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Abstract: For 5G and future Internet, in this paper, we propose a task allocation method for future
Internet application to reduce the total latency in a mobile edge computing (MEC) platform with three
types of servers: a dedicated MEC server, a shared MEC server, and a cloud server. For this platform,
we first calculate the delay between sending a task and receiving a response for the dedicated MEC
server, shared MEC server, and cloud server by considering the processing time and transmission
delay. Here, the transmission delay for the shared MEC server is derived using queueing theory.
Then, we formulate an optimization problem for task allocation to minimize the total latency for all
tasks. By solving this optimization problem, tasks can be allocated to the MEC servers and cloud
server appropriately. In addition, we propose a heuristic algorithm to obtain the approximate optimal
solution in a shorter time. This heuristic algorithm consists of four algorithms: a main algorithm and
three additional algorithms. In this algorithm, tasks are divided into two groups, and task allocation
is executed for each group. We compare the performance of our proposed heuristic algorithm with
the solution obtained by three other methods and investigate the effectiveness of our algorithm.
Numerical examples are used to demonstrate the effectiveness of our proposed heuristic algorithm.
From some results, we observe that our proposed heuristic algorithm can perform task allocation
in a short time and can effectively reduce the total latency in a short time. We conclude that our
proposed heuristic algorithm is effective for task allocation in a MEC platform with multiple types of
MEC servers.

Keywords: mobile edge computing; future internet application, optimization problem; task allocation;
heuristic algorithm; queueing theory

1. Introduction

With the emergence of fifth generation (5G) mobile communication and Internet of
Things, a variety of applications such as augmented reality, facial recognition, mobile game,
smart city, and smart building, have been developed [1–10]. Many of these applications
require high processing performance and low processing latency, and each task for these
applications must be processed within an acceptable delay. However, it is difficult to
process tasks for mobile applications within acceptable delays on mobile terminals [11–13].
This is because the processing capability of mobile terminals is low, and it takes a long time
to process the tasks on these terminals.

By using task offloading, tasks for mobile applications can be processed on cloud
servers, which are external servers with higher processing performance than mobile ter-
minals [14]. The tasks can be processed on cloud servers in a short time [15]; however,
the transmission delay is large due to the large distance between the mobile terminal and
cloud servers [16]. Task offloading is a complex process and can be affected by a number of
different factors [17], and it requires application partitioning, offloading decision making
and distributed task execution [18].
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Mobile edge computing (MEC) has attracted attention for processing tasks for ap-
plications that require low processing delay [19,20]. MEC was defined by the European
Telecommunication Standards Institute [21], and it is also recently called Multi-Access Edge
Computing. MEC is classified into one of the edge computing, which can support several
kinds of characteristics including mobility support, location awareness, low latency, and
heterogeneity [22–24]. In general, edge computing has more limited resources, limited com-
putation and storage capabilities, and proximity to end devices than fog computing [25].

In a MEC platform in which MEC servers can be used, tasks can be processed on the
MEC servers using task offloading, and the transmission delay for the task processing can
be significantly reduced compared with cloud servers. However, the amount of available
computing resources in a MEC server is limited, and the processing performance of a
MEC server is lower than that of cloud servers. Thus, the number of tasks processed on
a MEC server affects the performance of the MEC server. To process each task within an
acceptable delay, some tasks should not be processed on the MEC server to avoid reducing
the processing performance.

In some MEC platforms, MEC servers and cloud servers can be utilized for processing
tasks [26]. MEC servers are classified into the following two groups based on the location
and users: dedicated MEC servers and shared MEC servers. Dedicated MEC servers are
utilized to process tasks that are sent from the closest access point, while shared MEC
servers are utilized for tasks that are sent from any access point. Each task should be
processed on an appropriate server among dedicated MEC servers, shared MEC servers,
and cloud servers to satisfy the acceptable delay. Moreover, each task should be processed
with low latency even if the acceptable delay is satisfied. Therefore, the total delay between
sending a task and receiving a response for all tasks can be reduced by using MEC servers
and cloud servers appropriately. However, the latency for each task is significantly affected
by other task processes; therefore, it is difficult to perform task allocation for these servers.
In addition, tasks transmitted from multiple access points are allocated to one of multiple
MEC servers. Task allocation must be performed for tasks transmitted from multiple access
points; however, it is difficult to consider the bottleneck node in an MEC platform. As far
as the authors know, task allocation has not been studied in an MEC platform in which
MEC servers and cloud servers are utilized from multiple access points and there is a
bottleneck node.

In this paper, we propose a task allocation method for reducing the total latency
in a MEC platform. In this platform, there are three types of servers: a dedicated MEC
server, a shared MEC server, and a cloud server. For this platform, we first calculate the
delay between sending a task and receiving a response for the dedicated MEC server,
shared MEC server, and cloud server by considering the processing time and transmission
delay. Here, the bottleneck node is modeled as an M/M/1 queueing model, and the
transmission delay for the shared MEC server is derived using a queuing theory. Then,
we formulate an optimization problem for task allocation to minimize the total latency
for all tasks. By solving this optimization problem, tasks can be allocated to the MEC
servers and cloud server appropriately. However, the calculation time is very large even if
a meta-heuristic algorithm, such as the genetic algorithm [27], is used. Therefore, we also
propose a heuristic algorithm to obtain the approximate optimal solution in a shorter time.
This heuristic algorithm consists of four algorithms: a main algorithm and three additional
algorithms. In this algorithm, tasks are divided into two groups, and task allocation is
executed for each group. We compare the performance of our proposed heuristic algorithm
with the solution obtained by the genetic algorithm and other methods and investigate the
effectiveness of our algorithm.

Various studies have been conducted on task allocation methods for the MEC plat-
form [20,26,28–59], which are described in Section 2. In comparison with these studies, we
offer the following contributions and benefits:

• This paper considers task allocation for a MEC platform in which two types of MEC
servers and a cloud server can be utilized.
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• Three different equations are formulated to calculate the latency for each server.
• Our proposed heuristic algorithm can quickly derive the approximate optimal solution

for the optimization problem in a situation in which three different servers are utilized.
• Our proposed heuristic algorithm can be implemented in a MEC platform and a

mobile application, such as our developed application and system [60,61], because
this algorithm is not complex for implementation.

Task allocation may fall into the local minimum when our proposed heuristic algorithm is
used because task allocation processes are simple so that it can be implemented in a MEC
platform. However, we will avoid falling into the local minimum by adding random search
technique (ARSET) and heuristic random optimization (HRO) [62]. It should be noted that
this paper is an extension of our previous work [63].

The remainder of this paper is organized as follows. Section 2 presents related work on
task allocation in a MEC platform. Section 3 describes our system model, and Section 4 for-
mulates an optimization problem to reduce the total latency in the MEC platform. Section 5
proposes a heuristic algorithm for solving the optimization problem, and Section 6 calcu-
lates computational complexity of the heuristic algorithm. Section 7 presents numerical
examples, and Section 8 concludes the paper.

2. Related Work

In this section, we introduce related work on task allocation in a MEC platform. In [20],
an offloading algorithm was proposed for multiple users to perform the computation
offloading in a MEC environment. In this environment, multi-channel radio interference
was utilized for offloading, and the algorithm used game theory for task offloading. In [26],
the authors studied resource allocation for a multi-user MEC offloading system based on
time-division multiple access and orthogonal frequency-division multiple access. In [28],
the authors proposed a task allocation in a hybrid non-orthogonal multiple access (NOMA)
MEC system to reduce the processing delay and save the energy consumption. The
proposed method formulates an optimization problem and utilizes a matching algorithm to
obtain a better solution. In [29], the authors proposed a cooperative task allocation method
to minimize the power consumption of mobile terminals in an environment with a MEC
server and cloud server. In this environment, task processing can be performed on the
MEC server near the base station via wireless communication. This method can also use
cloud servers via optical line terminals or the Internet.

In [30], the authors defined a mathematical model of a MEC environment in which
traffic flows can be managed. The proposed permissive underestimation system, which
selects the destination server with the lowest latency, provides an effective solution for
a MEC platform. In addition, in [31], the authors discussed how a MEC server can be
used to realize serverless edge computing. Following the European Telecommunications
Standards Institute (ETSI) MEC standard, two alternative design approaches were proposed
to handle rapid changes in mobility and load conditions. Using numerical examples, it
was demonstrated that the proposed approaches were effective in accommodating system
changes in response time.

In [32], the authors proposed an optimization framework for computation offloading
and resource allocation for a MEC environment with multiple servers. This framework
can be used to minimize the total computational overhead. The individual computation
decisions, transmit power of the users, and computation resources were optimized. MEC
servers were utilized in this environment; however, cloud servers were not. In addition, this
paper adopted a suboptimal approach by splitting the original problem into a computation
offloading decision problem and a joint resource allocation problem.

In [33], the authors investigated a two-tier offloading method for multiple MEC servers
in heterogeneous networks. In this method, the total computation overhead was minimized
by solving a formulated optimization problem that was a mixed-integer nonlinear program
problem. The original problem was also divided into a resource allocation problem and
a computation offloading problem. In [34], the authors focused on a MEC platform in
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which there were two types of MEC serves: a near server and far server. In this platform,
delay-sensitive tasks were allocated to the near server while computationally intensive
tasks were allocated to the far server. However, this task allocation did consider the
utilization of cloud servers. In [35], a resource management technique based on game
theory was proposed in a MEC platform and small-scale data centers. This technique can
minimize energy consumption and costs while ensuring applications’ performance using a
semi-co-operative game.

In [36], the authors proposed a heuristic offloading algorithm to maximize the reli-
ability performance of computation offloading. The method can be used in an Internet
of Vehicle environment in which fixed edge computing node and MEC nodes are used,
but cloud servers are not used. For a similar Internet of Vehicle environment, in [37], the
authors modeled the data redundancy and proposed the collaborative task computing
scheme. The proposed scheme can reduce the redundant data and utilize the idle resources
in nearby MEC servers. In [38], the authors proposed an optimization framework of of-
floading from a single mobile device to multiple edge devices. This framework is based
on a semi-definite relaxation (SDR), and tasks are allocated considering central process
unit (CPU) to improve energy consumption and processing latency. In [39], for the indus-
trial Internet of Things, the authors proposed a MEC-enabled architecture considering the
task’s priority constraints. This architecture can minimize the response time using a task
allocation strategy using a Bayesian network based evolutionary algorithm. In [40], for
the latency and reliability sensitive computing tasks processed in swarm of drones, the
authors proposed a task allocation based on an optimization problem. In the swarm of
drones, nearby drones are used as MEC server for processing the tasks. This algorithm can
minimize the energy consumption of the swarm of drones when the latency and reliability
requirements are satisfied.

For cloud computing environments without MEC servers, in [41,42], the authors
proposed resource management methods for cloud computing environments and cloud
data centers. These methods can manage resources to improve energy consumption, service
performance, and costs. In [43], the authors studied the combination of two virtualization
technologies: virtual machine and containers. The authors presented the advantages of
running containers on virtual machines.

For a environment where MEC servers and cloud servers are available, [44,45] pro-
posed an algorithm that allocates tasks to a MEC server or cloud servers to minimize the
total latency. Optimization problems were formulated for latency reduction and were
solved using a genetic algorithm. In both problems, there was only one MEC server, and
heuristic algorithms were not proposed. In [46] a task allocation to increase user satisfaction
was proposed. The minimization of power consumption was also considered [47–51].

MEC is significantly expected to be utilized by future Internet applications. Therefore,
various uses of MEC have been proposed [52–55]. Especially, machine learning and artificial
intelligence are effective in a MEC platform [56–59]. For utilizing machine learning and
artificial intelligence, a large number of data sets obtained from the real environment and a
long training time to determine an appropriate task allocation.

3. System Model
3.1. MEC Platform

In this section, we explain our system model where our proposed method is applied.
This system model is designed by considering [61] because our proposed method is used
in real environments.

Figure 1 presents our system model, which consists of a MEC platform with three types
of servers: a dedicated MEC server, shared MEC server, and cloud server. The dedicated
MEC server M1 is utilized to process tasks that are sent from the closest access point, while
the shared MEC server M2 is utilized for tasks that are sent from any access point. The
cloud server S can also be utilized for tasks that are sent from any access point.
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Figure 1. System model consisting of a MEC platform with three types of servers.

In this model, N tasks of N users can be processed on one of the three servers in the
MEC platform. In the following, we focus on task allocation for users that connect to the
MEC platform via access point a1. The number of these users is N1, and the N1 users can
use the dedicated MEC server M1, shared MEC server M2, and cloud server S. In addition,
N2 users (N1 + N2 = N) can use M2 and S via access point a2. That is, M2 and S can process
tasks for all N users, whereas M1 can process tasks for N1 users.

Here, let D1 [Gigacycle/s] be the processing efficiency of M1, and let D2 [Gigacycle/s]
be the processing efficiency of M2. The transmission delay between N1 users and M1 is
zero; however, the transmission delay between N1 users and M2 depends on the bottleneck
node (see Figure 2). In this subsection, we model the bottleneck node between all access
points and M2 as an M/M/1 queueing model, and the transmission delay l [s] is given by

l =
1

µ− (NM2
1 + N2)λ

. (1)

In (1), NM2
1 denotes the number of tasks that are not allocated to M1, and (NM2

1 + N2)
denotes the number of tasks that pass through the bottleneck node. In addition, λ is the
arrival rate of tasks at the bottleneck node, and 1

µ is the average processing time of each

task at the bottleneck node. It should be noted that (NM2
1 + N2)λ/µ < 1 should be satisfied

to obtain steady-state probabilities.
The processing efficiency of S is much higher than that of both M1 and M2; thus, the

processing time on S is assumed to be 0 [s]. The transmission delay between N1 users and
S is large because the task transmission is via the Internet, and this transmission delay is
assumed to be a large constant time, which is denoted as τ [s].

�

�

�
�
+ � )�

�

Bottleneck 

node

Figure 2. M/M/1 queueing model for bottleneck node in a MEC platform.

Here, let the ith task that is transmitted via access point a1 be denoted as fi
(i = 1, · · · , N1). For task fi, the acceptable latency is set to tmax

i [s] as the task alloca-
tion constraint. Each user must receive a response for their own task within the acceptable
delay after sending the task to a server.
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3.2. Calculation of Latency for Three Types of Servers

In this subsection, we calculate the latency for processing a task for three types of
servers. For task fi (i = 1, · · · , N1), let Ti

1, Ti
2, and Ti

S be the latency for processing fi on
the dedicated MEC server M1, shared MEC server M2, and cloud server S, respectively.
Figure 3 presents the latency for fi in the three cases.

�

�

�

� �

��Task 2�

�

�	�	∈ℱ

�

�	�	∈ℱ

�

Acceptable
latency �

���

Figure 3. Latency for processing task fi.

Now, let ci [Gigacycle] denote the number of central processing unit (CPU) cycles that
are required for processing fi. When fi is processed on M1, Ti

1 is equal to the processing
time on M1 and does not include the transmission delay. This is because the transmission
delay is zero for M1. Here, the processing time depends on the total number of CPU cycles
for the tasks processed on M1. When the set of tasks processed on M1 is F1, Ti

1 is given by

Ti
1 =

∑ f j∈F1
cj

D1
. (2)

Next, we consider the processing of fi on M2. The latency Ti
2 is derived from the

processing time on M2 and the round-trip transmission delay 2l, where l is derived in
Section 3.1. Here, the processing time also depends on the total number of CPU cycles for
the tasks processed on M2. When the set of tasks processed on M2 is F2, the latency Ti

2 is
given by

Ti
2 =

∑ f j∈F2
cj

D2
+ 2l. (3)

It should be noted that for simplicity, the processing time, which is the first term in (3),
does not consider the processing of tasks forwarded from a2. This is because we do not
focus on the allocation of tasks from a2; however, this does not affect the allocation of tasks
from a1 because we assume that D2 is the efficiency of processing only tasks from a1.

Finally, when fi is processed on S, the latency Ti
S is equal to the round-trip transmission

delay 2τ. This is because the processing time of fi on S is zero due to its high processing
efficiency regardless of the number of tasks that are allocated to S. Therefore, Ti

S is given by

Ti
S = 2τ. (4)

4. Optimization Problem Formulation for Total Latency Reduction

In this section, we formulate an optimization problem for allocating tasks to three
servers to minimize the total latency for the system model described in Section 3. For this
optimization problem, we define the following variables for task fi:

χi =

{
1, fi is allocated to M1,
0, otherwise.

ψi =

{
1, fi is allocated to M2,
0, otherwise.
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ωi =

{
1, fi is allocated to S,
0, otherwise.

The above variables indicate the server where fi is processed. For example, χi = 1
indicates that fi is allocated to M1.

When the acceptable latency for fi is tmax
i , we formulate the following optimization

problem for minimizing the total latency for all N1 tasks:

min
χ,ψ,ω

N

∑
i=1
{Ti

1χi + Ti
2ψi + Ti

Sωi}, (5)

subject to :

Ti
1χi + Ti

2ψi + Ti
Sωi ≤ tmax

i , ∀i, (6)

χi + ψi + ωi = 1, ∀i. (7)

In this optimization problem, the objective function (5) signifies that tasks are allocated
to servers to minimize the total latency. The constraint condition (6) indicates that the
latency for each task must be equal to or lower than tmax

i . Moreover, (7) signifies that each
task is allocated to only one of three servers. This optimization problem can be solved
simply using meta heuristic algorithms, such as the genetic algorithm.

5. Proposed Heuristic Algorithm

In this section, we propose a heuristic algorithm for solving the formulated optimiza-
tion problem. Our proposed heuristic algorithm consists of four algorithms that are denoted
as Algorithms 1–4. Algorithm 1 is the main algorithm, while the remaining algorithms are
used as a function in the main algorithm.

Figure 4 presents an overview of our proposed heuristic algorithm. In our algorithm,
the allocation of a task whose acceptable latency is low is preferentially performed to satisfy
the acceptable latency of all tasks. In Algorithm 1, first, all tasks are divided into two sets
in line 1. This process is performed based on the acceptable latency in Algorithm 2.

Algorithm 1 Main algorithm.

Input: All parameters for our optimization problem
Output: χi, ψi, ωi

1: Task division(tmax
i , τ, fi, N1) /*Algorithm 2*/

2: MEC allocation(tmax
i , fi, ci) /*Algorithm 3*/

3: MEC cloud allocation(tmax
i , fi, ci) /*Algorithm 4*/

In Algorithm 2, tasks are divided into two sets, FS and FS̄. FS includes tasks that can
be processed on S, while FS̄ includes tasks that are never processed on S. If the acceptable
latency tmax

i of task fi is smaller than 2τ, fi is never processed on S and is included in FS̄ in
lines 3 and 4. Otherwise, fi is included in FS in lines 5 and 6.

Then, each task in FS̄ is allocated to M1 or M2 in line 2 of Algorithm 1, and this
allocation is performed in Algorithm 3. In Algorithm 3, let L1

i and L2
i be the latency when

fi is assumed to be processed on M1 and M2, respectively. Furthermore, V1
min and V2

min
are the minimum values of the acceptable latency tmax

i of a task allocated to M1 and M2,
respectively. As explained in the previous paragraph, a task in FS̄ must be allocated to M1
or M2 because tmax

i is smaller than 2τ. In addition, a task whose acceptable latency is low
should be allocated to M1 because the transmission delay for M1 is zero. Therefore, the
allocation of tasks in FS̄ is decided in ascending order of tmax

i , and fi is sorted in ascending
order of tmax

i in line 1. It should be noted that tmax
1 is the minimum value while tmax

|FS̄ |
is the

maximum value after line 1. In this task allocation, L1
i and L2

i are compared with V1
min and

V2
min in lines 6, 18, and 23. When all tasks satisfy the acceptable latency even if fi is allocated
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to M1 and M2 in line 6, fi is allocated to a server to reduce the latency by comparing L1
i

with L2
i in lines 7 or 12 (χi ← 1 or ψi ← 1). After fi is allocated to a server, V1

min or V2
min may

be updated in line 10 or 15. When all tasks satisfy the acceptable latency if fi is allocated to
M1 but the acceptable latency is not satisfied for M2 in line 18, fi is allocated to M1 (χi ← 1).
In addition, when all tasks satisfy the acceptable latency if fi is allocated to M2, but the
acceptable latency is not satisfied for M1 in line 23, fi is allocated to M2 (ψi ← 1). In both
cases, V1

min or V2
min may be updated in line 21 or 26.

Algorithm 2 Task division function.

Input: tmax
i , τ, fi, N1

Output: FS,FS̄
Initialization :

1: i← 0
LOOP Process :

2: while i < N1 do
3: if tmax

i < 2τ then
4: FS̄ ← fi
5: else
6: FS ← fi
7: end if
8: i← i + 1
9: end while

Algorithm 1

� tasks are divided into

ℱ� and ℱ� .

Tasks in ℱ� are allocated 

toM1 or M2.

Algorithm 2

Algorithm 3

Tasks in ℱ� are allocated

toM1, M2, or S.

Algorithm 4

Start

Finish

�� , �� , ��

Parameters in
optimization problem

Figure 4. Overview of our proposed heuristic algorithm.
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Algorithm 3 MEC allocation function.

Input: tmax
i , fi, ci

Output: χi, ψi, ωi for fi ∈ FS̄
Initialization :

1: fi in FS̄ is sorted in ascending order of tmax
i

2: V1
min ← ∞

3: V2
min ← ∞

4: i← 1
LOOP Process :

5: while i < |FS̄| do
6: if L1

i ≤ V1
min and L2

i ≤ V2
min then

7: if L1
i ≤ L2

i then
8: χi ← 1
9: if V1

min > tmax
i then

10: V1
min ← tmax

i
11: end if
12: else
13: ψi ← 1
14: if V2

min > tmax
i then

15: V2
min ← tmax

i
16: end if
17: end if
18: else if L1

i ≤ V1
min and L2

i > V2
min then

19: χi ← 1
20: if V1

min > tmax
i then

21: V1
min ← tmax

i
22: end if
23: else
24: ψi ← 1
25: if V2

min > tmax
i then

26: V2
min ← tmax

i
27: end if
28: end if
29: end while

In Algorithm 4, tasks are allocated to M1, M2, or S because fi can be allocated to the
cloud server. Here, this task allocation can easily satisfy the acceptable latency for a task
by allocating the task to S. This is because the processing time for M1 and M2 does not
change when the task is allocated to S. Therefore, in this algorithm, fi in FS is sorted in
descending order of ci to reduce the total latency in line 1. It should be noted that c1 is the
maximum value and c|FS | is the minimum value after line 1. Here, let K1

i , K2
i , and KS

i be
the total latency for M1, M2, and S in the case in which fi is assumed to be processed on
M1, M2, and S, respectively. In this task allocation, L1

i and L2
i are compared with V1

min and
V2

min in lines 6, 20, 29, and 38. When all tasks satisfy the acceptable latency, even if fi is
allocated to M1 and M2 in line 6, fi is allocated to a server so that the total latency becomes
the smallest in lines 7, 12, or 17 (χi ← 1, ψi ← 1, or ωi ← 1). After fi is allocated to M1
or M2, V1

min or V2
min may be updated in line 10 or 15. When all tasks satisfy the acceptable

latency if fi is allocated to M1, but the acceptable latency is not satisfied for M2 in line 20, fi
is allocated to M1 or S. In line 21 or 26, fi is allocated to a server so that the total latency
becomes the smallest (χi ← 1 or ωi ← 1). In addition, when all tasks satisfy the acceptable
latency if fi is allocated to M2, but the acceptable latency is not satisfied for M1 in line 29, fi
is allocated to M2 or S. In line 30 or 35, fi is allocated to a server so that the total latency
becomes the smallest (ψi ← 1 or ωi ← 1). When no task can satisfy the acceptable latency
if fi is allocated to M1 and M2, fi is allocated to S (ωi ← 1).
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Algorithm 4 MEC cloud allocation function.

Input: tmax
i , fi, ci

Output: χi, ψi, ωi for fi ∈ FS
Initialization :

1: fi in FS is sorted in decreasing order of ci
2: V1

min ← ∞
3: V2

min ← ∞
4: i← 1

LOOP Process :
5: while i < |FS| do
6: if L1

i ≤ V1
min and L2

i ≤ V2
min then

7: if K1
i < K2

i and K1
i < KS

i then
8: χi ← 1
9: if V1

min > tmax
i then

10: V1
min ← tmax

i
11: end if
12: else if K2

i < K1
i and K2

i < KS
i then

13: ψi ← 1
14: if V2

min > tmax
i then

15: V2
min ← tmax

i
16: end if
17: else
18: ωi ← 1
19: end if
20: else if L1

i ≤ V1
min and L2

i > V2
min then

21: if K1
i < KS

i then
22: χi ← 1
23: if V1

min > tmax
i then

24: V1
min ← tmax

i
25: end if
26: else
27: ωi ← 1
28: end if
29: else if L1

i > V1
min and L2

i ≤ V2
min then

30: if K2
i < KS

i then
31: ψi ← 1
32: if V2

min > tmax
i then

33: V2
min ← tmax

i
34: end if
35: else
36: ωi ← 1
37: end if
38: else
39: ωi ← 1
40: end if
41: i← i + 1
42: end while

6. Computational Complexity

In order to investigate the scalability of our proposed algorithm, we derive compu-
tational complexity of our proposed heuristic algorithm. First, there is no loop process in
Algorithm 1, which is the main algorithm; therefore, the computational complexity of this
algorithm can be derived from Algorithm 2, Algorithm 3, or Algorithm 4.
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In Algorithm 2, there is a loop process from line 2 to line 9, and the order of this loop
process is O(N), in which N is the number of tasks. In Algorithms 3 and 4, there is also
a loop process from line 5 to line 29 and from line 5 to line 42, respectively. From line 5
of Algorithm 3, the order of this loop process is O(N) because |FS̄| is equal to or smaller
than N. Moreover, from line 5 of Algorithm 4, the order of this loop process is also O(N)
because |FS| is equal to or smaller than N.

As a result, the computational complexity of our proposed algorithm is O(1) ×
(O(N) + O(N) + O(N)) = O(N). This signifies that the computational complexity of
this algorithm does not depend on parameters of a MEC platform and is affected by
only the number of tasks. Therefore, our proposed algorithm is scalable to a large-scale
MEC platform.

7. Numerical Examples

In this section, we evaluate the performance of our proposed heuristic algorithm
described in Section 5 through comparison with other methods such as near-optimal task
allocation with the genetic algorithm.

In the MEC platform for the performance evaluation, the number of tasks N1 is 10, 20,
30, 40, or 50, and the number of tasks N2 is equal to 20. The processing efficiency for M1 is
D1 = 30, and the processing efficiency for M2 is D2 = 300. In addition, the transmission
delay of tasks for S is τ = 0.1, 0.2, 0.3, 0.4, or 0.5. For task fi, ci is determined according to a
uniform distribution of [0.1, 1.0], and tmax

i is determined according to a uniform distribution
of [1.0, 4.0]. For the bottleneck node, we assume that λ is equal to 1.25, 1.5, 1.75, 2.0, or 2.25,
and µ is equal to 100. Table 1 presents a list of parameter settings in the simulation. These
parameter settings were decided according to our MEC platform and application [62].

Table 1. Parameter settings in simulation.

Parameter Value

Number of tasks transmitted N1 = 10, 20, 30, 40, or 50
via access point a1

Number of tasks transmitted N2 = 20
via access point a2

Processing efficiency for MEC server M1 D1 = 30

Processing efficiency for MEC server M2 D2 = 300

Transmission delay of tasks for S τ = 0.1, 0.2, 0.3, 0.4, or 0.5

Task size ci Uniform distribution of [0.1, 1.0]

Acceptable latency tmax
i Uniform distribution of [1.0, 4.0]

Arrival rate λ of tasks λ = 1.25, 1.5, 1.75, 2.0, or 2.25
for M/M/1 queueing model

Average processing time of task 1
µ = 0.01

for M/M/1 queueing model

For this MEC platform, we evaluate the performance of the proposed heuristic algo-
rithm, denoted as Proposed, and the performance of near-optimal task allocation, denoted
as GA. In near-optimal task allocation, the number of chromosomes in each generation is
1000 and the mutation probability is 0.005. GA algorithm stops if there is no improvement
in the best objective value for 1000 generations. It should be noted that we determined that
the result of GA is the same as the optimal value obtained by the CPLEX optimizer [64]
when the number of tasks is small. Therefore, the result of GA is used as the optimal one,
and the performance of our proposed heuristic algorithm is investigated by comparing
with the result of GA.
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We also evaluate another heuristic algorithm where K1
i , K2

i , and KS
i are replaced by

L1
i , L2

i , and 2τ in Algorithm 4. This signifies that the latency for fi is considered, but the
total latency is not considered in Algorithm 4. The performance evaluation of this method
is useful to investigate the validity of our proposed heuristic algorithm where the total
latency can be considered, and the result is denoted as Comp. Finally, as one of the simplest
methods, we evaluate the performance of a random method, this is denoted as Random, in
which tasks are allocated to the three servers at random. We evaluate the performance of
this method by deriving the average value from 10 simulations; the result is denoted as
Random. By comparing Proposed with Random, the processing complexity of Proposed
can be investigated.

In the following performance evaluation, there are four performance metrics:

• Total latency: The solution of (5).
• Minimum latency: mini{Ti

1ξi + Ti
2ψi + Ti

Sωi}.
• Maximum latency: maxi{Ti

1ξi + Ti
2ψi + Ti

Sωi}.
• Calculation time to perform task allocation by solving the optimization problem.

These metrics are derived by solving the optimization problem (5) using the four
methods.

7.1. Impact of Number of Tasks

First, we investigate the impact of the number of tasks N on the performance of each
method when the transmission delay τ via the Internet is 0.2 and the arrival rate λ is 2.0.
Figure 5 presents the total latency versus the number of tasks N. This figure indicates
that the total latency increases as the number of tasks increases for all methods. This is
because the total number of CPU cycles required for processing tasks increases. Among
the four methods, the total latency of GA is the lowest, as expected. Furthermore, the
latency of Random is much higher than that of GA, which demonstrates that tasks should
not be allocated to servers at random. For our proposed method (Proposed), the obtained
latency is close to the near-optimal result of GA. This is because our proposed method is
constructed to obtain appropriate solution for the optimization problem (5)–(7). Moreover,
the latency of Comp is almost the same as that of GA when the number of tasks is small;
however, the latency increases as the number of tasks increases. When the number of tasks
is 50, the total latency of Comp is much higher than that of Random. Therefore, Figure 5
demonstrates that our proposed heuristic algorithm can effectively reduce the total latency
compared to Random and Comp.

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

T
o
ta

l 
la

te
n
cy

 [
s]

Number of tasksN1

GA

Proposed

Comp

Random

Figure 5. Total latency versus number of tasks in the case of τ = 0.2 and λ = 2.0.

Next, we evaluate the minimum latency and maximum latency for each task allocation
in Figures 6 and 7, respectively. In these figures, the number of tasks N is 50, τ is 0.2, and
λ is 2.0. Figure 6 demonstrates that the minimum latency of Proposed is larger than that
of GA. This indicates that the minimum latency can not be obtained using our proposed
algorithm. This means that our proposed method cannot obtain the optimal solution for
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the optimization problem. However, the minimum latency of Proposed is much lower
than that of Comp by using appropriate parameters in Algorithm 4. Here, the minimum
latency of Random is the lowest among the four methods by ignoring the total latency
reduction. In terms of the maximum latency, Figure 7 demonstrates that the latency of
Proposed is almost the same as that of GA. This result signifies that Proposed can allocate
tasks to appropriate servers so as not to increase the maximum latency for the total latency
reduction. Here, the maximum latency for GA, Proposed, and Random is 0.4 that is equal to
2τ, and this is the latency for the task offloading to cloud servers. Therefore, GA, Proposed,
and Random can utilizes MEC servers appropriately, but MEC servers are overused in
Comp. These results indicate that our proposed heuristic algorithm is effective in solving
the optimization problem to reduce the total latency.
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Figure 6. Minimum latency for each method in the case of N1 = 50, τ = 0.2, and λ = 2.0.
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Figure 7. Maximum latency for each method in the case of N1 = 50, τ = 0.2, and λ = 2.0.

Figures 8 and 9 illustrate how tasks are allocated to each server when N is equal to
30 and 50, respectively. In both figures, τ is 0.2 and λ is 2.0. In these figures, almost the
same number of tasks are allocated to each server for Random because the task allocation
is determined at random. By comparing Random with other methods, we observe that a
large number of tasks are allocated to cloud server S. As a result, the minimum latency and
maximum latency are low in Figures 6 and 7; however, the total latency is high in Figure 5.
In our proposed method, the number of tasks for M1 is almost the same as that of GA, but
the number of tasks for M2 and S are somewhat different from that for GA. In our proposed
method, the number of tasks offloaded to each server depends on the processing order that
is predetermined at line 1 in Algorithms 3 and 4. Therefore, it is hard to obtain the optimal
task offloading in our proposed method. In Comp, the number of tasks for S is the smallest
for both cases because the total latency cannot be considered in Algorithm 4.
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Figure 8. Number of tasks allocated to each server in the case of N1 = 30, τ = 0.2, and λ = 2.0.
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Figure 9. Number of tasks allocated to each server in the case of N1 = 50, τ = 0.2, and λ = 2.0.

7.2. Impact of Transmission Delay τ for Cloud Server

Next, we investigate the impact of the transmission delay τ on the performance of each
method. Figure 10 presents the total latency versus τ in the case of N1 = 50 and λ = 2.0.
This figure indicates that the total latency increases as τ increases for GA, Proposed, and
Random. This is because the latency for tasks that are allocated to the cloud server S
increases. From this figure, we find that the total latency for Proposed is close to that for
GA. This means that our heuristic algorithm is effective regardless of τ. In contrast, the
total latency of Comp does not increase when τ is larger than 0.2. In Comp, many tasks are
allocated to S by considering only the latency for each task when τ is small. However, the
latency for each task allocated to S increases as τ increases. Therefore, the number of tasks
for S decreases and the total latency does not increase even if τ increases.
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Figure 10. Total latency versus transmission delay τ in the case of N1 = 50 and λ = 2.0.
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We also evaluate the minimum latency and maximum latency for each task allocation
versus τ. In Figures 11 and 12, N1 is set to 50 and λ is set to 2.0. Figure 11 demonstrates that
the minimum latency of Comp is the largest because many tasks are allocated to S even if
M1 and M2 are available. On the other hand, the minimum latency of Proposed is higher
than that of GA and Random. The difference between Proposed and these two methods
increases as τ increases. This signifies that many tasks are allocated to MEC servers using
our proposed method, and the minimum latency of our method increases. However, in
Figure 12, the maximum latency of Proposed is equal to that of GA in most cases. In
contrast, the maximum latency of Comp is very different from that of other methods. This
is because many tasks are allocated to MEC servers even if the processing time in these
servers increases. Although the task allocation of Proposed is somewhat different from that
of GA, our heuristic algorithm is more effective than Comp and Random.
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Figure 11. Minimum latency for each method versus τ in the case of N1 = 50 and λ = 2.0.
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Figure 12. Maximum latency for each method versus τ in the case of N1 = 50 and λ = 2.0.

7.3. Impact of Arrival Rate λ in a MEC Platform

In this subsection, we investigate the impact of the arrival rate λ on the performance
of each method in the case of N1 = 50 and τ = 0.2. The change of arrival rate λ signifies
that the change of the number of tasks, and the scalability of our heuristic algorithm and
the heterogeneity of system model, can be investigated. It should be noted that there
are no results of Random because the obtained random task allocation could not satisfy
constraint conditions.

Figure 13 presents the total latency versus λ. This figure indicates that the total latency
increases as λ increases for GA and Proposed. This is because the latency Ti

2 increases
from (1) and (3). In contrast, when λ increases from 2.0 to 2.25, the total latency of Comp
decreases. This is because many tasks are allocated to the cloud server S and the processing
time on MEC servers decreases. Figure 13 demonstrates that our proposed heuristic
algorithm can effectively reduce the total latency compared to Comp regardless of λ.



Sensors 2022, 22, 4825 16 of 20

0

2

4

6

8

10

12

14

16

18

20

1.25 1.5 1.75 2 2.25

T
o
ta

l 
la

te
n
cy

 [
s]

Arrival rate λ

GA
Proposed
Comp

Figure 13. Total latency versus arrival rate λ in the case of N1 = 50 and τ = 0.2.

In addition, we evaluate the minimum latency and maximum latency for each task
allocation versus λ. Figure 14 demonstrates that the minimum latency of Proposed is higher
than that of GA, but is lower than Comp. In Figure 15, the maximum latency of Proposed
is equal to that of GA regardless of λ. These results present that our heuristic algorithm is
more effective than Comp, although the task allocation of Proposed is somewhat different
from that of GA. Here, the proposed method utilizes the total latency, which is given
by K1

i , K2
i , or KS

i , in our Algorithm 4, but Comp uses the latency for a server, which is
given by L1

i , L2
i , or 2τ. This means that our proposed algorithm is effective by considering

the total latency instead of the latency for a server. This tendency can be shown in the
previous subsection.
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Figure 14. Minimum latency for each method versus λ in the case of N1 = 50 and τ = 0.2.
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Figure 15. Maximum latency for each method versus λ in the case of N1 = 50 and τ = 0.2.

7.4. Calculation Time

Finally, we investigate the calculation time of our proposed method using a computer
running macOS Mojave 10.14.6 with 2.3 GHz Intel Core i5, and 8 GB memory. It should be
noted that the calculation time changes every time it is measured and it is not constant.
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Table 2 presents the calculation time of GA, Proposed, and Comp in the case of
N1 = 10, 20, 30, 40, and 50. Here, τ is equal to 0.2 and λ is equal to 2.0. This table indicates
that the calculation time of our proposed method (Proposed) is much lower than that of
near-optimal task allocation (GA). As the number of tasks increases, the difference between
Proposed and GA becomes large. This is because meta-heuristic algorithms including GA
take a longer processing time than heuristic algorithms as widely known. This means
that the heuristic algorithm is effective for task allocation in real environments. GA is not
appropriate to decide the task offloading in real time. Moreover, the calculation time of our
proposed method is almost the same as that of another heuristic algorithm (Comp). This
is because the two algorithms are almost identical, although our proposed algorithm is
more effective. From these results, we can conclude that our proposed heuristic algorithm
is effective for task allocation in a MEC platform with multiple types of MEC servers.

Table 2. Calculation time of each method in the case of τ = 0.2 and λ = 2.0.

Number of Tasks N1 GA [s] Proposed [s] Comp [s]

10 1004.345 0.093 0.092

20 1048.478 0.184 0.126

30 1720.223 0.266 0.246

40 3995.914 0.342 0.319

50 4983.124 0.411 0.316

8. Conclusions and Future Work

For 5G and future Internet, in this paper, we proposed a task allocation method for
reducing the total latency in a MEC platform with three types of servers: a dedicated
MEC server, a shared MEC server, and a cloud server. The proposed method can perform
approximate optimal task allocation in a shorter time than other meta heuristic algorithms.
This heuristic algorithm consists of four algorithms: a main algorithm and three additional
algorithms. In this algorithm, tasks are divided into two groups, and task allocation is
executed for each group. Computational complexity of our proposed algorithm depends
on only the number of tasks. We compared the performance of our proposed heuristic algo-
rithm with the solution obtained by GA and evaluated the effectiveness of our algorithm.
From numerical examples, we observed that the results of our proposed method were
similar to the results of near-optimal task allocation with GA. When the number of tasks
changed, the difference between our proposed method and GA did not change significantly.
In addition, the proposed algorithm could reduce the total latency by comparing with other
methods. In terms of the transmission delay, the effectiveness of the proposed method
was much high even if the transmission delay increased. This is because our proposed
method can utilize MEC servers as is the case with GA. On the other hand, as the arrival
rate became large, the difference between the proposed method and GA increased. This is
because the impact of incorrect task allocation became large as the arrival rate increased.
Nevertheless, the proposed method was more effective than other methods. The calculation
time of our proposed method was much lower than that of near-optimal task allocation
with GA. This result signified that Proposed could allocate tasks to appropriate servers
so as not to increase the maximum latency for the total latency reduction. These results
indicated that our proposed heuristic algorithm was effective in solving the optimization
problem to reduce the total latency. Our proposed heuristic algorithm was effective for task
allocation in a MEC platform with multiple types of MEC servers.

For a large-scale MEC platform, our system model and proposed algorithm are utilized
modeling multiple MEC servers and multiple access points as a shared MEC server and
an access point group, respectively. If the impact of each MEC server and each access
point should be evaluated, our proposed method must be extended. This extension is
one of our future works. In addition, we have developed an open MEC platform and a
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mobile augmented reality application. In our future work, we will implement the proposed
algorithm into our MEC platform and mobile application and experimentally evaluate the
performance of the algorithm. Moreover, in order to improve the performance, a deep
learning algorithm may be available in the future.
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