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Abstract: Over the last decade, technological advancements have been made available and applied in
a wide range of applications in several work fields, ranging from personal to industrial enforcements.
One of the emerging issues concerns occupational safety and health in the Fourth Industrial Revolu-
tion and, in more detail, it deals with how industrial hygienists could improve the risk-assessment
process. A possible way to achieve these aims is the adoption of new exposure-monitoring tools. In
this study, a systematic review of the up-to-date scientific literature has been performed to identify
and discuss the most-used sensors that could be useful for occupational risk assessment, with the
intent of highlighting their pros and cons. A total of 40 papers have been included in this manuscript.
The results show that sensors able to investigate airborne pollutants (i.e., gaseous pollutants and
particulate matter), environmental conditions, physical agents, and workers’ postures could be
usefully adopted in the risk-assessment process, since they could report significant data without
significantly interfering with the job activities of the investigated subjects. To date, there are only few
“next-generation” monitors and sensors (NGMSs) that could be effectively used on the workplace to
preserve human health. Due to this fact, the development and the validation of new NGMSs will be
crucial in the upcoming years, to adopt these technologies in occupational-risk assessment.

Keywords: low-cost sensors; miniaturized monitors; wearable monitors; implantable monitors;
placeable monitors

1. Introduction
1.1. Background

Since personal samplers were implemented in the 1960s, personal sampling has be-
come a widely accepted practice (or, rather, the reference method) for exposure assessment
in occupational hygiene [1,2]. Traditionally, personal sampling depends on relatively slow
turnarounds between sample collection and subsequent laboratory analysis, which uses
standardized methods to generate results, and this can limit the optimal implementation of
workplace-risk-mitigation strategies in terms of promptness and efficacy [2,3]. On the other
hand, “real-time” monitoring (i.e., by using “direct-reading” devices) allows for: (i) sens-
ing the presence of specific hazards, (ii) collecting a data sample with a high temporal
resolution, and (iii) having real-time feedback which, on the contrary, should be delayed
when using the traditional approach of sample collection, followed by a subsequent off-line
analysis [2–4]. These advantages, in occupational-hygiene applications, can potentially
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provide data of different nature for risk-management purposes; the information on the
exposure to the hazard can be available in a more timely way, thus, the implementation
of risk mitigation measures may be faster and more efficient (e.g., workers who receive
real-time information can mitigate their own exposure, by changing their behavior and/or
the procedure they are performing) [4]. The advent of wearable and unobtrusive sensors
has allowed for measuring the parameters of interest (e.g., gas/vapor and aerosol con-
centrations, noise intensity, fatigue and heat stress) during real-life activities [5]. Further,
data from real-time monitoring may have completely different characteristics (e.g., high
volume of data, elevated generation velocity, heterogeneity of data), compared to those
from traditional monitoring, which determines a great interest and challenge in the collec-
tion, storage, and modeling of data [6]. The development of cheaper (and, sometimes, also
lightweight, miniaturized, and technically advanced) sensors (e.g., low-cost sensors—LCSs)
and monitors (e.g., low-cost monitors—LCMs) is essential to promote the abovementioned
activities and might have the potential to transform exposure-assessment approaches in oc-
cupational settings [7]. Following a definition already adopted in a previous publication [8],
low-cost sensors and monitors are intended to mean that the cost of a single unit does not
exceed the order of magnitude of a few hundred USD. The spread of a “next-generation” of
sensor devices for occupational hygiene (i.e., low-cost, miniaturized, placeable, wearable,
and implantable sensor technologies) and their role in the future of workplace-exposure
assessment and risk assessment have recently been discussed [3,4,6,8]. Hereafter, a system-
atic collection of the up-to-date literature, aiming to outline the relative core topics, will
be discussed.

1.2. Problem Statement

NGMSs (“next-generation” monitors and sensors), which refers to “miniaturized”
and/or “wearable” sensors and/or monitors, are expected to make the exposure and risk
assessment in occupational settings more convenient and comprehensive [4]. A recent
systematic review [8] analyzed the use of NGMSs in occupational hygiene for airborne
hazards: results outlined that these applications are less frequent than in environmental
hygiene, and this is probably due to the fact that policy- and legislation-based decisions
requires a high-level detection limit for data, precision, accuracy, and completeness [9].
Despite that, NGMSs devices can provide new resources in the occupational-safety and
health-management fields [10–23]. Indeed, the studies considered in the above-mentioned
systematic review, demonstrated overall that NGMSs provide useful data, if properly
calibrated. NGMSs can also be easily adopted to improve exposure assessment studies
in terms of spatio-temporal resolution, wearability (=prolonged use), and adaptability to
different types of experimental designs and applications. For example, wearable sensors
and devices could be used in various application fields such as: (i) ergonomic analysis [24],
(ii) assessment of the weather’s effect on outdoor workers [25], or (iii) exposure to chemical
substances which can affect workers’ health [26]. Personal-level sensors are also creating
new opportunities for exposure-assessment studies. Technologies to study the environ-
ment, such as monitors and sensors, have always had a higher, more important role in the
investigation of the occupational-risk-assessment process [27]. The application of Internet
of Things (IoT) technologies also allows to connect NGMSs to each other and/or to smart-
phone apps and to upload data onto cloud platforms using Bluetooth or Wi-Fi technologies,
which report back, in real-time, the recorded data [19,28]. Nevertheless, some drawbacks
must be also considered. For example, NGMSs cannot be applied as reference-grade in-
strumentation in monitoring exposure to airborne chemicals for regulatory purposes [8].
NGMSs should be used paired with traditional methods for a period to allow the hygienist
to calibrate the sensors in the most efficient way to obtain significant data for the risk
assessment [29–31]. Another relevant issue regards power supply, in fact, most NGMSs
cannot run for many hours without recharging [8]. Further, concerning ethics, a balance
should be found among the respect for privacy and the intrusiveness that accompanies
ubiquitous worker monitoring; mutual worker–employer trust must be achieved regarding



Sensors 2022, 22, 4841 3 of 16

the management of the large amount of data that can be generated by monitoring with
NGMSs [4]. From a much more operational point of view, another weakness of NGMSs
could be due to their misplacement during the workers’ activities. In fact, these situations
may generate a lack of data quality, and it might be a serious problem for the industrial
hygienist’s evaluations, in the case that the data should be analyzed for risk-assessment
purposes [8].

1.3. Aim of the Study

The main purpose of this study is to analyze the scientific literature in order to
understand the state-of-the-art technology concerning the use of NGMSs in the exposure
and risk-assessment processes in occupational settings. In particular, the present study
aims to focus on how NGMSs could be used in the field and on their practicability in
the risk-assessment procedure. In addition, the authors decided to study several areas of
interest regarding the technologies and the main technical aspects of wearable sensors in
the field of industrial hygiene.

2. Materials and Methods

A rapid [32,33] systematic review of the literature was performed using the outcomes
from Scopus database following PRISMA guidelines [34]. The main topic of interest
involved in this work was about placeable, wearable, and implantable sensors and their
application in occupational exposure assessment studies. Only scientific papers written in
English were considered. A list of keywords was arranged in queries following the writing
rules required by Scopus database, obtaining the final query (Table 1) adopted to get the
papers from the database.

Table 1. Query used in the Scopus database.

Database Search Query

Scopus (TITLE-ABS-KEY (“sensor*” AND “occupation*”)) AND (TITLE-ABS-KEY
(“occupational exposure” OR “human exposure” OR “exposome” OR

“miniaturized sens*”)) AND (TITLE-ABS-KEY (“sensor network” OR “wearable
sens*” OR “crowd sensing” OR „participatory sensing” OR “mobile sensor node”

OR “low cost sensor” OR “citizen science” OR “mobile phone app*” OR
“lightweight device*” OR “bluetooth” OR “air pollution sens*” OR “portable

device” OR server OR cloud OR “miniaturized sensor*”))

At the end of the research process, 40 papers were found in Scopus (Figure S1). The
last research was conducted on 22 March 2022 (first research: 27 May 2021; weekly updates
were performed starting in March 2022 until the submission date).

After reading each retrieved paper, the obtained information was schematically or-
ganized in a dedicated database by two of the authors (A.B. and G.F.). The papers were
analyzed to find out information regarding the aims of the studies, the investigated risk
factors, the application of NGMSs, and their technical features (e.g., sensor technology,
devices’ dimensions, weight and cost, batteries performance, availability of mobile apps,
connection and/or IoT technology, application (in the laboratory or in the field), and their
availability (prototype or device on the market)). In the opinion of the authors, these are
the most important topics regarding the implementation of the risk-assessment process in
real, occupational settings. It should be noted that conducting a systematic review of the
available evidence on the use of NGMSs in the exposure and risk-assessment process in
occupational settings would have been a useful tool. It would allow the interpretation of
the results of individual studies within the context of the totality of evidence and provide
the evidence-base for guidelines or policy briefs. However, due to the high level of method-
ological rigor, systematic reviews require considerable time and skills to execute. When
timely access to information is needed, “rapid reviews” instead of systematic reviews are
a possibility that can be considered [32]. Rapid reviews are a form of knowledge synthe-
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sis, in which components of the systematic review process are simplified or omitted to
produce information in a timely manner [33]. The present review is, therefore, configured
as a rapid review, and the limitations that characterize this type of approach must be
considered [32,35].

3. Results and Discussion

The review’s outcomes indicate that the number of research articles that involve
low-cost sensors for the implementation of the risk-assessment process has steadily in-
creased in the past decade, and it is constantly growing. Indeed, most (n = 38) of the
scientific papers retrieved by applying the abovementioned research query were pub-
lished from 2010 to 2021, and only two papers [36,37] were published before 2010. Seven
studies [38–44] were performed in both actual-occupational and laboratory settings and
seventeen studies [5,11,18,19,25,26,37,45–54] were conducted in applied field-based set-
tings, while eight [31,36,55–60] were performed in a laboratory environment. At the time
of writing (February 2022), most of the sensors used in the reviewed studies were available
on the market. In fact, only 4 [43,48,57,59] out of 40 studies presented specifically designed
prototype sensors and devices. Due to the ability of the involved sensors to detect various
parameters (Table 2), only 11 [18,31,37–39,41,44,48,51,52,54] out of 40 studies focused on a
single parameter.

Table 2. Parameters investigated as occupational-risk factors, sensors used for measurement and
assessment of these risk factors, and relative technologies.

Risk Factor Sensor Name/Model Sensor Technology References

Airborne Pollutants

Carbon Monoxide (CO)
IOT-CO-1000 EC [38]

Alphasense CO-B4 EC [11,45]
n.a. MDCNTS [58]

Carbon Dioxide (CO2) n.a. TLS [48]

Nitrogen Dioxide (NO2)
Cairclip NO2 EC [26]

Alphasense OX-B431 EC [11,45]
n.a. MDCNTS [58]

Ozone (O3)
Cairclip O3 EC [26]

Alphasense OX-B431 EC [11,45]
MPRE EC [57]

Methane (CH4) Figaro TGS 2600 MOS [52]
MPRE EC [57]

Benzene (C6H6) n.a. MDCNTS [58]

Hydrogen Sulfide (H2S) n.a. MDCNTS [58]

Sulphur Dioxide (SO2) MPRE EC [57]

Particulate Matter (PM)

Sharp Electronics GP2Y1010AU0F LS [11,41,45,59]
Alphasense OPC-N3 LS [43,51]

uRAD model A3 LS [47]
Plumbe labs. FLOW LS [47]

AVPM25b AirVisual Pro LS [47]
Sensirion SPS30 LS [31]

Airbeam2 LS [31]
Plantower PMSA003 LS [31]

Other Parameters

Temperature (T)

Thermocron iButton DS1921G TH [19,25,47]
HOBO Pendant Temperature TH [19,53]

Garmin vivoActive HR n.a. [19,53]
LifeShirt n.a. [36]

Vital Jacket n.a. [5]
PT100 TH [18,50]

AM2302 TH [11,45]
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Table 2. Cont.

Risk Factor Sensor Name/Model Sensor Technology References

Ultraviolet Radiation (UV) GENESIS-UV n.a. [61]
n.a. SiC [59]

Noise
n.a. SPL [11,45]

B3 (Black Box Biometrics Blast sensor) SPL [40]

Work-related Musculoskeletal
Disorders (WMSDs)

IsenseU IMU [56]
n.a. IMU [42,43]

Hand-Heald dynamometer IMS [42]
EMG EMA [42]
n.a. IMU [24,62]

G-Sensor IMU [49]

Proximity/Collision Accidents AVM RFID [50]

EC—electrochemical sensor; MOS—metal-oxide semiconductor; MDCNTS—metal-decorated carbon-nanotube
sensor; TLS—tunable-laser spectroscopy; LS—light scattering; TH—thermistor; SiC—silicon-carbide sensor; SPL—
sound-pressure level; IMU—inertial-measurement unit; IMS—isometric-muscle strength; EMA—electrical-muscle
activity; RFID—radio-frequency identification; n.a.—not applicable) and references to the papers in which sensors
were made explicit and used.

3.1. Airborne Pollutants
3.1.1. Gaseous Pollutants

Gaseous pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), and ozone
(O3) cause a range of deleterious respiratory- and cardiovascular-health effects [63]. The
main airborne gaseous pollutants studied in the literature, using NGMSs technologies, are:
(i) CO, (ii) oxidizing gases such as O3 and nitrogen dioxide (NO2), (iii) methane (CH4),
(iv) sulfur dioxide (SO2), and (v) benzene (C6H6) (Table 2). In more detail, two papers [57,58]
present new tools and techniques for the monitoring of airborne pollutants, in particular
for C6H6, O3, and SO2. Leghrib and co-workers [58] used an array of plasma-treated
metal-decorated carbon nanotubes for the quantification of airborne benzene, suggesting
use for a selective, low-cost, and wearable sensor. Wan and co-workers [57] introduced a
new miniaturized planar electrochemical-gas sensor for a rapid monitoring of multiple
inorganic gases (i.e., oxygen (O2), O3, SO2, and CH4). In more detail, they presented the
whole sensor’s construction process, outlining how, from a sensor available on the market,
one could build a new customized, low-cost, and wearable device with good reliability
to be applied for exposure and risk-assessment procedures [57]. The gas sensor consists
of a porous polytetrafluoroethylene substrate, which allows fast gas diffusion and room-
temperature ionic liquid as an electrolyte. To enhance adhesion between the electrodes
and the substrate, for platinum-electrodes production, a metal-sputtering technique was
used. Thus, compared with other already adopted gas sensors, the one proposed by Wan
and collaborators is among the most promising toward a miniaturized, inexpensive, rapid-
response, low-power, and multi-gas sensing system for the exposure monitoring of gaseous
hazards [57]. Another work concerning the evaluation of CH4 concentrations was con-
ducted by Shamasunder and co-workers [52], who tested the capacity of low-cost sensors
for localized-exposure estimates. Johannessen and co-workers [38] presented a CO sensor’s
fabrication process and the design of an IoT network to collect the real-time information
gained by the instrument. In more detail, they designed and built a CO-sensor module
employing a low-cost (i.e., USD 100) sensor that is commercially available. CO-sensor
modules were built based on the EE-02 sensor (Exploratory Engineering, Telenor Digital AS,
Trondheim, Norway), which enables long-range connectivity. After some tests conducted
both in the laboratory and in the field at an incineration plant, they acknowledged that the
best choice to detect rapid and short-term variations of CO levels in workplaces could be
real-time monitoring conducted for an extended period of time. However, the investigation
of the sensor accuracy and resistance toward interfering gases, is and will be, a crucial point
in the evaluation of CO-occupational exposure. Regarding CO2, its monitoring could be
developed as a new approach to alert individuals using all forms of respiratory support,
when breathing becomes stressed before overt symptoms appear. For example, Pleil and co-
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workers [48] have analyzed results from recent experiments employing in-mask (Tunable
Laser Spectroscopy-TLS) CO2 sensors, to evaluate if these could become a reliable early-
warning tool. Assessing the accuracy of the commercially available sensors is an important
step to understand their application in specific tasks, where future research should be fo-
cused on. In this regard, Isiugo and co-workers [26] evaluated the performance of different
gas sensors for the measurement of ambient O3 and NO2. Results of their work showed that
the performance of the tested instruments was influenced by environmental conditions and
that, overall, only one of the three tested sensors had an appropriate accuracy. Zuidema
and colleagues [11,45] realized a multi-sensor network using low-cost sensors distributed
in the work environment. The multi-sensor network was used to design hazard maps of
a heavy-vehicle-manufacturing facility. This could offer insight into the sources, areas of
high/variability in concentrations near different activities, and distribution of hazards. The
most relevant issue emerged from this study was related to the need of a proper calibration
of the instruments. In fact, all the sensors were primarily calibrated in laboratory and then
underwent field calibration. The multi-hazard network acquired data continuously for
5 months: all the data gained by the sensors were collected in a database and then used
to obtain a hazard map of the facility for each investigated airborne pollutant (i.e., CO,
PM, O3, and NO2). The so-obtained hazard maps could be used to evaluate if the adopted
control strategies are effective, offering an advantage over traditional industrial-hygiene
approaches. Further, the mapping tools provided by a multi-hazard sensor network, com-
bined with information on workers’ locations, can be used to estimate personal exposure to
multiple occupational hazards. For this purpose, personal direct-reading instruments were
deployed for the same contaminants, to evaluate the ability of the multi-sensor network
to potentially provide personal-exposure estimates for any employee whose position can
be tracked. Available studies also outline other benefits of a multi-sensor network and/or
personal instrument, based on low-cost, customizable, low-power-demand sensors. In fact,
this instrument configuration could be useful to identify and divide the working areas by
their levels of hazardousness, helping all the workers to control their level of exposure to
hazardous pollutants, according to the respective occupational-exposure-limit values [14].
The most relevant problem rising from the available literature is that the measurement error
derived from low-cost sensors can often be attributed to issues of sensitivity and specificity,
in part due to sensor drift, degradation over time, or responsiveness to non-target species.
This problem must be further investigated, especially in terms of instrument accuracy,
which must be improved, despite the fact some laboratory results for particular pollutants
are very promising [57,58]. A characteristic that arises from the reviewed studies is the
customizability, intended as the propensity of the monitors to be easily adapted, integrated,
and assembled with other components, which can be developed starting from a sensor
already available on the market.

3.1.2. Particulate Matter

Epidemiological and toxicological studies show that a number of negative effects
on human health are possibly related to particulate matter (PM) exposure [64]. Recently,
miniaturized, low-cost sensors for PM have become increasingly available, making possible
a sensor network to elaborate and characterize maps of particle concentration with high
spatial and temporal resolution [45]. Among the reviewed papers, three different on-field
studies [45,47,54] that used low-cost and wearable sensors for PM measurements were
available. These were performed in three different occupational settings, namely a heavy-
vehicle-manufacturing facility, an agricultural setting, and hairdressing salons. The first
study [45] aimed to design a method that uses hazard-mapping data to optimize the number
and location of sensors within a network for a long-term assessment of occupational-PM
concentration. The proposed protocol is based on a statistical methodology to define the
eventual removal order of the sensors located in a manufacturing facility, to determine
their optimal location based on preliminary hazard-mapping data. The main aim was to
preserve the locations with higher temporal PM variability, to produce the most accurate
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hazard maps. The statistical methodology presented by Berman and colleagues [46] is
very promising because, although in this case it is used for the analysis of PM, it could be
modified and used for different hazards and occupational settings to obtain very accurate
hazard maps and to implement risk assessment. For example, this methodology could be
helpful for a large-scale preliminary-monitoring campaign. Then, based on the obtained
results, a subsequent monitoring campaign could be planned based on a reduced number
of optimally placed sensors, to perform long-term-exposure assessment. Another study
by Zuidema and co-workers [41] is somehow connected to the abovementioned study,
since it presented an example of how to apply a correction factor to low-cost sensors to
obtain the most-possible-performant sensor network in a heavy-vehicle-manufacturing
plant. In the second study [54], three different sensors were used to assess the PM exposure
of farmworkers. The first two sensors involved in the study were low-cost sensors (i.e.,
OPC-N3 by Alphasense Ltd., Essex, UK, and AirBeam2 by HabitatMap, Brooklyn, NY,
USA, which is composed of the PMS7003 PM sensor produced by Plantower) and the
third was a higher-cost device (i.e., GRIMM Mini-WRAS 1371 by Grimm Aerosol Technik
GmBH & Co. KG, Ainring, Germany). The study was conducted over 5 non-consecutive
days, from 8:00 a.m. to 4:00 p.m. Results outlined that OPC-N3 performed better than
AirBeam2 and if compared to a gravimetrical filter measurement, had generally higher
averages than the filter concentration. However, after excluding the data point where
the air-sampling pump failed to run, they found a good agreement between OPC-N3
and the filter measurement. These findings suggest that OPC-N3 may be suitable for
some agricultural-exposure measurements. The article by Shao and colleagues [47] was
related to a pilot study concerning the exposure assessment of PM among hairdressers.
Indoor PM concentrations in hair salon were characterized, and the performance of three
low-cost sensors (uRAD A3 by Winsen ZH03A PM sensor Magnasci SRL, Romania; Flow
by Plume labs; AirVisua Pro, AVPM25b PM sensor, USA) were compared to a portable
monitor (DustTrak, 8530, TSI Incorporated). The results of the tested low-cost sensors were
very promising. Among these, the uRAD and AirVisual were the sensors that tracked
better with their reference device (DustTrak) during most of the sampling time. Contrarily,
the FLOW low-cost sensor did not perform as well. Overall, these studies outlined that
several NGMSs characterized by acceptable performance are available, but not all of them
perform as well as the more expensive instruments taken as reference in these evaluation
studies. For this reason, to date, NGMSs cannot totally replace traditional approaches in
occupational-exposure assessment, but they can fill other gaps, such as improving data in
terms of spatial and temporal resolution [8].

3.2. Other Risk Factors for Workers’ Health and Safety

The results of the studies included in this review outlined that new sensor technologies
can be used for the evaluation of other relevant workplace-related health and safety risk
factors. These include: (i) physical agents and worker’s physiological parameters related to
thermal stress/strain and (ii) posture assessment (to prevent work-related musculoskeletal
disorders—WMSDs).

3.2.1. Physical Agents and Workers’ Physiological Parameters
Temperature

Physiological-temperature monitoring could improve both safety monitoring and
work–rest planning, to maximize effective and safe performance (a safe work environment
is where workers are physically capable of doing all the required job tasks [19]). There are
two key research problems in monitoring thermal-work stress: (i) accurately determining
an individual’s thermal-work strain and (ii) using the thermal-work-strain state to optimize
human performance [65]. Among those reviewed, two studies were performed in cold
environments [19,53], and four studies focused on hot environments [5,25,36,65]. Most of
these studies used the same instrumentation (i.e., Thermochron iButton, HOBO Pendant
Temperature, and Garmin vivoActive HR) to measure physiological metrics (i.e., body
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temperature and heart rate—HR) which were employed to calculate the thermal stress and
strain of the investigated subjects. All these devices are wearable tools available for the
consumer on the market. The objective of the study conducted by Sugg and co-workers [53]
was to assess the personal ambient temperature (PAT), which is intended as the personally
experienced ambient temperature among workers in a cold environment. The symptoms
of prevailing chronic diseases are aggravated by cold weather. Scarce physical and mental
performances, due to uncomfortable thermal sensations, numbness of hands, and lower
body temperatures, could be influenced by low temperature [53]. In this study, workers
reported on their experience concerning several cold-related issues, ranging from numbness
in the hands and feet to shivering. Especially for outdoor-PAT data, results outlined that
the ambient temperature information coming from personal monitoring devices generally
agreed with ambient-weather-station data. Significant differences among devices, despite
usage by the same participants, was highlighted. The authors reported a great variability
among the same subjects, depending on the sensor choice and placement. This is an
issue that affects the identification of participants who wore their devices improperly.
The long reaction times of the iButton and HOBO devices to temperature measurements
may be a limitation of small-scale spatiotemporal studies, because workers could move
between different microenvironments in a short period. Further information on this topic is
presented by Nelson and colleagues [19]. The authors also focused on occupational workers
in cold environments using Thermocron iButtons to collect ambient temperature, but the
aim of their study was to understand the workers’ response to (i) the report-back process,
(ii) their perception of exposure to cold environments, (iii) the potential of behavioral
modification, and (iv) the understanding of personal-biomonitoring results (i.e., heart
rate). A report-back packet that displayed the study’s results, containing biomonitoring
information, was given to participants at the end of data collection. After that, a survey
to assess potential behavioral modifications and preferences of health-data formatting
was conducted. Participants found this process very useful; in fact, they expressed a
greater willingness to modify their occupational behaviors to reduce their cold exposure.
In terms of promoting behavioral change to cold temperature, the results of this study
suggest that reporting the outcomes of each worker could be an effective way to protect
workers from these problematics. Not only is the exposure to cold environment is a
factor of hazard, but also occupational heat exposure is a crucial workplace hazard, and
it is related to increases in health-related illness and injuries due to fatigue, as well as
declines in safety and worker vigilance. Workers’ performance and productivity can
also be affected by exposure to heat, which may cause their decline [53]. In recent years,
there were several improvements in low-cost, wearable-sensor technology, aiming to
study the individual’s daily temperature exposure using single-point measures, which
provide an up-to-date method to improve the scale of detailed time-location records and
important knowledge about microclimate variability for outdoor workers. Sugg and co-
workers [25] conducted a study to demonstrate space and time patterns of PAT exposure
and feasibility of using wearable sensors to measure PAT in an at-risk group of outdoor
workers. In more detail, the authors aimed to: (i) show the ability to evaluate PAT exposure
in both space and time, (ii) characterize site-specific and personal variability in PAT, and
(iii) examine how PAT varied between multiple microenvironments. To do that, each
participant was equipped with Thermochron iButton devices positioned outside of their
collar with the devices facing outward, to collect data regarding ambient environmental
conditions. Moreover, a few participants wore Garmin Vivoactive HR watches, to acquire
locational and contextual data on heart rate. Sugg and co-authors found out that indoor
workers, compared to outdoor ones, have a wider choice about where they spend their
workday and may have more opportunities and resources to mitigate their exposure.
Despite that, nearly 90% of the participants found the information provided to them useful
in mitigating their own heat exposure while at work. A particular study was performed
in laboratory setting on firefighters by Coca et al. [36]. The authors tried to demonstrate
the accuracy of wearable sensor in this type of working activity. Indeed, firefighters
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experience tremendous physical stresses in the course of their duties, both metabolically and
environmentally. In this study, plethysmographic sensors (LifeShirt System, VivoMetrics,
Ventura, CA, USA) incorporated into a vest were used. Some of the physiologically
variables monitored by these wearable devices were heart rate, respiratory rate, skin
temperature, oxygen saturation, tidal volume, and minute ventilation. Physiological data
were stored onto a small, portable data recorder carried in a pouch attached to the vest
and telemetered in real-time to a laptop computer. The conclusion of this study indicates
that LifeShirt Systems measure somewhat accurately within the hot, moist environment of
standard firefighter gear. In fact, most of the physiological outcomes were not statistically
different from the physiological data recorded on standard laboratory equipment (i.e.,
12-lead ECG skin electrodes, skin-temperature sensor (SQ2020-1F8, Grant Instruments Ltd.,
Cambridgeshire, UK), Nonin X-pod pulse oximeter (Nonin Medical Inc., Plymouth, MN,
USA)). This study obtained very promising results, but it also suggested that additional
experiments in actual firefighting scenarios are warranted to determine the accuracy in
field settings.

UV Radiation

In addition to temperature exposure, the exposure to ultraviolet radiation (UV) is also
a relevant issue, especially for outdoor workers. Long exposure to the sun results in an over
assumption of UV rays, which has a beneficial effect on human physiology in a normal dose,
but overexposure could lead to several diseases, such as DNA mutations and subsequent
skin-cell carcinoma, benign tumors, fine and coarse wrinkles, mottled pigmentation, and
other cellular-proliferative diseases [66]. To avoid all these potential risks, the workers must
be provided with alerts about overexposure events. Pievanelli and colleagues [59], in a
conference paper, presented an operational scheme for the realization of compact, wireless
sensors that are able to detect physical agent (i.e., UV) exposure, which are suitable for the
protection of workers employed outdoors. The platform is made up of mobile, wireless
sensor nodes, designed to be attached on clothes, to be simply worn by anybody. Even
if the whole set of components has been identified and tested, the single elements have
not been integrated together. Further, among those reviewed, we found two manuscripts
regarding in-the-field UV exposure [37,61]. Sabburg et al. [37] collected UV-A irradiance
data to quantify the effect of clouds in UV-A exposure, using an integrated sky camera
and radiation system during an autumn and winter period. Baczynska et al. [61] over 2016
and 2017 measured the in-flight UV exposure of pilots in England, using GENESIS-UV
sensors for measurement inside the cockpits. Commercial pilots are a particular category
of workers, due to the fact that they are at twice the risk of melanoma and skin cancer
than the general population [67,68]. Pilots are exposed to solar and UV radiations that may
be significantly higher at flight altitudes than on the ground. In this study, sensors were
clipped to the shirt at chest levels, and the pilots had also to fill a diary that included date,
time, and other flight information. From this study emerged that the direct method of in-
flight spectral measurement is challenging, and the use of small, wearable sensors may be
a promising solution. However, wearable sensors often cannot be used for measurement of
the solar radiation that is filtered through aircraft windshields, without correction factor. As
a matter of fact, in this study, the GENESIS-UV sensors had strong wavelength-dependence
and needed a correction factor to make the acquired data evaluable.

Noise

Among those reviewed, three papers focused on occupational exposure to noise.
Two of these were performed by Zuidema and co-workers [11,45] and in each one a
custom sound-pressure-level (SPL) sensor was used to assess the workers’ exposure to
noise in a heavy-vehicle-manufacturing facility. Results obtained from the custom sensor
were compared to those obtained by means of a reference instrument, which was the
model “XL2” (NTi Audio AG, Liechtenstein). The noise sensor developed for these two
studies is composed of a microprocessor that is plugged into an omnidirectional condenser
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microphone, and it was calibrated by playing a calibration sound, with an acoustic generator
and an amplifier, between 65 and 95 dB. The sensor’s response was then compared to the
reference sound level. Since the noise is a physical hazard that does not disperse from a
certain source the same as other pollutants, the sensors’ network that had been created had
a limited ability, due to the abovementioned issues, to capture impact or impulse noise.
Misistia and colleagues [40] conducted a study to assess the response to the BOP (blast
over pressure) of wearable sensors against industry-standard pressure transducers. In
this case, the Tourmaline ICP pressure-sensor model (PCB piezometric, Depew, NY, USA)
was adopted to evaluate the sensor’s orientation error in military-personnel helmets. The
experimental procedures were conducted under controlled laboratory conditions using
a shock tube, and some of the findings were verified in the field. The sensor used for
this study was the Black Box Biometrics (B3) Blast Gauge. On this sensor, a scheme is
printed to identify the specific location where it must be worn, namely on the back of the
helmet, on the left shoulder, and on the chest. The authors individuated three factors that
might influence the recorded-pressure values from wearable sensors, which are: (i) the
orientation of the body in respect to the sources of the blast waves, (ii) the intensity of the
shock waves, and (iii) the local geometry of the ambient around it. Results of this study
revealed that there is an underestimation error in the reflected pressure for B3 sensors,
but the incident overpressure peak is comparable to the PCB, so the impulse values are
overestimated, regardless of the tested configuration of the B3s. Despite Misistia’s study
focused on military personnel, the results could be extended to all workers exposed to
high-frequency noise. The B3s’ configuration could be easily worn during the work shift,
and it might report back interesting data to compare to the standard PCB sensors present
in the workplace, thanks to the wireless communications capabilities of the instrument.

Laser

Concerning hand-held Laser exposure, from an occupational-risk–management point
of view, the market launch of hand-held laser-processing devices should be closely related
to the safety of the machines. Personal protective equipment such as protective eyewear or
clothing must not be considered, as in any risk-management procedure, as the first choice to
prevent injuries and manage the risks in workplaces. Indeed, these strategies are adopted
only in those cases when it is not possible to eliminate the sources of risk. In our literature
research, we found a paper regarding this problem that was performed in a laboratory
setting by Puester and colleagues [18,51]. This study aimed at the qualification and adoption
of safety measures for the use of a hand-held laser instrument. The sensors selected
to conduct the laboratory investigation were: (i) tactile sensors, (ii) inductive sensors,
(iii) capacitive sensors, (iv) ultrasonic sensors, (v) inclination sensors, (vi) acceleration
sensors, (vii) gyroscopes, and (viii) temperature sensors. Depending on the output and on
the body parts’ distance to the process zone, if the laser radiation become accessible, critical
irradiance on the human body can occur. Apart from irradiance, exposure time is the second
critical value. To avoid lesions, laser radiation must be isolated or deactivated as soon as
possible under fault conditions. The investigations reveal solutions to equip laser devices
with safety-related parts and safety control to minimize the risks from laser radiation.

Mechanical Vibration

Mechanical vibrations are known to affect the hand–arm system or the whole body
of workers who use machines or equipment that produce vibrations. Austad et al. [56]
used the IsenseU, a flexible, wearable, and robust sensor, suitable for being integrated into
clothing, to assess the hand–arm-vibration exposure in a laboratory setting. The findings
of this study showed that the IsenseU sensor can be useful for estimating the vibration-
exposure time, the frequency-weighted acceleration, and daily-exposure values. Moreover,
if the sensor might be integrated into the sleeve of a jacket, vibration-exposure measurement
could be performed concurrently with skin- and ambient-temperature measurement. To
conclude, in our review of the literature, we found that there are relatively few studies
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focused on next-generation sensors for assessing exposure to physical agents. This topic
should be further investigated to obtain more complete information to improve risk-
assessment processes in workplaces. The most tempting prospect is that next-generation
work instrumentations and personal protective equipment should be equipped with new,
small sensors that could provide real-time feedback about emissions and/or the exposure
of workers to work-related risks.

3.2.2. Posture Assessment and Work-Related Musculoskeletal Disorders

MSDs (musculoskeletal disorders) can be defined as a group of disorders or injuries
that could deform a subject’s inner body while it is stressed. Examples of MSDs include
bursitis, carpal tunnel syndrome, and tendonitis [24]. Work-related musculoskeletal disor-
ders (WMSDs) refer to MSDs that are due to workplace activities associated with physical
job tasks. According to the Occupational Safety and Health Administration (OSHA), which
is based in the United States, there are eight risk factors related to WMSDs, including
(i) extreme temperature, (ii) repetition, (iii) static postures, (iv) vibration, (v) quick motion,
(vi) compressed or contact stress, (vii) force, and (viii) awkward postures [69,70]. Most
of the time, awkward postures can be prevented by re-setting the workplace layout or
selecting a proper tool for workers, but different work tasks are affected with different
types of risks, so the challenge is to find out new customized solutions that can solve
the specific issue. A specific job-hazards analysis could identify the workplace’s risk, but
it may be tricking to carry it out because of the complexity of the job and the manual
effort needed to monitor work processes [71]. Among those reviewed, five different pa-
pers were found regarding this topic [24,42,43,49,62], and the main outcomes are reported
here. In recent years, wearable sensors have been used for quantitative instrumental-based
biomechanical-risk-assessment studies to prevent work-related musculoskeletal disorders.
Instrumentation-based tools are generally not included in the standardized methods for
biomechanical-risk-assessment studies. because the ones commonly used are based on
observational and subjective approaches. The spread of Industry 4.0 may represent a new
scenario in which the computational capabilities and network connections that characterize
smart, wearable sensors are able to be transparent, sensitive, responsive, and adaptive to
workers’ movements, allowing for real-time, online monitoring of working tasks. Recently,
several methods have been developed, accepted by the international literature, and used in
the workplace to attempt to reduce the WMSDs. About this, the most innovative wearable
technologies and the electronic smart devices that support these types of investigations
to improve the biomechanical-risk assessment, adapt them to all the work situations and
outline the limits of the up-to-date standardized methods, without interfering with the
workers’ activities. This allows real-time estimation of the risk, providing direct feedback
to the end-user, who is constantly monitored directly while at work. Several commercial,
wearable inertial sensors have the possibility to stream data to a remote computer or a
web server in real-time. This allows for recording, processing, and reviewing sensor data
online and affording new opportunities in near-real-time, for rapid feedback about work
postures to subjects or to managers and supervisors. Moreover, body-worn inertial sensor
technology provides several opportunities to improve the safety and health of workers who
do physical tasks [62]. Despite the widespread use of these new tools, there are still too few
scientists and engineers predicting the use of wearable technologies for biomechanical-risk
assessment, although (i) the need to obtain increasingly quantitative evaluation, (ii) the
recent miniaturization process, and (iii) the need to stay updated with a constantly evolving
manual handling scenario are asking for their use. Therefore, regarding biomechanical-
risk assessment, the adoption of new innovative technologies is at an initial stage [42].
Concerning MSDs, construction jobs are one of the most labor-demanding compared to
other industries. Often, construction workers exceed their natural physical capability to
make up for the increasing challenges and complexity in this business. Due to this fact,
construction jobs are among the most ergonomically hazardous, because they often involve
activities such as body twisting, manual handling, heavy lifting, and working in awkward



Sensors 2022, 22, 4841 12 of 16

positions, which are all potential causes of WMSDs in workers. The most common ones
are tendonitis, sprains, back pain, strains, and CTS. The postures of different body parts
re generally measured in terms of the degree of bend from the neutral posture, to identify
the risks associated with the awkward postures. Sensor-based direct measurement of risk
factors provides a great opportunity for unobtrusive and precise ergonomic assessment of
construction tasks. Nevertheless, calibrating, setting up, and using a complicated sensor
network requires expertise that is normally less than what is expected from most construc-
tion workers and field workers. Even if such technologies are on the market, the economical
effort, as well as the time commitment necessary to purchase, install, and maintain the
tools, may be considered an impeding factor. Commonly, the most reliable sensor used for
biomechanical-risk assessment is the IMU (inertial measurement unit) [42]. These sensors
allow for the measure of the orientation, position, velocity, and acceleration of the body
posture. An important study on selected subjects was made by Nath and co-workers [24] in
a laboratory environment. The authors used a “two smartphones” configuration, through
the devices’ 3D accelerometer sensor, to demonstrate the potential of mobile devices in
ergonomic assessment. For data treatment, they used the sensory ones gained by the smart-
phones, which were mounted on the worker’s upper-arm and waist, while the worker
is performing a task. The posture during a screwdriving task was analyzed, and, in this
case, the position of the two smartphones produced the most distinctive features for most
manual jobs performed by field workers. The data collected from the smartphone on the
upper arm were used for measuring total flexion, while the data collected by the smart-
phone mounted on the waist were used to measure trunk flexion. Accelerometers in IMUs
have a generally higher sensitivity than those in smartphones, but for static postures, a
smartphone’s built-in inertial sensors are as reliable as other standard tools, since they
are commonly equipped with a high number of sensors that can be activated to collect
several types of data. This type of accelerometer seems to report back significant and
useful data to assess any anomalies in the body postures. The results presented focused
on posture analysis for trunk and shoulder flexions, but, with a few modifications for
other types of field activities (e.g., manual tasks, manual handling, and manual lifting), the
developed methodology and the analysis techniques can be generalized. Moreover, the
proposed method is applicable for various occupations that are exposed to WMSDs due to
awkward positions.

4. Conclusions

The outcomes of this review indicate that the number of research articles involving
NGMSs for the implementation of the risk-assessment process has steadily increased in
the past decade, and it is constantly growing. With the spread of the Fourth Industrial
Revolution (“Industry 4.0”), the main problem of industrial hygiene (“occupational hy-
giene 4.0”) is how to improve the risk-assessment process in these new high-tech plants,
while updating the traditionally adopted procedures. The concept of Industry 4.0 is the
implementation of industry toward an intelligent model, in which collaborative robotics
and new technologies interconnect workers and machine tools [6]. To properly preserve
workers’ safety and health during (and beyond) the Fourth Industrial Revolution, in the
last 10 years, the interest in wearable and low-cost sensors has been increasingly growing.
The state-of-the-art technology regarding wearable sensors is in the early stages, as it is
mostly considering some specific work-related health and safety parameters. To date, there
are only few NGMSs that could be properly used at a workplace for exposure-assessment
and risk-assessment purposes. Despite that, due to the continuous advancement in new
technologies, the performance and the number of NGMSs will be further improved, always
obtaining more advanced sensors. Smart devices currently available on the market must
be considered as a resource. An advantage in the usage of small, wearable sensors is the
possibility to obtain a complete dataset over the entire work shift, even though the reliability
of the batteries of these new sensors must be further improved and designed. Moreover,
it was highlighted that significant differences among devices could occur, despite their
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usage in the same conditions. Additionally, a fundamental step that is mandatory before
the usage of these technologies is the evaluation of the performance and the reliability
of the sensors. To conclude, a preliminary study about the new technologies has been
conducted. The authors are also confident that the scientific research regarding these topics
could improve the up-to-date available literature, to support the development of proper
instrumentations to implement the risk-assessment process.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22134841/s1. Table S1: Objects of the study of the review. In this table
are reported all the sources considered in this review, divided by author, title, reference, and the
corresponding number of citations in the text. Figure S1: Flowchart of the papers that are the objects
of this review (modified from Moher et al., 2009).
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