the local patterns independent of its spatial location. The local feature
extractor for centroid i can be defined as:

F(xi) = MAX{h(xij − xi)}, j ∈ [1, k], (1)

where MAX and h represent the max-pooling operation and the stacked shared MLPs,
respectively. See Figure 3.

Figure 3. The module for extracting local features based on MLP.

3.2. Supplement of the Distribution Information

From the analysis in Section 1, it can be seen that for MLP-based methods, one of
the main limitations is to regard points as equivalent and ignore the influence of point
distribution on features. Therefore, it is vital to provide information about the spatial
distribution of points within the receptive field to improve network performance. We adopt
a concise manner by directly providing spatial coordinates as supplementary information
to the intermediate layers of the network. The network automatically learns local features
and spatial distribution characteristics simultaneously and fuses them to obtain aggregate
features. Compared with the previous methods, the proposed model does not require
an additional process of establishing complex data structures such as graphs and trees
and avoids adding extra modules containing massive trainable parameters to extract
distribution information, making our network effective and computationally efficient.

Since the supplement mechanism of distribution characteristics involves the fusion
of features and their spatial distribution, the corresponding network module is denoted
as the Fusion Module. There exist local and global receptive fields in point clouds, so
the supplement mechanisms of distributional characteristics are also different. Figure 4
shows the Fusion Modules utilized in this paper. Figure 4a,b correspond to the Fusion
Modules with the local and global perception fields. The main difference between the
two modules is that the Fusion Module with local perception fields needs to explore the
neighborhood points through kNN operation and then calculate the relative coordinates,
and the Fusion Module with the global perception field only needs to provide the global
coordinates directly. Figure 4b can be seen as a particular case of Figure 4a when the local
receptive field is expanded to the entire point cloud.
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Figure 4. The Fusion Modules corresponding to local (a) and global (b) perception fields.

3.3. The Proposed Learning Schedule for Snapshot Ensemble

Model ensemble technology is much more robust and accurate than individual net-
works. The ordinary method is to train several individual models and fuse the outputs of
each model, which is computationally expensive. Snapshot ensemble [62] is an effective
method that can ensemble multiple neural networks without additional training cost. Snap-
shot ensemble follows a cyclic annealing schedule to converge to multiple local minima.
The training process thus is split into M cycles, and in each cycle, the learning rate starts
with a higher value and gradually decreases to a lower learning rate. Starting with a higher
value gives the network sufficient momentum to escape from a local minimum, and the
subsequent smaller learning rate guarantees the network to converge smoothly to a new
local minimum. The general form of the learning rate is:

Lr(x) = (lrmax − lrmin)× f (mod(t, T)) + lrmin, (2)

where lrmax and lrmin are the initial and final learning rate in one cycle, t is the iteration
number, T is the total number of training iterations in one cycle, and f is a monotonically
decreasing function. In general, f is set to be the shifted cosine function:

Shi f ted-cosine(t) = 0.5 · cos(πt/T) + 0.5. (3)
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The experiments reveal that the non-ensemble model rapidly converges when trained
with an exponential decay learning rate, see Figure 2. Rapid convergence implies that
the proposed model can quickly reach a local minimum in several epochs, facilitating the
introduction of the snapshot ensemble.

However, when T, lrmax and lrmin are fixed, the commonly used cosine annealing
learning schedule is also fixed, which makes it unable to be flexibly adjusted to adapt to
diverse scenarios. Thus we need to design a function that decreases monotonically from
1 to 0 on the interval [0, π] like the shifted cosine, and the shape of the function can be
flexibly adjusted. As shown in Equation (4), the tanh function increases monotonically, and
we introduce a new annealing schedule based on it.

tanh(x) =
ex − e−x

ex + e−x . (4)

The steps to rectify tanh to generate a new annealing curve are displayed as follows:

• Use −x instead of x to obtain a monotonically decreasing function f1:

f1(x) = tanh(−x). (5)

• The x is replaced by sx to scale f1, and then f1 is truncated on the interval [−π/2, π/2]
to obtain the function f2:

f2(x) = tanh(−sx), x ∈ [−π/2, π/2]. (6)

• By replacing x with x− π/2, the function f2 is shifted to the right by π/2, thereby
obtaining the function f3 defined on the interval [0, π]:

f3(x) = tanh[−s(x− π/2)], x ∈ [0, π]. (7)

• Since the values of f3 at both ends of the interval [0, π] are not strictly equal to ±1, it
needs to be normalized to obtain the function f4 with a range of [−1, 1]:

f4(x) =
tanh[−s(x− π/2)]

tanh(sπ/2)
, x ∈ [0, π]. (8)

• Scale the value range of f4 to [−0.5, 0.5] and move it up by 0.5 to obtain a new annealing
function Re-Tanh defined on [0, π]. The function value decreases monotonically from
1 to 0, and the shape can be adjusted by s. The expression is:

Re-Tanh(x) =
tanh[−s(x− π/2)]

2tanh(sπ/2)
+ 0.5, x ∈ [0, π]. (9)

Figure 5 illustrates the Re-Tanh curves corresponding to different s values. The shifted
cosine is also shown for reference. It is noted that when s equals 1, the middle part of
the Re-Tanh and the shifted cosine are almost coincident. This phenomenon can prove
mathematically that the slopes of the two curves are almost equal when they are close to
the center of symmetry (x = π/2), which shows that the Re-Tanh can be regarded as a
generalization of shifted cosine so that the learning schedule can be flexibly adjusted in
specific scenarios to improve the performance of the model. In practical applications, the x
is usually replaced with π ·mod(t, T)/T, where the mathematical quantities represented
by t and T are the same as those in Equation (2).
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Figure 5. The Re-Tanh curves corresponding to different scale factors. The shifted cosine curve is
also illustrated for reference.

3.4. Network Architecture

Compared with the task of semantic segmentation of large-scale scenes, for classifica-
tion and part segmentation tasks, the processed point cloud objects are complete discrete
objects, and the scale of the point cloud is smaller, so a more lightweight network can be
designed. The network structure for classification and part segmentation in this paper
only consists of a Local Feature Module and a Fusion Module with a global perception
field. The number of points is always huge for semantic segmentation tasks, and more
abstract features are required, so a deeper network consisting of a Local Feature Module
and multiple cascaded Fusion Modules with enlarged local perception fields is adopted.

3.4.1. Classification and Part Segmentation Network

As shown in Figure 6, the entire network mainly consists of three modules, which are
used to extract the local features, fuse the local features with the supplementary global
coordinates to obtain shape-level features, and perform classification or segmentation tasks,
respectively. The classification network and segmentation network share the same first
two modules.

For classification, first, the N points in the input point cloud are regarded as centroids
without sampling, and then k neighboring points are searched. The grouped points are
fed into the local feature extractor, containing three successive shared MLPs followed by
a max-pooling layer to guarantee that the local features are permutation invariant. Each
centroid corresponds to a group of neighboring points, and all the N groups share the same
parameters. Subsequently, the N local features are sent to Fusion Module. It is noted that
before each layer in the Fusion Module, the N local features and their N corresponding
global coordinates are concatenated. Finally, the classification task is performed through
three MLP layers. For part segmentation, the local features reflect the local geometric
properties. The Fusion Module yields more abstract fusion features for each point which
contain global and local information before the final max-pooling layer, and the shape-level
feature acts as the output of the max-pooling layer. These features mentioned above contain
complete information about an individual point: the object it belongs to, the local pattern it
represents, and its spatial distribution. Then the shape-level feature is concatenated with
each point’s local features and fusion features and output by the local feature extractor and
Fusion Module, respectively. Then the combined feature is fed into Segmentation Module,
in which the global coordinates are also provided to accomplish the segmentation tasks.
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Figure 6. Network architecture for classification and part segmentation tasks. Some network layers
are omitted for clarity.

3.4.2. Semantic Segmentation Network

In addition to the initial Local Feature Module, the semantic segmentation network
mainly includes five Fusion Modules followed by down-sampling operations and five
subsequent up-sampling operations. Such a design is beneficial for reducing the amount of
computation and extracting more abstract features. The entire network structure is shown
in Figure 7.

Figure 7. Network architecture for semantic segmentation.

3.5. Implementation Details

The network is implemented on an NVIDIA TITAN Xp GPU with TensorFlow. For the
three tasks, the batch size is set to 32, 32, and 8. For classification and part segmentation,
the annealing cycle is 26 and 10 epochs, and the momentum of batch normalization (BN)
starts at 0.5 and decays exponentially once every annealing cycle by a rate of 0.8. The scale



Sensors 2022, 22, 4742 12 of 21

factor of the Re-Tanh is set to 1.5. In each cycle, the learning rate starts at 0.01 and decreases
monotonically to 0.00001. For semantic segmentation, the momentum of BN is fixed to
0.99, and a learning rate starts at 0.01 with an exponential decay rate of 0.95 per epoch is
employed without ensemble technology.

4. Results
4.1. Modelnet40 Classification

Our model is evaluated on the ModelNet40 benchmark, which contains 13,834 CAD
models from 40 categories divided into 9843 for training and 2468 for testing. For each object,
1024 points are uniformly sampled on the mesh surface, and then they are normalized into
a unit sphere. The result is shown in Table 1. Our model achieves on-par performance
with previous SOTA methods with only 1024 points as input. Note that methods such
as RS-CNN [63] improve the accuracy from 92.9% to 93.6% by a tricky 10-voting strategy
with randomly scaled shapes. The 10-voting evaluation is repeated 300 times, and then
the best result is selected, so we take the result without voting for RS-CNN [63] for a
fair comparison.

Table 1. Shape classification and part segmentation results (%) (“nor”: normal; “-”: unknown;
“k”: 1024). The best scores in the table are marked in bold font.

ModelNet40 ShapeNet

Method Input Acc. Input Cls. mIoU Ins. IoU

PointNet [27] 1 k 89.2 2 k 80.4 83.7
SCN [64] 1 k 90.0 1 k 81.8 84.6
KD-Net (depth = 10) [19] 1 k 90.6 4 k 77.4 82.3
PointNet++ [28] 1 k 90.7 2 k, nor 81.9 85.1
KCNet [65] 1 k 91.0 2 k 82.2 84.7
MRTNet [66] 1 k 91.2 - - -
SpecGCN [67] 1 k 91.5 2 k - 85.4
KD-Net (depth = 15) [19] 32 k 91.8 - - -
PointCNN [68] 1 k 92.2 - - -
PCNN [48] 1 k 92.3 2 k 81.8 85.1
DGANet [51] 1 k 92.3 2 k - 85.2
Point2Sequence [69] 1 k 92.6 - - -
A-CNN [49] 1 k 92.6 - - -
Hybrid-CNN [59] 1 k 92.6 - - -
DGCNN [30] 1 k 92.9 2 k 82.3 85.1
RS-CNN w/o vot. [63] 1 k 92.9 2 k 84.0 86.2
Point2Node [56] 1 k 93.0 - - -
GAPointNet [53] 1 k 93.0 2 k - 84.9
PCT [33] 1 k 93.2 2 k - 86.4
Point2SpatialCapsule [55] 1 k 93.4 2 k 83.0 85.3
AGNet [70] 1 k 93.4 2 k 82.7 85.4
Ours 1 k 93.5 2 k 82.7 85.7

4.2. ShapeNet Part Segmentation

We evaluate the proposed model on the part segmentation task with the ShapeNet-part
benchmark. The dataset contains 16,881 objects in 16 categories marked as 50 parts. For
each object, 2048 points are sampled. Consistent with the previous work PointNet [27],
the dataset is divided into 14,034/2847 for training/testing. The mean Intersection over
Union (IoU) metric is used as a quantitative evaluation of performance, including overall
instance IoU (“Instance”) and mean category IoU (“Class”). The segmentation results are
presented in Table 1. Our model obtains on-par performance among the SOTA methods.
Some qualitative results on the segmentation tasks are visualized in Figure 8.
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Figure 8. Segmentation examples of ShapeNet. For each sample, (left column) ground truth;
(right column) prediction.

4.3. S3dis Semantic Segmentation

Semantic segmentation of large scenes is a more complex point cloud analysis task,
and Stanford 3D Indoor Space (S3DIS) dataset is utilized to evaluate the proposed model’s
performance. S3DIS contains a total of 273 million points from 271 rooms in 6 large regions,
and each point is represented as a 6-dimensional vector containing XYZ coordinates and
RGB color, annotated with a semantic label from 13 categories. Compared with ModelNet40
and ShapeNet, which are datasets composed of discrete objects, the processing of S3DIS is
more challenging in terms of the large-scale scenes.

A typical idea for preprocessing S3DIS is to divide a room into 1 m × 1 m blocks
and randomly sample a fixed number of points in each block as an input to the network
individually. The normalized location coordinates across the room are added to preserve
the global location information for each point within the block. However, this method
inevitably leads to the deterioration of spatial geometric information. A common issue
is that an object is divided into two adjacent blocks, and the network outputs completely
different semantic predictions for the two parts.

In order to ultimately preserve the geometric information of the entire scene, we
follow RandLA-Net [71] and take a large-scale scene as input. Since the local features of
large-scale scenes are abstract, we extend the network used for ModelNet40 classification to
a deeper one containing multiple Fusion Modules. We set RandLA-Net [71] as the baseline
model. The experimental results are shown in Tables 2 and 3, and some qualitative results
are illustrated in Figure 9. Our model outperforms most of the models listed, achieving
comparable performance to RandLA-Net [71]. It is worth emphasizing that, in contrast
to RandLA-Net’s [71] 5-layer encoder consisting of five huge Dilated Residual Blocks,
the Fusion Module of our network for S3DIS segmentation consists of only five cascaded
shared MLPs, which enables our network to efficiently handle large-scale point cloud
scenes while maintaining a lightweight structure. More precisely, the number of trainable
parameters of our model and RandLA-Net [71] implemented on S3DIS are 1.4 million and
5.0 million, respectively.
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Table 2. Results of 6-fold cross validation on the S3DIS dataset (%). The best scores in the table are
marked in bold font.

Method mIoU OA mAcc

PointNet [27] 47.6 78.6 66.2
SL-Ontology [72] 49.9 - -
PointNet++ [28] 54.5 81.0 67.1
DGCNN [30] 56.1 84.1 -
RSNet [73] 56.5 - 66.5
AGNet [70] 59.6 85.9 -
PointCNN [68] 65.4 88.8 75.6
PointWeb [47] 66.7 87.3 76.2
RandLA-Net [71] 70.0 88.0 82.0
Ours 68.7 87.5 81.2

Table 3. Results of S3DIS Area-5 (%). The best scores in the table are marked in bold font.

Method mIoU mAcc

PointNet [27] 41.09 48.98
PointCNN [68] 57.26 63.86
PointNet++ [28] 57.27 63.54
PointWeb [47] 60.28 66.64
RandLA-Net [71] 60.63 68.81
MinkowskiNet [39] 65.35 71.71
Ours 61.38 70.68

Figure 9. Qualitative results for the semantic segmentation task on S3DIS. Regions with large
deviations between the predicted results and the ground truths are marked with red boxes.
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5. Discussion

In this section, we first evaluate the complexity of the proposed model. Then, we
perform ablation experiments on our model to prove the effectiveness of the architecture
design. Finally, we conduct a series of experiments to evaluate the influence of some critical
parameters. All these experiments are performed on the ModelNet40 classification task.

5.1. Space and Time Complexity Analysis

Table 4 summarizes the space (number of parameters in the proposed model) and time
(floating-point operations per sample) complexity. While PCNN [48] and PointNet [27] ex-
hibit higher performance in computational cost (measured in FLOPs/sample), the proposed
model is still quite efficient. The proposed model contains the least number of parameters
among the listed point-based models. Compared with PointNet [27] and PointNet++ [28]
which are also based on shared MLP, the number of parameters is reduced by a large
margin of 72.0% and 34.7%.

Table 4. Complexity of the model for ModelNet40 classification (res: resolution; k: 1024; M: million).
The three parts from top to bottom are voxel-based, view-based and point-based methods.

Method Params FLOPs/Sample Input Acc. (%)

VoxNet [16] 0.8 M - 30× 30× 30 voxel 83.0

MVCNN [22] 60.0 M 62057 M 80 views 90.1

KCNet [65] 0.9 M - 1k points 91.0
PointNet++(SSG) [28] 1.5 M 1684 M 1 k points 90.7
PointNet++(MSG) [28] 1.7 M 4090 M 1 k points 91.9
DGANet [51] 1.7 M - 1 k points 92.3
DGCNN [30] 1.8 M 2430 M 1 k points 92.9
GAPointNet [53] 1.9 M 1228 M 1 k points 93.0
AGNet [70] 2.0 M - 1 k points 93.4
KD-Net (depth = 15) [19] 2.0 M - 32 k points 91.8
SpecGCN [67] 2.0 M 1112 M 1 k points 91.5
PCT [33] 2.9 M 2320 M 1 k points 93.2
PointNet [27] 3.5 M 440 M 1 k points 89.2
PCNN [48] 8.2 M 294 M 1 k points 92.3
Ours 0.98 M 968 M 1 k points 93.5

5.2. Ablation Study

The feature extractor used in our model is shared MLP, which seems a little simple
compared to some complex and sophisticated feature extractors. However, our model
shows good performance, primarily due to the supplement of spatial distribution infor-
mation and the proposed learning schedule. We study the validity of these components,
and the results are shown in Table 5. The “Part. supple.” means that the spatial coordinates
are supplemented to the features only once in the first layer of the Fusion Module. The
“Supple.” means the coordinates are supplemented with each layer in the Fusion Module.
Furthermore, the “Cosine” and “Re-Tanh” imply that the model adopts the snapshot en-
semble with cosine and the proposed Re-Tanh annealing schedules. For models such as
Model A, B, and C without ensemble strategy, the learning schedules adopt an exponential
decay learning rate that starts at 0.001 and decreases by 0.5 every 26 epochs, consistent
with the annealing cycle.

The baseline Model A only obtains an accuracy of 90.9%, and the accuracy of Model
B is significantly improved to 92.6% with the supplementary information, but still lower
than the 93.5% obtained by our model. Model A only considers local features without their
locations, and the shape-level feature finally obtained is incomplete. Model B attempts to
contain the spatial information of local features in the inference, but coordinates are fed
into only one layer. Although the performance is improved significantly compared with
Model A, Model B trivially supplements the distribution information to the local features
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only once. Model C takes the spatial coordinates as supplements for local patterns in each
layer in the Fusion Module and achieves an accuracy of 92.9%. Comparing Model A and
C, it can be verified that the supplement of spatial information is critical to improving the
performance significantly. Model D adopts a cosine annealing strategy for snapshot and
achieves 93.0% accuracy, and the improvement is not significant compared with Model
C (92.9%). The model (Ours) with the proposed Re-Tanh annealing strategy outperforms
all these models above, especially Model D, proving that an adjusted annealing learning
schedule is essential for better performance.

Table 5. Ablation studies of the proposed model (%).

Model Local Part. Supple. Supple. Cosine Re-Tanh Acc.

A X 90.9
B X X 92.6
C X X 92.9
D X X X 93.0

Ours X X X 93.5

5.3. Scale Factor

The proposed learning schedule can adjust the learning schedule flexibly to make
the model adaptive to various scenarios. To evaluate the effectiveness of the Re-Tanh,
we conduct a series of experiments corresponding to different scale factors. The results
are shown in Table 6, and the result corresponding to cosine annealing is also illustrated
for reference. For ModelNet40 classification, the model achieves the highest accuracy
when s is set to 1.5, proving that the Re-Tanh is more flexible and more applicable than
cosine annealing.

Table 6. Results corresponding to different scale factors (%).

s 0.5 1.0 1.5 2.0 2.5 Cosine

Acc. 93.0 93.1 93.5 93.1 92.9 93.0

5.4. Point Density

Although 1024 points per shape can be sufficient to extract discriminative features,
the number of points sampled from a shape cannot always be enough and uniform in
real scenarios. To evaluate the performance on different densities, we randomly sample
points from the 2048 points of each shape for training and evaluation. In order to keep the
neighborhood area constant, the number of neighbor points changes in the same proportion
as the density changes. Precisely, 1024 points correspond to the number of neighboring
points k equals 48. Thus, when the numbers of sampling points are 512, 256, 128, and
64, k is set to 24, 12, 6, and 3, accordingly. The result is shown in Figure 10. Even in the
case of 128 points, our model can still achieve an accuracy of 89.7%, which exceeds 89.2%
of PointNet [27] with 1024 points as input. This result shows that the proposed method
can extract discriminative features in extremely sparse points, making the network highly
adapted to various point densities.

5.5. Neighborhood Size

A proper neighborhood size is crucial for the local features. The number of neighboring
points is denoted as k. Moreover, experiments are performed to evaluate the robustness to
the variation of it. The results are shown in Table 7. It can be seen that the highest accuracy
is achieved when k = 48. The reason is that when k is too small, the proposed model cannot
extract generally representative local patterns. On the contrary, when k is too large, the
extracted local features contain too much information that is not closely related to the local
regions. Although the changes in neighborhood size can affect the performance of the
proposed model, it is worth noting that the model still maintains high accuracy.
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Figure 10. Accuracy at different densities.

Table 7. Results of different sizes of local regions (%).

Size 12 24 36 48 60

Acc. 92.3 92.4 92.7 93.5 93.1

5.6. Reduced Training Dataset

In many scenarios, the labeled samples are expensive and not always sufficient. To
evaluate the feature extraction capability of the proposed model, we set a series of reduced
training data. Precisely, in the ModelNet40 data provided by [27], the training set consists
of five files in total, the first four files each contain 2048 shapes, and the last file contains
1648 shapes. The distribution of ModelNet40 training data in each category is unbalanced,
and in each file, this imbalance will be more serious. We directly adopt each file as a reduced
training set, and the results are illustrated in Table 8. It can be seen that the proposed model
outperforms PointNet [27] on each reduced training set by a large margin, which implies
that the proposed model can maintain an effective feature extraction capability on a small
unbalanced training dataset.

Table 8. Results on reduced training set (%).

Method File-0 File-1 File-2 File-3 File-4 All Files

PointNet [27] 79.2 81.8 81.2 79.3 78.8 89.2
Ours 88.3 88.7 88.5 88.8 87.3 93.5
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6. Conclusions

This paper studies the limitation of MLP-based methods and proposes a lightweight
architecture for point cloud analysis. Inspired by CNN, we propose the supplementary
mechanism of distribution information for shared MLPs and perform it concisely. Moreover,
the model converges rapidly with an exponential decay learning rate, so we promote it
with the snapshot ensemble strategy and design a new cyclic annealing schedule that can
be flexibly adjusted. Our network achieves on-par performance with the previous SOTA
methods, with the least number of parameters. Although effective, there are also some
limitations. The kNN search is performed for each point when performing classification
tasks resulting in overlapping points between the local regions of adjacent centroids, which
makes the computation redundant. Adaptive learning of a subset of keypoints in a point
cloud and designing more effective architectures for efficient point analysis will be explored
in our future studies.

Author Contributions: Conceptualization: Q.Z. and J.S.; methodology: Q.Z.; validation: Q.Z.;
investigation: Q.Z. and W.C.; resources: J.S.; writing—original draft preparation: Q.Z.; writing—
review and editing: Q.Z., J.S. and W.C.; supervision: J.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: ModelNet40: https://shapenet.cs.stanford.edu/media/modelnet40_
ply_hdf5_2048.zip; ShapeNet part: https://cs.stanford.edu/~ericyi/project_page/part_annotation/
index.html; S3DIS: https://goo.gl/forms/4SoGp4KtH1jfRqEj2, accessed on 8 October 2021.

Acknowledgments: The authors thank Stanford University for providing the experimental datasets.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
MLP Multi-layer perceptron
SOTA State-of-the-art
3D Three-dimensional
2D Two-dimensional
Re-Tanh Rectified-Tanh
kNN K nearest neighbor
GPU Graphics processing unit
BN Batch normalization
S3DIS Stanford 3D Indoor Space
FLOPs Floating-point operations

References
1. Golovinskiy, A.; Kim, V.G.; Funkhouser, T. Shape-based recognition of 3D point clouds in urban environments. In Proceedings of

the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 2154–2161.
[CrossRef]

2. Gao, G.; Liu, Y.S.; Lin, P.; Wang, M.; Gu, M.; Yong, J.H. BIMTag: Concept-based automatic semantic annotation of online BIM
product resources. Adv. Eng. Inform. 2017, 31, 48–61. [CrossRef]

3. Han, Z.; Liu, Z.; Han, J.; Vong, C.M.; Bu, S.; Chen, C.L.P. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised
Learning of Features with Structure Preservation on 3-D Meshes. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2268–2281.
[CrossRef] [PubMed]

4. Zhong, S.; Zhong, Z.; Hua, J. Surface reconstruction by parallel and unified particle-based resampling from point clouds. Comput.
Aided Geom. Des. 2019, 71, 43–62. [CrossRef]

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
https://cs.stanford.edu/~ericyi/project_page/part_annotation/index.html
https://cs.stanford.edu/~ericyi/project_page/part_annotation/index.html
https://goo.gl/forms/4SoGp4KtH1jfRqEj2
http://doi.org/10.1109/ICCV.2009.5459471
http://dx.doi.org/10.1016/j.aei.2015.10.003
http://dx.doi.org/10.1109/TNNLS.2016.2582532
http://www.ncbi.nlm.nih.gov/pubmed/28113522
http://dx.doi.org/10.1016/j.cagd.2019.04.011


Sensors 2022, 22, 4742 19 of 21

5. Skrodzki, M.; Jansen, J.; Polthier, K. Directional density measure to intrinsically estimate and counteract non-uniformity in point
clouds. Comput. Aided Geom. Des. 2018, 64, 73–89. [CrossRef]

6. Zheng, Y.; Li, G.; Xu, X.; Wu, S.; Nie, Y. Rolling normal filtering for point clouds. Comput. Aided Geom. Des. 2018, 62, 16–28.
[CrossRef]

7. Gao, G.; Liu, Y.S.; Wang, M.; Gu, M.; Yong, J.H. A query expansion method for retrieving online BIM resources based on Industry
Foundation Classes. Autom. Constr. 2015, 56, 14–25. [CrossRef]

8. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 3357–3364. [CrossRef]

9. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.
[CrossRef]

10. Yi, C.; Lu, D.; Xie, Q.; Liu, S.; Li, H.; Wei, M.; Wang, J. Hierarchical tunnel modeling from 3D raw LiDAR point cloud. Comput.
Aided Des. 2019, 114, 143–154. [CrossRef]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 84–90. [CrossRef]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

13. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

14. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 2011–2023. [CrossRef]

15. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
[CrossRef]

16. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October
2015; pp. 922–928. [CrossRef]

17. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1912–1920. [CrossRef]

18. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. ScanNet: Richly-Annotated 3D Reconstructions of
Indoor Scenes. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2432–2443. [CrossRef]

19. Klokov, R.; Lempitsky, V. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. In Proceedings
of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 863–872. [CrossRef]

20. Wang, P.S.; Liu, Y.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis.
Acm Trans. Graph. 2017, 36, 72. [CrossRef]

21. Riegler, G.; Ulusoy, A.O.; Geiger, A. OctNet: Learning Deep 3D Representations at High Resolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6620–6629.
[CrossRef]

22. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 945–953. [CrossRef]

23. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and Multi-view CNNs for Object Classification on 3D Data.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 5648–5656. [CrossRef]

24. Xie, J.; Dai, G.; Zhu, F.; Wong, E.K.; Fang, Y. DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1335–1345. [CrossRef] [PubMed]

25. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S. 3D Shape Segmentation with Projective Convolutional Networks. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 6630–6639. [CrossRef]

26. Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Gao, Y. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 264–272. [CrossRef]

27. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 77–85. [CrossRef]

http://dx.doi.org/10.1016/j.cagd.2018.03.011
http://dx.doi.org/10.1016/j.cagd.2018.03.004
http://dx.doi.org/10.1016/j.autcon.2015.04.006
http://dx.doi.org/10.1109/ICRA.2017.7989381
http://dx.doi.org/10.1109/CVPR.2018.00102
http://dx.doi.org/10.1016/j.cad.2019.05.033
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1109/CVPR.2018.00472
http://dx.doi.org/10.1109/IROS.2015.7353481
http://dx.doi.org/10.1109/CVPR.2015.7298801
http://dx.doi.org/10.1109/CVPR.2017.261
http://dx.doi.org/10.1109/ICCV.2017.99
http://dx.doi.org/10.1145/3072959.3073608
http://dx.doi.org/10.1109/CVPR.2017.701
http://dx.doi.org/10.1109/ICCV.2015.114
http://dx.doi.org/10.1109/CVPR.2016.609
http://dx.doi.org/10.1109/TPAMI.2016.2596722
http://www.ncbi.nlm.nih.gov/pubmed/27482929
http://dx.doi.org/10.1109/CVPR.2017.702
http://dx.doi.org/10.1109/CVPR.2018.00035
http://dx.doi.org/10.1109/CVPR.2017.16


Sensors 2022, 22, 4742 20 of 21

28. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5099–5108. [CrossRef]

29. Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9613–9622.
[CrossRef]

30. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. 2018, 38, 1–12. [CrossRef]

31. Ran, H.; Zhuo, W.; Liu, J.; Lu, L. Learning Inner-Group Relations on Point Clouds. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 15457–15467. [CrossRef]

32. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point Transformer. In Proceedings of the 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 16259–16268. [CrossRef]

33. Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.; Hu, S.M. PCT: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199.
[CrossRef]

34. Liu, Z.; Hu, H.; Cao, Y.; Zhang, Z.; Tong, X. A Closer Look at Local Aggregation Operators in Point Cloud Analysis. In
Proceedings of the 2020 European conference on computer vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 326–342.
[CrossRef]

35. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Generative and Discriminative Voxel Modeling with Convolutional Neural Networks.
arXiv 2016, arXiv:1608.04236. [CrossRef]

36. Wang, D.Z.; Posner, I. Voting for voting in online point cloud object detection. In Proceedings of the Robotics: Science and
Systems, Rome, Italy, 13–17 July 2015; Volume 1, pp. 10–15. [CrossRef]

37. Li, Y.; Pirk, S.; Su, H.; Qi, C.R.; Guibas, L.J. FPNN: Field Probing Neural Networks for 3D Data. In Proceedings of the
30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 4–9 December 2016; pp. 307–315.
[CrossRef]

38. Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3Deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 1355–1361. [CrossRef]

39. Choy, C.; Gwak, J.; Savarese, S. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 3070–3079. [CrossRef]

40. Cheng, R.; Razani, R.; Ren, Y.; Bingbing, L. S3Net: 3D LiDAR Sparse Semantic Segmentation Network. In Proceedings of the
2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14040–14046.
[CrossRef]

41. Akhtar, A.; Gao, W.; Zhang, X.; Li, L.; Li, Z.; Liu, S. Point Cloud Geometry Prediction Across Spatial Scale using Deep Learning.
In Proceedings of the 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau,
China, 1–4 December 2020; pp. 70–73. [CrossRef]

42. Xie, S.; Gu, J.; Guo, D.; Qi, C.R.; Guibas, L.; Litany, O. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding.
In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 574–591.

43. Wang, C.; Pelillo, M.; Siddiqi, K. Dominant Set Clustering and Pooling for Multi-View 3D Object Recognition. In Proceedings of
the British Machine Vision Conference (BMVC), London, UK, 4–7 September 2017; Volume 64, pp. 1–12. [CrossRef]

44. Wang, W.; Wang, T.; Cai, Y. Multi-view attention-convolution pooling network for 3D point cloud classification. Appl. Intell. 2021,
34, 3201–3212. [CrossRef]

45. Hamdi, A.; Giancola, S.; Ghanem, B. MVTN: Multi-View Transformation Network for 3D Shape Recognition. In Proceedings of
the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 1–11.
[CrossRef]

46. Wang, W.; Zhou, H.; Chen, G.; Wang, X. Fusion of a Static and Dynamic Convolutional Neural Network for Multiview 3D Point
Cloud Classification. Remote Sens. 2022, 14, 1996. [CrossRef]

47. Zhao, H.; Jiang, L.; Fu, C.W.; Jia, J. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5560–5568. [CrossRef]

48. Atzmon, M.; Maron, H.; Lipman, Y. Point Convolutional Neural Networks by Extension Operators. ACM Trans. Graph. 2018,
37, 1–12. [CrossRef]

49. Komarichev, A.; Zhong, Z.; Hua, J. A-CNN: Annularly Convolutional Neural Networks on Point Clouds. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 7413–7422. [CrossRef]

50. Zhou, H.; Feng, Y.; Fang, M.; Wei, M.; Qin, J.; Lu, T. Adaptive Graph Convolution for Point Cloud Analysis. In Proceedings of the
2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 4945–4954.
[CrossRef]

http://dx.doi.org/10.48550/arXiv.1706.02413
http://dx.doi.org/10.1109/CVPR.2019.00985
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1109/iccv48922.2021.01519
http://dx.doi.org/10.1109/access.2021.3116304
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/978-3-030-58592-1_20
https://doi.org/10.48550/arXiv.1608.04236
http://dx.doi.org/10.15607/RSS.2015.XI.035
http://dx.doi.org/10.48550/arXiv.1605.06240
http://dx.doi.org/10.1109/ICRA.2017.7989161
http://dx.doi.org/10.1109/CVPR.2019.00319
http://dx.doi.org/10.1109/ICRA48506.2021.9561305
http://dx.doi.org/10.1109/VCIP49819.2020.9301804
http://dx.doi.org/10.5244/C.31.64
http://dx.doi.org/10.1007/s10489-021-02840-2
http://dx.doi.org/10.1109/ICCV48922.2021.00007
http://dx.doi.org/10.3390/rs14091996
http://dx.doi.org/10.1109/CVPR.2019.00571
http://dx.doi.org/10.1145/3197517.3201301
http://dx.doi.org/10.1109/CVPR.2019.00760
http://dx.doi.org/10.1109/ICCV48922.2021.00492


Sensors 2022, 22, 4742 21 of 21

51. Wan, J.; Xie, Z.; Xu, Y.; Zeng, Z.; Yuan, D.; Qiu, Q. DGANet: A Dilated Graph Attention-Based Network for Local Feature
Extraction on 3D Point Clouds. Remote Sens. 2021, 13, 3484. [CrossRef]

52. Lin, H.; Zheng, W.; Peng, X. Orientation-Encoding CNN for Point Cloud Classification and Segmentation. Mach. Learn. Knowl.
Extr. 2021, 3, 601–614. [CrossRef]

53. Chen, C.; Fragonara, L.Z.; Tsourdos, A. GAPointNet: Graph attention based point neural network for exploiting local feature of
point cloud. Neurocomputing 2021, 438, 122–132. [CrossRef]

54. Zhang, C.; Song, Y.; Yao, L.; Cai, W. Shape-oriented convolution neural network for point cloud analysis. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12773–12780. [CrossRef]

55. Wen, X.; Han, Z.; Liu, X.; Liu, Y.S. Point2SpatialCapsule: Aggregating Features and Spatial Relationships of Local Regions on
Point Clouds Using Spatial-Aware Capsules. IEEE Trans. Image Process. 2020, 29, 8855–8869. [CrossRef] [PubMed]

56. Han, W.; Wen, C.; Wang, C.; Li, X.; Li, Q. Point2Node: Correlation Learning of Dynamic-Node for Point Cloud Feature
Modeling. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 10925–10932. [CrossRef]

57. Wu, W.; Zhang, Y.; Wang, D.; Lei, Y. SK-Net: Deep learning on point cloud via end-to-end discovery of spatial keypoints. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6422–6429.
[CrossRef]

58. Xu, M.; Zhou, Z.; Qiao, Y. Geometry sharing network for 3d point cloud classification and segmentation. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12500–12507. [CrossRef]

59. Hu, M.; Ye, H.; Cao, F. Convolutional neural networks with hybrid weights for 3D point cloud classification. Appl. Intell. 2021, 51.
[CrossRef]

60. Bello, S.A.; Wang, C.; Wambugu, N.M.; Adam, J.M. FFPointNet: Local and global fused feature for 3D point clouds analysis.
Neurocomputing 2021, 461, 55–62. [CrossRef]

61. Hao, F.; Song, R.; Li, J.; Cao, K.; Li, Y. Cascaded geometric feature modulation network for point cloud processing. Neurocomputing
2022, 492, 474–487. [CrossRef]

62. Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J.E.; Weinberger, K.Q. Snapshot Ensembles: Train 1, get M for free. arXiv 2017,
arXiv:1704.00109.

63. Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 8887–8896. [CrossRef]

64. Xie, S.; Liu, S.; Chen, Z.; Tu, Z. Attentional ShapeContextNet for Point Cloud Recognition. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4606–4615. [CrossRef]

65. Shen, Y.; Feng, C.; Yang, Y.; Tian, D. Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4548–4557. [CrossRef]

66. Gadelha, M.; Wang, R.; Maji, S. Multiresolution Tree Networks for 3D Point Cloud Processing. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 105–122. [CrossRef]

67. Wang, C.; Samari, B.; Siddiqi, K. Local Spectral Graph Convolution for Point Set Feature Learning. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 56–71.

68. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. In Proceedings of the International
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 828–838.

69. Liu, X.; Han, Z.; Liu, Y.S.; Zwicker, M. Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-
based Sequence to Sequence Network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 8778–8785. [CrossRef]

70. Jing, W.; Zhang, W.; Li, L.; Di, D.; Chen, G.; Wang, J. AGNet: An Attention-Based Graph Network for Point Cloud Classification
and Segmentation. Remote Sens. 2022, 14, 1036. [CrossRef]

71. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation
of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 16–20 June 2020; pp. 11105–11114. [CrossRef]

72. Poux, F.; Ponciano, J.J. Self-Learning Ontology for Instance Segmentation of 3d Indoor Point Cloud. ISPRS—Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2020, 43B2, 309–316. [CrossRef]

73. Huang, Q.; Wang, W.; Neumann, U. Recurrent Slice Networks for 3D Segmentation of Point Clouds. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2626–2635.
[CrossRef]

http://dx.doi.org/10.3390/rs13173484
http://dx.doi.org/10.3390/make3030031
http://dx.doi.org/10.1016/j.neucom.2021.01.095
http://dx.doi.org/10.1609/aaai.v34i07.6972
http://dx.doi.org/10.1109/TIP.2020.3019925
http://www.ncbi.nlm.nih.gov/pubmed/32894715
http://dx.doi.org/10.1609/aaai.v34i07.6725
http://dx.doi.org/10.1609/aaai.v34i04.6113
http://dx.doi.org/10.1609/aaai.v34i07.6938
http://dx.doi.org/10.1007/s10489-021-02240-6
http://dx.doi.org/10.1016/j.neucom.2021.07.044
http://dx.doi.org/10.1016/j.neucom.2022.04.007
http://dx.doi.org/10.1109/CVPR.2019.00910
http://dx.doi.org/10.1109/CVPR.2018.00484
http://dx.doi.org/10.1109/CVPR.2018.00478
http://dx.doi.org//10.1007/978-3-030-01234-2_7
http://dx.doi.org/10.1609/aaai.v33i01.33018778
http://dx.doi.org/10.3390/rs14041036
http://dx.doi.org/10.1109/CVPR42600.2020.01112
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2020-309-2020
http://dx.doi.org/10.1109/CVPR.2018.00278.

	Introduction
	Related Work
	Methods Based on 3D Voxel
	Methods Based on Multi-View
	Methods Based on Point

	Methodology
	Extracting Local Features
	K-Nearest Neighbor Points Search
	Local Feature Extraction

	Supplement of the Distribution Information
	The Proposed Learning Schedule for Snapshot Ensemble
	Network Architecture
	Classification and Part Segmentation Network
	Semantic Segmentation Network

	Implementation Details

	Results
	Modelnet40 Classification
	ShapeNet Part Segmentation
	S3dis Semantic Segmentation

	Discussion
	Space and Time Complexity Analysis
	Ablation Study
	Scale Factor
	Point Density
	Neighborhood Size
	Reduced Training Dataset

	Conclusions
	References

