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Abstract: Tool condition monitoring can be employed to ensure safe and full utilization of the
cutting tool. Hence, remaining useful life (RUL) prediction of a cutting tool is an important issue
for an effective high-speed milling process-monitoring system. However, it is difficult to establish a
mechanism model for the life decreasing process owing to the different wear rates in various stages
of cutting tool. This study proposes a three-stage Wiener-process-based degradation model for the
cutting tool wear estimation and remaining useful life prediction. Tool wear stages classification and
RUL prediction are jointly addressed in this work in order to take full advantage of Wiener process, as
this three-stage Wiener process definitely constitutes to describe the degradation processes at different
wear stages, based on which the overall useful life can be accurately obtained. The numerical results
obtained using extensive experiment indicate that the proposed model can effectively predict the
cutting tool’s remaining useful life. Empirical comparisons show that the proposed model performs
better than existing models in predicting the cutting tool RUL.

Keywords: remaining useful life prediction; Wiener process model; multi-stage division; cutting tool

1. Introduction

Cutting tool plays an important role in the machining system and its wear causes an
increase in friction and heat generation in the machining process. Wear of cutting tools
not only affects the quality of machined surface and the machining precision but also
results in increasing machining cost. Moreover, unnecessary tool replacement that aims at
preventing the decrease in surface quality will increase the downtime and machining cost
in high-speed milling. Tool condition monitoring can be employed to ensure safe and full
utilization of a cutting tool. Hence, the remaining useful life (RUL) prediction of a cutting
tool is an important issue for an effective high-speed milling process-monitoring system.

In the past few decades, various studies have been devoted to predicting the cutting
tool RUL in both academia research and industry. According to the preliminary research,
these studies were developed based on the consideration of physics-based and data-driven
models. The Taylor model [1] and the Forman crack growth model [2] are the typical
physics-based models. Although these physics-based methods can accurately describe the
degradation process of equipment and require less training data, it is very difficult if not
impossible to build the exact physical model because of heavy dependence on the expert
knowledge and the degradation law of equipment. Recently, intensive research has been
conducted on the utilization of data-driven models, which was regarded as an effective
tool for the RUL estimation of various degrading systems. Machine learning applications
and statistical learning applications in the field of data-driven models have been reported
to outperform the traditional physics-based methods. For instance, Benkedjouh et al. [3]
extracted the features form vibration, AE and force signals and then utilized the support
vector regression (SVR) to predict the tool RUL. Sun et al. [4] evaluated the RUL of a cutting
tool based on the result of operational reliability assessment and back propagation neural
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network. Zhou et al. [5] used the long short-term memory (LSTM) model to solve complex
correlation and memory accumulation effects and then established the RUL prediction
model under different conditions. Babu et al. [6] proposed a convolutional neural network
(CNN)-based regression approach, and then learned the features and estimated the RUL
by the supervised feedback. Zhang et al. [7] proposed a deep belief network (DBN)-
based multi-objective ensemble method for the RUL estimation in prognostics, and the
experimental results demonstrated the superiority of the proposed method compared
to the existing approaches. An et al. [8] developed a hybrid model by combining the
CNN with the LSTM network and then predicted the RUL with sequence tool wear data.
The proposed model proves to be efficient in tool wear evolution tracking and the RUL
prediction accuracy reached up to 90%. Though the models in the above cited work proved
to be effective in real applications, they ignore the correlation characteristics in the time-
series wear data and cannot sufficiently model the tool wear process. In order to address
this issue, the hidden Markov model (HMM) and its various variants, one of the most
commonly used statistical learning techniques, have been comprehensively employed to
describe the dynamic evolution of wear process due to the powerful ability in processing
the time-series data. Geramifard et al. [9] proposed a physically segmented HMM to build
the relationship between hidden stages with the real health stages of a cutting tool and
the provided relationship was further used for diagnostics and prognostics. Following the
study of [9], Geramifard et al. [10] proposed a multimodal HMM-based approach for tool
wear monitoring. Yu et al. [11] developed a weighted HMM approach, which takes the
wear rate as the hidden state. Then, they predicted the RUL and estimated the tool wear
during tool operation. The experiment results show that their approach outperforms the
conventional HMM approach. Zhu and Liu [12] utilized the hidden semi-Markov model
(HSMM) to model the complex tool wear process and then estimated the tool wear and
predicted the RUL of tool with a forward algorithm. The experiment results show that the
proposed method leads to more accurate RUL prediction in high-speed milling.

Although these aforementioned methods appear to obtain not so bad RUL estimation
results, it is still difficult to describe the nonmonotonic dynamic characteristics of system.
Fortunately, the Wiener process has shown to be the optimal degradation process mod-
eling tool for explaining the physical behavior of a dynamic system, due to its excellent
mathematical properties and physical interpretations [13]. Ghorbani and Salahshoor [14]
developed a degradation model for the engine fault of turbofan by combining a physics-
based model and a Wiener process with positive drift. Li et al. [15] considered the various
degradation processes of different units and developed a Wiener-process-model-based
method for RUL prediction. For a complicated dynamic system, stochastic behavior is
inevitable due to multiple sources of variability, which contribute to the uncertainty of the
RUL estimation. Therefore, the effect of these uncertainties and different kinds of variability
should be incorporated into a wear model to improve the accuracy of the RUL estimation.
Tsai et al. [16] analyzed that some quality characteristics (QC) whose degradation over
time can be related to the reliability of the product and established the degradation model
by taking this variability into account. Sun et al. [17] modeled the tool wear process of a
cutting tool with the Wiener process considering the measurement variability and then
estimated the RUL of cutting tool.

The above research studies ignore the mechanism of degradation and regard it as an
overall process. However, the degradation process (e.g., rotating machinery, lithium-lon
batteries) exhibits multiple stages characteristics in practice due to the environmental work-
ing condition, internal materials and so on. Lim et al. [18] proposed a two-phase accelerated
degradation test to efficiently derive product lifetime information in the development stage
for new products, when reliability-related information is generally limited and there is
limited sample availability. Zhang et al. [19] proposed a multi-phase stochastic degradation
model based on the Wiener process and then used this method for the RUL prediction of
lithium-lon batteries. Chen and Tsui [20] predicted the RUL of rotational bearings with a
two-phase model, which characterizes and determines different stages of the degradation
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process. Wen et al. [21] proposed a flexible Bayesian multiple-phase modeling approach to
characterize degradation signals for prognosis. Later, Wen et al. [22] extended the previous
work and developed a multiple change-point Wiener process model for RUL prediction.

According to the literature review given above, the aim of this study is to develop a
three-stage Wiener-process-based degradation model that can predict the tool’s remaining
useful life in high-speed milling processes. First, the time domain, frequency domain and
time–frequency domain features are extracted from raw sensor data (i.e., AE, cutting force,
vibration), and then the stacked denoising autoencoder (SDAE) is utilized to automatically
select the most relevant features. Second, tool wear stages and corresponding wear value
are estimated with the extreme learning machine (ELM). Third, the degradation process
of each wear stage is established based on Wiener process and the overall useful life is
estimated with the stage RUL prediction. Additionally, multi-source variabilities (i.e., the
inherent temporal variability of wear path, individual variability of machining condition
or measurement variability of sensors) are considered and quantified in the modeling
process of each stage, which helps describe the physical behavior of tool wear process more
precisely and significantly improves the accuracy of RUL prediction.

2. Three-Stage Wiener-Process-Based Model
2.1. Motivation

In most existing research studies, the degradation mechanism was assumed as sta-
tionary over the entire life of a cutting tool, which was characterized with a fixed model.
However, the degradation process of a cutting tool exhibits multiple-stage characteristics in
practice due to the environmental working condition, internal materials and so on. It can be
seen from Figure 1a that a typical degradation process of a cutting tool can be divided into
three stages depending on the wear rate, namely slight wear stage (Figure 1b), medium
wear stage (Figure 1c) and severe wear stage (Figure 1d).
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Figure 1. Three stages of tool wear in a cutting process. (a) The typical degradation process of a
cutting tool; (b) Slight wear stage; (c) Medium stage; (d) Severe wear stage.

Motivated by this phenomena, three models were developed to characterize the
features into different stages. It can be seen from Figure 1b that tool wear presents a sharp
rate in the first stage, which can be fitted with power law. In the second stage depicted
in Figure 1c, the wear rate becomes slow and can be covered with an integrated power–
exponential law. When it turns into the third stage in Figure 1d, the wear rate gets faster



Sensors 2022, 22, 4763 4 of 20

and exponential law can be utilized to describe the degradation process. The basic law of
these models can be formulated as follows:

X(t) =


X1(t) = a1tb1 + k1, t < τ1
X2(t) = a2tb2 + c1 expd1t +k2, τ1 ≤ t ≤ τ2
X3(t) = c2 expd2t +k3, t > τ2

(1)

where t and X(t) denote the cutting pass and corresponding wear value, a1, b1, k1, a2,
b2, c, d, k2, a3, b3, and k3 are model parameters of different wear stages, τ1 and τ2 are the
boundaries of the three stages.

2.2. Model Formulation

In practice, the wear process of a cutting tool usually exhibits a stochastic behavior
with nonlinearity and multiple variability sources. The Wiener process has proved to be
effective in characterizing the degradation signals due to its great mathematical properties.
In order to quantify the multi-source variabilities (e.g., inherent temporal variability of wear
path and individual variability of machining condition) and characterize the degradation
process of each stage, a three-stage Wiener-process-based model considering multi-source
variabilities was proposed in this subsection.

Let {S(t), t ≥ 0} denote the degradation state of tool wear over time t with the initial
value S(0) = s0, and then the stochastic process can be expressed as follows:

S(t) = S(0) +
∫ t

0
g(τ;θ)dτ + σBB(t) (2)

where the stochastic process is driven by a standard Brown Motion B(t) with a nonlinear
drift term

∫ t
0 g(τ;θ)dτ to characterize the nonlinearity in tool wear process. σB is the

diffusion coefficient, which represents the inherent temporal variability of wear path.
Typically, the formulation of the drift term, which describes the individual variability of
different machining conditions, can be expressed as g(t;θ) = abtb−1, g(t;θ) = ab exp(bt)
or g(t;θ) = abtb−1 + cd exp(dt). In the proposed model, the nonlinear drift terms were set
with different laws in each wear stages. Combining the segmented model in Equation (1)
and Wiener process in Equation (2), the proposed three-stage Wiener-process-based model
can be formulated as follows:

Sk = Sk−1 + u(tk; θ)− u(tk−1; θ) + σB
√

∆tωk (3)

u(t; θ) =
∫ t

0
g(τ; θ)dτ = atb + c exp(dt)− c (4)

where ωk ∼ N(0, 1), and a, b, c, d are the parameters of drift term, and satisfied the
follow constraints: {

c = 0, d = 0, t < τ1
a = 0, b = 0, t > τ2

(5)

To define the lifetime and predict the RUL, a concept of first hitting time (FHT) is
adopted. According to the concept of FHT, the lifetime T can be defined as:

T = inf{t : S(t) ≥ ω|S(0) < ω} (6)

where ω is the failure threshold of the cutting tool. The probability density function (PDF)
of lifetime T defined by Equation (6) can be obtained as follows:

fT(t) ∼=
1√
2πt

[
IB(t)

t
+

g(t; θ)

σB

]
exp

[
−

I2
B(t)
2t

]
(7)
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where IB(t) = (ω−
∫ t

0 g(τ;θ)dτ)/σB. The RUL Lk at time tk can be obtained through time
and failure threshold translation and the formulation can be expressed as follows:

Lk = inf{lk > 0 : S(lk + tk) ≥ ω} (8)

Usually, the degradation state of a cutting tool cannot be measured directly, but
formulated with the health indicator (HI) generated from the observable sensor data. The
relationship between degradation state and HI can be expressed as follows:

O(t) = φ(S(t);ξ) + ε(t) (9)

where O(t) is HI, and ε(t) is the random measurement error with ε(t) ∈ N(0, γ2), which de-
scribes the effect of measurement variability of sensing. φ(S(t); ξ) denotes the relationship
between HI and underlying degradation states, which can be formed as:

φ(S(t); ξ) = β0 + β1S(t) (10)

where β0 and β1 are the parameters of the linear model. To estimate the underlying degra-
dation state Sk, the Kalman filter and Rauch–Tung–Striebel smoother (RTS) are introduced
into the proposed model. Table 1 shows the steps of Kalman filter algorithm.

Table 1. Computational flow of Kalman filter algorithm.

Step 1: Set the parameters θ, σB,ξ, γ

Step 2: Estimate the state Ŝk|k−1 and variance Pk|k−1

Ŝk|k−1 = Ŝk−1|k−1 +
∫ tk

0 g(τ; θ)dτ −
∫ tk−1

0 g(τ; θ)dτ

Pk|k−1 = Pk−1|k−1 + σ2
B∆t

Step 3: Calculate the Kalman coefficient K(k)
K(k) = Pk|k−1/(Pk|k−1 + γ2)

Step 4: Update the state and variance
Ŝk|k = Ŝk|k−1 + K(k)(Ok − φ(Sk; ξ))

Pk|k = (1− K(k))Pk|k−1

After the Kalman filter algorithm, RTS is used to obtain the optimal estimation of the
preceding conditional expectations. The smoothing algorithm is summarized as follows in
Table 2.

Table 2. Computational flow of RTS smoothing algorithm.

Step 1: Forward iteration through Kalman filter and obtain the optimal estimation Ŝk|k and Pk|k.
Step 2: Optimal smoothing estimation of backward iteration
Rj = Pj|jP

−1
j+1|j

Ŝj|k = Ŝj + Rj(Ŝj+1|k − Ŝj+1|j) = Ŝj + Rj(Ŝj+1|k − Ŝj)

Pj|k = Pj|j + R2
j (Pj+1|k − Pj+1|j)

Step 3: Initialization
Mk|k = (1− Kk∆t)Pk−1|k−1
Step 4: Smoothing covariance calculation of backward iteration
Mj|k = Pj|jSj−1 + Sj(Mj+1|k − Pj|j)Sj−1

3. RUL Prediction Framework

The RUL prediction framework is presented in this section and the overall architecture
of this framework is depicted in Figure 2. As it can be seen in Figure 2, the time domain,
frequency domain and time–frequency domain features are extracted from raw sensor data
(i.e., AE, cutting force, vibration) and then SDAE is utilized to automatically select the
most relevant features. Next, feature vector is set into ELM to classify tool wear stages and
estimate the corresponding wear value. After that, the degradation process of each wear
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stage is established based on Wiener process and the estimated wear value is regarded as
the observable health indicator. At last, the overall useful life can be estimated with the
stage RUL prediction.
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3.1. Feature Extraction and Selection
3.1.1. Feature Extraction

Feature extraction is conducted to reduce noise interference and remove irrelevant
signals from the original signals. Statistical features in the time domain and frequency
domain are extracted from force signals, vibration signals in each direction (X, Y and Z)
and acoustic emission signals. In total, 16 kinds of time domain features namely mean,
standard deviation, variance, peak value, peak to peak, root mean square error (RMSE),
skewness, kurtosis, kurtosis factor, average absolute value, shape factor, crest factor, impact
factor, margin factor, skewness factor and bias factor are extracted from seven channels,
respectively. A total of 112 features can be obtained and these features are listed in Table 3.

Table 3. Statistical features in the time domain.

Feature Expression Feature Expression

T1 M =
1
T

T
∑

t=1
f (t) T9 KR =

∑T
t=1 f (t)4√

∑T
t=1 f (t)2

T2 STD =

√
1
T

T
∑

t=1
( f (t)−M)2 T10 ARV =

1
T

T
∑

t=1
| f (t)|

T3 VAR =
1
T

T
∑

t=1
( f (t)−M)

2 T11 SF =
RMS
ARV

T4 P = max( f (t)) T12 CP =
PP

RMS
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Table 3. Cont.

Feature Expression Feature Expression

T5 PP = max(f(t))−min(f(t)) T13 IF =
PP

ARV

T6 RMS =

√
1
T

T
∑

t=1
( f (t))2 T14

CL =
|PP|(

1
T

√
∑T

t=1| f (t)|
)2

T7
SK =

1
T ∑T

t=1 ( f (t)−M)3

STD3

T15 CS =
∑T

t=1 f (t)3

M

T8
KU =

1
T ∑T

t=1 ( f (t)−M)4

STD4

T16 CK =
∑T

t=1 f (t)4

M

Eight frequency domain features are also extracted from raw sensor signals. These
statistical features are listed in Table 4. In Table 4, pi represents the ith spectrum of the
sensor signal f (t), n is the number of spectra and fi is the frequency of the ith spectrum.

Table 4. Statistical features in the frequency domain.

Feature Expression Feature Expression

F1 PC =
n
∑

i=1
pi

2 F5 Mp =
1
n

n
∑

i=1
S( f )id

F2 FC =
∑n

i=1 fi pi

∑n
i=1 pi

F6 VARp =
∑n

i=1 (S( f )i −Mp)
2

n− 1

F3 VF =
∑n

i=1 ( fi − FC)2 pi

∑n
i=1 pi

F7 KUp =
1
n

∑n
i=1 (S( f )i −Mp)

4

VARp
4/2

F4 MSF =
∑n

i=1 fi
2 pi

∑n
i=1 pi

F8 SKp =
1
n

∑n
i=1 (S( f )i −Mp)

3

VARp
3/2

The wavelet packet decomposition (WP) is a kind of time–frequency domain analysis
tool and is propitious to analyze the non-stationary and time-varying signal. It can decom-
pose the raw signal into multiple levels and each level consists of several frequency bands,
in which abundant information can be obtained. In this study, three channels of force,
three channels of vibration and one channel acoustic emission signals are decomposed into
seven levels by WP. The energy of a signal can be expressed as Equation (11), in which tk
is the wavelet packet coefficient [23]. The summary energy of all frequency bands at the
jth level can be expressed as Equation (12). Furthermore, the normalization of energy can
be expressed as Equation (13). According to Equation (13), seven time–frequency domain
features can be obtained in total.

Ej,n = ∑k

∣∣∣cj,n,k

∣∣∣2 (11)

Etot = ∑n Ej,n (12)

Pj,n =
Ej,n

Etot
(13)

3.1.2. Automatic Feature Selection with SDAE

In total, 175 features are extracted in Section 3.1.1, which contain redundancy and cross-
correlation information. The proposed model would go through a curse of dimensionality
if all the 175 features participated in the calculation. Moreover, the high-dimensionality
features would increase the computational cost and cause the unstable results of recognition.
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To deal with these problems, SDAE is utilized for the feature dimensionality reduction in
this study, which is composed of two DAEs. The raw features with high dimensionality are
used as the input in the first DAE. The low-dimensional and representative features can be
obtained robustly based on the hidden layer of the second DAE. To employ the SDAE for
feature dimensionality reduction, the relevant parameters are set as follows: learning rate,
1.0; sparsity penalty, 0.05; activation function, sigmoid; input zero masked fraction, 0.5.
In this study, to obtain the most representative features, the selection of node sizes in the
SDAE is researched. The node number of the hidden layer is chosen from 10 to 160 with the
interval of 10 in the first DAE and from 5 to 50 with the interval of 10 in the second DAE,
respectively. Considering the computation time and robustness, we finally recommend the
node sizes to be 30 and 15 in the first and second DAE, respectively.

3.2. Tool Wear Stage Classification and Health Indicator Construction

Current wear stages are determined and health indictor is constructed based on
the feature vector. Conventionally, this step can be conducted with a machine-learning-
based or deep-learning-based algorithm. In this subsection, we adopt ELM to perform
the classification and regression task, while other intelligent algorithms (e.g., SVM, BP
Network, RVM, etc.) can also be used as an alternative.

ELM was first proposed by Huang in 2006 [24] and then widely used for classification
problems. However, the abovementioned method is only suitable for binary classification,
while the tool wear stages in this study are more than two. To address this problem,
pairwise coupling was utilized to estimate the probabilistic outputs of multi-class [25].
Suppose that there are C different wear states, then the multi classification problem is
transformed to C(C− 1)/2 binary classification problems. For the cth binary classification
problem, the probability of i class and j class can be written as:

rij = P(t = i|t = i or j, x ) (14)

where P(.|.) is the probability output of ELM with sigmoid function. By fusing the prob-
abilities of C(C − 1)/2 binary classification problems, the probability of i class in multi
classification can be expressed as:

pi = P( t = i|x), i = 1, 2, · · · , C (15)

Then the probability pi can be obtained by solving the following objective function:

min
P

C

∑
i=1

C

∑
j:j 6=i

(
rji pi − rij pj

)2s.t.
C

∑
i

pi = 1 (16)

The objective function of Equation (16) can be rewritten as

min
P

2PTQP ≡ min
P

1
2

PTQP (17)

where

Qij =

{
∑s:s 6=i r2

si, i = j
−rjirij, i 6= j

(18)

Finally, probabilistic outputs P= {p1, p1, · · · , pC} can be solved by the following matrix[
Q e
eT 0

][
P
b

]
=

[
0
1

]
(19)

where b is the Lagrangian multiplier of the equality constraint in Equation (16), e is the
C× 1 vector of all ones and 0 is the C× 1 vector of all zeros. By ranking the probabilistic
outputs, we can obtain the current wear stage. After classifying the tool wear stage, the
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tool wear value can be estimated with regression ability of ELM. Moreover, the estimated
tool wear value can be used as the observable health indictor.

3.3. Parameter Estimation and RUL Prediction

In this subsection, the initial parameters of the proposed model are first estimated with
the historical sensor data and wear label and then updated online with the new sensory
data. Benefit from the offline estimation, the parameters that update by our algorithm can
converge quickly and obtain remarkable performances.

3.3.1. Offline Estimation of Initial Model Parameters

According to the proposed three-stage mode in Section 2, we can obtain the state-space
model of wear process:{

Sk = Sk−1 + u(tk; θ)− u(tk−1; θ) + σB
√

∆tωk
Ok = β0 + β1Sk + εk

(20)

Supposing there are N different cutting tools and each cutting tool contained the same
measure time in the historical tool wear data. Let Sn = [sn,1, sn,2, · · · , sn,m]

T denotes the nth
cutting tool with m wear stages, and the incremental data is ∆Sn = [∆sn,1, ∆sn,2, · · · , ∆sn,m]

T.
Based on the incremental dataset and maximum likelihood estimation (MLE), the log-
likelihood function of Θ = [a, b, c, d, σB] can be written as follows:

ln(L(Θ |S )) = −NM
2

ln(2π∆t)− NM
2

ln σ2
B −

1
2σ2

B

N

∑
n=1

M

∑
i=1

(∆sn,i − (u(ti; θ)− u(ti−1; θ)))2 (21)

For the convenience of calculation and simplification of expression, we define two
intermediate variables Pi and Qi as follows:{

Pi = (i∆t)b − ((i− 1)∆t)b

Qi = exp(d·i∆t)− exp(d·(i− 1)∆t)
(22)

Then, the log-likelihood function can be expressed as:

ln(L(Θ |S )) = −NM
2

ln(2π∆t)− NM
2

ln σ2
B −

1
2σ2

B∆t

N

∑
n=1

M

∑
i=1

(∆sn,i − (aPi + cQi))
2 (23)

To estimate the parameters Θ, we first fix the parameters b, c, d and then take the
partial derivatives of Equation (23) to parameters a and σ2

B.

∂ ln(L(θ |S ))

∂a
= − 1

σ2
B∆t

N

∑
n=1

M

∑
i=1

(
aP2

i − ∆sn,iPi + cPiQi

)
(24)

∂ ln(L(θ |S ))

∂σ2
B

= −NM
2σ2

B
+

1
2σ4

B∆t

N

∑
n=1

M

∑
i=1

(∆sn,i − (aPi + cQi))
2 (25)

Then the estimated parameters â and σ̂2
B can be obtained by zeroing Equations (24) and (25),

respectively.

â =
∑N

n=1 ∑M
i=1(∆sn,iPi − cPiQi)

∑N
n=1 ∑M

i=1 P2
i

(26)

σ̂2
B =

∑N
n=1 ∑M

i=1(∆sn,i − (âPi + cQi))
2

NM∆t
(27)
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The log-likelihood function of parameters b, c, d can be deduced by taking
Equations (26) and (27) into Equation (23), and the parameters b, c, d can be calculated
by maximizing Equation (28) with a multidimensional search algorithm.

ln(L(Θ |S )) = −NM
2

ln(2π∆t)− NM
2

ln σ̂2
B −

NM
2

(28)

Furthermore, the estimation parameters a and σ2
B can be obtained by substituting the

estimated parameters b, c, d into Equations (26) and (27), respectively.

3.3.2. Online Updating of Model Parameters

Φ= [Φ1, Φ2] is the model parameter vector that need to be updated online with the
real-time wear data. The parameter vector consists of two parts, i.e., Φ1= [a, b, c, d, σB]

T and
Φ2= [β0, β1, γ]T , corresponding to the state equation and observation equation in the state-
space model, respectively. In this study, the EM algorithm is used to estimate the parameter
vector online because the underlying wear states of the cutting tool cannot be observed
directly. It is worth mentioning that the parameters estimated based on the historical
tool wear data in Section 3.3.1 are used as the initial parameters in the online updating of
model parameters. According to the Bayesian chain principle, the log-likelihood function
of underlying wear state S1:k and the wear indicator O1:k constructed by the observable
sensor data can be given by:

L(S1:k, O1:k |Φ ) = ln p(S1:k, O1:k |Φ ) = ln
[

k
∏
i=1

p(Si|Si−1; Φ )

∣∣∣∣ k
∏
i=1

p(Oi|Si; Φ )

]
= −k ln

(
2π
√

∆t
)
− k ln γ− 1

2γ2

k
∑

i=1
[Oi − φ(Sk; ξ)]2−

k ln σB − 1
2σ2

B∆t

k
∑

i=1
[Sk − Sk−1 − (u(ti; θ)− u(ti−1; θ))]2

(29)

Substituting the model parameters and omitting the variables that are unrelated to the
estimated parameters, we can obtain the expectation of log-likelihood function.

Ψ

(
Φ,

^
Φ

(j)
)

= E
Φ(j)(L(S1:k, O1:k|Φ )|O1:k )

∝ −k ln σB − k ln γ− 1
2γ2

k
∑

i=1
E

Φ̂(j)

{
[Oi − φ(Sk; ξ)]2|O1:k

}
−

1
2σ2

B∆t

k
∑

i=1
E

Φ̂(j)

{
[Sk − Sk−1 − (u(ti; θ)− u(ti−1; θ))]2|O1:k

} (30)

Then, the estimation procedure consists of two steps: expectation step (E-step) and
maximization step (M-step).

• E-Step: Calculating the expectation of log-likelihood function based on the jth iteration.

Ψ

(
Φ,

^
Φ

(j)
)

∝ −k ln σB − k ln γ− 1
2γ2

k
∑

i=1

(
O2

i + Pi|k + Ŝ2
i|k − 2OiŜi|k

)
−

1
2σ2

B∆t

k
∑

i=1

[
Ai − 2aPiBi − 2cQiBi + (aPi + cQi)

2
] (31)

where the intermediate variables Ŝi|k, Ŝi−1|kPi|k, Pi−1|k and Pi,i−1|k can be calculated through
the RTS algorithm presented in Section 2. The details of these variables are as follows:

Ŝi|k = E
Φ̂(j)(Si|O1:k ) = Ŝj|k

Pi|k = E
Φ̂(j)

(
S2

i |O1:k
)
− Ŝi|k = Pj|k

Pi,i−1|k = E
Φ̂(j)(SiSi−1|O1:k )− Ŝi|kŜi−1|k = Mj|k

(32)
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Then Ai and Bi can be expressed by the above intermediate variables.{
Ai = Pi|k + Ŝ2

i|k + Pi−1|k + Ŝ2
i−1|k − 2Pi,i−1|k − 2Ŝi|kŜi−1|k

Bi = Ŝi|k − Ŝi−1|k
(33)

• M-Step: Calculating the parameter Φ̂(j+1) in the (j + 1)th iteration.

Φ̂(j+1) = argmax
Φ

[
Ψ

(
Φ,

^
Φ

(j)
)]

(34)

Equation (30) can be divided into two parts:
Ψ1

(
Φ1,Φ̂(j)

1

)
∝ −k ln σB − 1

2σ2
B∆t

k
∑

i=1

[
Ai − 2aPiBi − 2cQiBi + (aPi + cQi)

2
]

Ψ2

(
Φ2,Φ̂(j)

2

)
∝ −k ln γ− 1

2γ2

k
∑

i=1

(
O2

i + Pi|k + Ŝ2
i|k − 2OiŜi|k

) (35)

The parameters Φ1 and Φ2 can be estimated by using the MLE that was introduced in
Section 3.3.1 and the specific expression of these parameters are given by

â =
∑k

i=1(PiBi − cPiQi)

∑k
i=1 P2

i

σ̂2
B =

∑k
i=1

[
Ai − 2aPiBi − 2cQiBi + (aPi + cQi)

2
]

k·∆t

γ̂2 =
∑k

i=1

(
O2

i + Pi|k + Ŝ2
i|k − 2OiŜi|k

)
k

(36)

3.3.3. RUL Prediction

After the model parameter estimation, the overall lifetime and remaining useful life to
a specific moment and their corresponding PDFs can be obtained.

• PDF of lifetime

The PDF of lifetime can be described as follows:

fT(t |Θ ) ≈ ω− atb(1− b)− c(exp(d·t)− d·t exp(d·t)− 1)√
2πσ2

Bt3
·

exp

−
(

ω− atb − c exp(d·t) + c
)2

2σ2
Bt


(37)

• PDF of RUL up to tk

Model parameters, underlying wear state Ŝk|k and its variance Pk|k can be updated
by the EKF once the new observable data are available. With the wear state and up-



Sensors 2022, 22, 4763 12 of 20

dated parameters, the analytical form of the RUL distribution at time tk can be written as
Equation (7) based on the law of total probability.

fLk (lk|Θ, O1:k) ≈
∫ ∞
−∞ fLk (lk|Θ, S(tk), O1:k)p(sk|O1:k)dsk

≈ ES(tk)|O1:k

{
fLk (lk|Θ, S(tk), O1:k)

}
≈ 1√

2πl2
k(Pk|k+σ2

B lk)

[
ω− v(lk) + ablk(lk + tk)

b−1 + cdlk exp(d·(lk + tk)).

−
Pk|k(ω− v(lk)) + Ŝk|kσ2

Blk
Pk|k + σ2

Blk

]
exp

−
(

ω− v(lk)− Ŝk|k

)2

2
(

Pk|k + σ2
Blk
)


(38)

where ν(lk) = a(lk + tk)
b + c exp(d·(lk + tk))− atb

k − c exp(d·tk).

4. Experimental Study

In this section, the proposed tool wear model is demonstrated with a practical ex-
perimental study based on the dataset from the 2010 Prognostic and Health Management
(PHM) competition (Prognostics and Health Management Society 2010) [26].

4.1. Experiment Set-Up and Data Acquisition

In the conducted experiment as shown in Figure 3, a high-speed CNC milling machine
with a three-flute ball-nose cutter was used to mill the workpieces (material: Inconel 718).
During the cutting process, the spindle rotation speed was set as 10,400 r/min and the feed
rate was set as 1555 mm/min, while the cutting width of Y direction (radial) and the cutting
depth of Z direction (axial) were set as 0.125 mm and 0.2 mm, respectively. A quartz three-
channel dynamometer was mounted on the CNC milling machine to measure the cutting
force. Simultaneously, vibration signal along the same three directions (x, y and z) was
measured by a piezo-accelerometer. Moreover, an acoustic emission sensor was mounted on
the workpiece to capture the high-frequency stress wave generated by the cutting process.
All the signals collected above were amplified by the charge amplifier and eventually
converted into voltage signals. Then, the voltage signal of seven channels was sampled
with 50 kHz. Additionally, the explicit tool wear value was measured by the microscope in
an offline way after each cutting. Finally, three groups of experiments (Cutter #1, Cutter #4
and Cutter #6) were conducted. Each cutting process lasted for 315 passes and each cutting
pass was four seconds. The raw data consist of two parts: true wear value measured with
a microscope and several channels’ sensory data. Figure 4 depicts the several channels’
sensory data at a cutting pass and the true wear value of the entire life of Cutter #1.
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4.2. Feature Selection with SDAE

In this study, to obtain the most representative features, the selection of node sizes in
the SDAE was researched. The node number of the hidden layer was chosen from 10 to 160
with the interval of 10 in the first DAE and from 5 to 50 with the interval of 10 in the second
DAE, respectively. Given different combinations of node sizes, the pre-classify accuracy
results can be obtained and presented in Figure 5. As seen in Figure 5, the classification
accuracy rate can approach the maximum when the nodes sizes in the first and second
DAE were set at 30 and 15, respectively. It can be also observed from Figure 5 that the
accuracy rate is relatively high when the nodes sizes in the first and second DAE were
set at 90 and 35. However, more features will improve computing time. Thus, the node
sizes in the hidden layers of the first and second DAE were recommended to be 30 and 15,
respectively.
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4.3. Experimental Results

In this study, each group of experiment data describe the whole wear process of a
cutter and can be divided into three stages according the to the Taylor tool life curve [12].
We randomly select two groups of experiment data as the training set and the left one as
a testing set. Therefore, we can obtain three groups of validation results (i.e., Cutter #1,
Cutter #4, and Cutter #6). In order to compare the effectiveness of the proposed model,
three other models (i.e., M1 [17], M2 [27] and M3 [28]) from previous studies, which follow
the power law, exponential law and an integrated power–exponential law, respectively, are
also conducted with the same date.

4.3.1. Model Parameter Estimation

Parameters of the proposed three-stage Wiener-process-based model were estimated
with the experimental data. The key model parameters of each stage are list in Table 5.
According to the proposed model in Section 2, the three stage list in Table 5 can be expressed
as follows:

(1) Stage-1
u(t; θ) = atb (39)

(2) Stage-2
u(t; θ) = atb + c exp(dt)− c (40)

(3) Stage-3
u(t; θ) = c exp(dt)− c (41)

Table 5. Estimated results of the model parameters.

Model
Parameters

Cutter #1 Cutter #4 Cutter #6

Stage-1 Stage-2 Stage-3 Stage-1 Stage-2 Stage-3 Stage-1 Stage-2 Stage-3

a 31.7602 89.7611 — 23.4435 52.1428 — 38.1735 89.0511 —

b 0.2582 0.0001 — 0.3071 0.1082 — 0.2291 0.0462 —

c — 3.9420 122.8121 — 3.0810 89.6324 — 50.1321 128.2356

d — 0.0144 0.0031 — 0.0082 0.0073 — 0.0019 0.0044

β0 0.0107 0.0969 0.0925 0.0108 0.0145 0.0283 0.0028 0.0173 0.0543

β1 0.9837 1.1215 0.9995 1.0031 0.9998 0.9999 1.0001 0.9986 0.9998

σB 0.5046 0.1312 0.4480 0.4612 0.1678 0.9885 0.9715 0.1150 0.7297

γ 0.0140 0.0133 0.0436 0.0135 0.0138 0.0324 0.0145 0.0135 0.0397

4.3.2. RUL Prediction Result

The whole life of each cutter is 315 cutting passes and each cutting pass lasts four
seconds. RUL prediction result of three cutters with our proposed model and three other
models are present in Figure 6. The prediction results with the proposed three-stage model
are much closer to the actual RUL in every wear stage than in the other three models. The
performances of the other three models vary in different wear stages. For example, M1
model, built based on the power law, provides poor performances at the first and second
stages in both three cutters. Both M2 and M3 models perform better than M1 and present
different deviations at the three stages, but there is still a certain gap compared with our
three-stage model. These results indicate that our model can accurately predict the RUL of
a cutting tool.

To further investigate the superiority of the proposed three-stage Wiener-process-
based degradation model, the PDFs of RUL at different wear stages are calculated. Take
Cutter #1 as an example, Figure 7 presents the PDFs of RUL, the prediction RULs and
actual RULs over a period of cutting passes at three wear stages. As seen in Figure 7, the
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predicted RULs are closed to the actual RULs and the PDFs calculated with our model can
cover the actual RULs at all the three stages.
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4.3.3. Comparison and Evaluation

In order to compare the proposed three-stage model with other models more clearly,
the prediction errors are calculated and the error result of Cutter #1 is present in Figure 8.
We can observe that the prediction errors using our model keep in a low range throughout
the whole process, while the other three models fluctuate greatly.
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Figure 7. PDFs of Cutter #1 with the proposed model. (a) Stage 1; (b) Stage 2; (c) Stage 3.
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To quantitatively compare the RUL prediction accuracy between the proposed model
and the other three models, we list the mean square error (MSE), mean absolute error
(MAE) and coefficient of determination (R2) of estimation error in Table 5. Formulations to
calculate the prediction error are defined as follows:

(1) MSE

MSE =
1
K

K

∑
k=1

(
lk − l̃k

)2
(42)

(2) MAE

MAE =
1
K

K

∑
k=1

∣∣∣lk − l̃k
∣∣∣ (43)

(3) R2

R2 = 1−
∑K

k=1

(
lk − l̃k

)2

∑K
k=1

(
lk − l

)2 (44)

where lk, l̃k and l denote the predicted RUL, actual RUL and mean actual RUL, respectively.
We can observe from Table 6 that our model achieves much better performance than the
other three models.

Table 6. RUL prediction results of the different models.

Model
Cutter #1 Cutter #4 Cutter #6

MSE MAPE (%) MSE MAPE (%) MSE MAPE (%)

Our model 42.80 4.78 22.76 5.19 48.64 7.01

M1 9355.50 35.85 1367.30 41.99 8867.40 28.69

M2 492.39 11.85 569.57 12.66 462.39 9.20

M3 457.76 13.96 382.71 7.99 528.68 13.27

To further explore the inherent reasons for the performance gap between the proposed
model and the other three models, a comparative study is carried out. PDFs of Cutter #1
were calculated with different models. Figure 9 presents the PDFs of different models
with an interval of ten cutting passes from the 230 to 310 cutting passes. It can be seen
from Figure 9 that the calculated PDFs using our model are much tighter and higher than
the other three models for all the nine cutting passes, which indicates that our model can
reduce the uncertainty of RUL prediction when compared with other existing models.
Additionally, the estimated RULs are more and more close to the true RUL with the
accumulation of sensor data. All these results indicate that the parameters of our model are
updated constantly with online sensing data, which causes the proposed model to become
more similar to the true degradation model.
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5. Discussion and Conclusions

This study proposes a three-stage Wiener-process-based degradation model for the
cutting tool wear and remaining useful life prediction. Taking full advantage of the
Wiener process to describe the degradation processes and ELM to classify tool wear stages,
joint implementation of tool wear stage classification and RUL prediction is carried out.
Moreover, considering multi-source variabilities in the modeling process of each stage, the
proposed model can describe the physical behavior of the tool wear process more precisely
and significantly improve the accuracy of RUL prediction. The numerical results obtained
using extensive experiments indicate that the proposed model can effectively predict the
tool’s remaining useful life in high-speed milling processes. Empirical comparisons show
that the proposed three-stage Wiener-process-based model performs better compared to
existing models in predicting the tool’s RUL while also providing the analytical form of the
RUL distribution that is very useful for the health management of the cutting tool.

Although the experimental studies in this study show that our model can accurately
predict the RUL and estimate the wear value of the cutting tool, there are still several
issues that need to be studies further. Firstly, the three stages of a cutting tool are assumed
mutually independent, which leads to the saltatory prediction result at the boundary of
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different stages. Therefore, the correlation between different stages needs to be considered.
Secondly, we mainly concentrate on the gradual and continuous wear process of a cutting
tool; however, the sudden failures of the cutting tool (such as worn, tipping and so on)
also need to be considered in the practical application. It is worth pursuing this research
direction in our future work.
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