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Abstract: This paper mainly focuses on various types of robots driven or actuated by shape memory
alloy (SMA) element in the last decade which has created the potential functionality of SMA in
robotics technology, that is classified and discussed. The wide spectrum of increasing use of SMA in
the development of robotic systems is due to the increase in the knowledge of handling its functional
characteristics such as large actuating force, shape memory effect, and super-elasticity features. These
inherent characteristics of SMA can make robotic systems small, flexible, and soft with multi-functions
to exhibit different types of moving mechanisms. This article comprehensively investigates three
subsections on soft and flexible robots, driving or activating mechanisms, and artificial muscles. Each
section provides an insight into literature arranged in chronological order and each piece of literature
will be presented with details on its configuration, control, and application.

Keywords: shape memory alloy; robotics; actuation; sensing; control

1. Introduction

Shape memory alloy (SMA) is a class of smart material wherein it undergoes changes
in its length by contracting to nearly 4% and thereby generates a huge amount of resistance
force on its thermal actuation. This property of response to thermal stimuli in this alloy
makes it smart, unlike the other alloys. There are types of different compositions of SMAs
Ni-Ti alloy (Nitinol), Cu–Al–Ni alloy, Cu–Zn–Al alloy, Au–Cd alloy, Ni–Mn –Ga, and Fe
based alloys. Only two alloys that have achieved any level of commercial exploitation are
Ni-Ti alloys and copper-based alloys. SMA can operate under two different stimuli, one is
thermal stimuli wherein, when a pre-stressed SMA wire (detwinned martensite) undergoes
a change in temperature to its safe heating temperature (trained temperature) it remembers
its parent shape(austenite) along with the stress it will resume back to its product state and
this is called the shape memory effect. This type of feature is used for many position/angle
tracking control applications. The other one is stress, where the stimulus at the safe heating
temperature acts like a spring enabling it to dissipate a huge amount of energy and making
it the right choice for use as dampers and absorbers.

In the early stages of SMA literature, the use of proportional derivatives was handled
to operate in the systems but later on, it started to be drift to the implementation of
nonlinear controllers or hybrid controllers. The control methods implemented on the
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SMA-based system are mostly implemented using linear controls if the system demands
just the actuation and does not need any precision or accuracy. However, there are complex
systems, like when using to an instrument in higher-order systems it demands a nonlinear
control for performance and efficacy at higher rates. With a wide understanding of the
inherent characteristics, there has been immense growth in terms of literature reports
and commercial growth [1–7]. Position control in shape memory alloy (SMA) has been
researched only in the last two decades and it has been growing in different areas starting
from the design and development of a servo type of operation using the aSMA element
in different configurations and by using different biasing elements. The different aspects
of using the element to control position and force for robotic and haptic systems are also
treated as principal parameters. Some of the features that are to be noted in developing an
SMA-based system are to first to first determine the functionality that is going to operate on
the system, composition of the element, structural form, and biasing element. Even though
SMA is a non-linear element, there are reports in which it has been noted that the output
response of the system remains linear in operation. This behavior is undertaken using an
active biasing element which is an antagonistic SMA actuator and the way to make it linear
is determined by choosing the inverse mechanical element. In other words, the proper
selection of biasing elements can be able to maintain the linearity in the response [8].

The main scope of this article is to timely present a state-of-art on mechanical arrange-
ment of the SMA element along with the biasing, which will eventually provide useful
guidelines to design more advanced designs for robotic systems. The control strategies
that are mostly and frequently employed in SMA-based robots can be classified into two
categories: passive control and active control. In the passive control, ON/OFF control
and PWM (pulse width modulation) control are dominant in which the actuating force is
converted to the stroke or position of the robotic systems. On the other hand, in the active
control, PID (proportional-integral-derivative) control and modified PID control logic such
as fuzzy-PID control are frequently used for precise position feedback control of small and
soft robots.

The manuscript has three sections they are flexible/soft robots, drivers and servo
actuators, and artificial muscles. At the start of each section there is a brief definition,
followed by the literature papers in chronological order stating the mechanism, movement,
control, and the application for which it is built.

2. Flexible and Soft Robots

Soft robotics were developed using bio-inspired compliance to mimic animal or human
capabilities Flexible actuators and electronics are employed to design soft robots. Soft robots
are made almost entirely of rigid-body architectures out of flexible, soft material, making
them suitable for applications in uncertain, dynamic task environments, including safe
human-robot interactions with excellent flexibility and adaptability, but their load capacity
is limited [9,10]. The flexibility of SMAs allows us to build actuation components in
different configurations and shapes (e.g., helical springs, torsion springs, straight wires,
cantilever strips, and torsion tubes), which allow them to be adapted to small, micro, and
multi-DOF (degree-of-freedom) applications. Their high force-to-weight ratio and small
volume (i.e.) SMA displays one of the highest work densities at 10 J cm−3 and can lift more
than 100 times its weight—allowing the design of compact and lightweight actuators.

The generic mechanical design for an SMA-based soft robot is an SMA element, which
can be a wire or a spring or any other available configuration followed by a biasing element
which in soft robotics will be the chassis material by itself or passive, to enable cyclic
operation in the SMA element, and the powering mechanism which is usually a joules
heating current. In this section, we can discuss the various design, configurations of SMA
elements, and control of the SMA actuator in soft robots [4]. The control is mostly on/off as
they focus more on the type of motion to generate using SMA elements.

In early 2010, FlexiBot (Flexible Robotic Module) was designed with two degrees of
freedom and incorporated four memory alloy (SMA) springs as shown in Figure 1a, to
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create relative motion between two parallel plates hinged to each other providing 30-degree
displacements, which make them more suitable for robotic applications [11]. A four-legged
robot [12] was created and actuated by SMA wires along with biasing springs to realize
jumping motion as in Figure 1b. A finger-sized wood climbing robot [13] with SMA springs
can exhibit the crawl, turn, and climb motion on a tree for search and rescue operations.
Peristaltic motion [14] was realized by using the parallel configuration of the SMA element
for in-pipe movement as in Figure 1c which was designed to crawl for inspection purposes.
A snake robot with three links [15] was designed with a PID-fuzzy controller. A biomimetic
fish was actuated by SMA wires [16] in enabling bio-inspired locomotion systems using a
deformable structure. The fish is controlled with gains set such that the voltage applied
to SMA wires has minimum overshoot and the output of the system has minimal time to
achieve stability. A novel climbing mode was developed in millirobots built with SMA wire
along with a return spring to execute the climbing potential of the robot [17]. A flexible
pectoral fin [18] uses two parallel SMA plates, which can perform a bi-directional bending
action, and an elastic membrane made of thin rubber, is adhered to the fin rays to function
as a bias element. Flea-inspired catapults with SMA springs were used as actuators that
can jump more than 200 times their body length with impulse current stimuli [19]. A
biomimetic walking microrobot was designed using 11 ICPF (ionic conducting polymer
film) actuators to move and two SMA wire actuators to change motion attitude enabling
two kinds of motion attitudes: lying state and standing state [20]. A structure with eight
SMA springs was developed to have a helical muscular arrangement to simulate the motion
of an octopus muscular hydrostat [21]. A compact external pipe crawler robot [22] was
designed by deploying a compliant mechanism and SMA actuation that follows clamp-and-
push motion and imitates inchworm motion. A soft robot exhibiting sequential antagonistic
motion [23] is achieved in a flexible braided mesh-tube structure using nickel-titanium
(NiTi) coil actuators wrapped in a spiral pattern around the circumference that exhibits
peristaltic locomotion. Starfish-like robots driven by shape SMA spring actuators [24] were
designed to accomplish crawling on flat ground, climbing over viscous soil terrain, free
motions in random directions, navigating through a target object, and steering as well as
grasping imaginary prey as shown in Figure 1d. A flexible microrobot module (FMM)
was actuated by SMA springs [25] and able to provide both translational and rotational
displacements. Stiquito hexapod mobile [26] robot was designed using antagonist active
Nitinol (NiTi) SMA wire/passive music wire couples to produce moving insect-like legs.
The starfish-like soft robot with flexible rays using SMA spring [27] with soft silicone
material induces multi-gait movements in various environments. BaTboT, a novel bat-like
MAV was studied to increase net body forces by implementing with highly articulated
wings actuated by shape memory alloy actuators [28]. Soft caudal fin actuators using
SMAs [29] that are fixed along with the soft structure of the caudal fin and bend to a
certain mode shape can perform steady swimming and maneuvering. The small one DOF
mobile robot is actuated by a pair of SMA springs [30], and the developed mechanism
can steer in addition to moving forward on a common plane. Bio-inspired multi-arm
underwater robotic swimmers actuated by compliant SMA were modeled and developed by
actuating spring elements [31]. A locomotive textile-based robotic system was weaved [32]
wherein the fabric is integrated with a woven hybrid SMA-textile actuator based designed
system. A soft compliant robot [33] exhibiting an inchworm type locomotion was built and
tested. Single-caudal fin propelled robot fish using shape memory alloy wire [34] were
developed, as well as unique frog-inspired hind limb robots with SMA spring actuators [35]
designed to jump. A biomimetic robotic worm was developed to perform a peristaltic
motion by employing nine SMA springs in three sections of the soft robot [36]. A flexible
parallel robotic module was actuated by three SMA springs in between a triangular top
and base plate connected by a universal joint at its centroid [37]. Shape Memory Alloy
actuated controllable suction grippers were proposed and experimented with for a wall
climbing hexapod [38]. Soft actuators used to perform actions such as bending, twisting
and extending using SMA wires were embedded into actuators to power them [39]. A
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six-legged robot adapting SMA actuators and a spring antagonistic driving mechanism
is able to remain at a specific location in the tree without requiring an external energy
supply and can walk and climb in a tilted tree at 30 degrees [40]. For the soft robotic arm
driven by shape memory alloy (SMA) coils, with a compression compensation algorithm, a
proportional-integral differential controller is used to precisely control the two-dimensional
motion with a relatively high accuracy [41].
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SMA-based Roll robot actuators [42] can mimic the behavior of rolling animals as
designed in Figure 1e. This is a modular closed-chain rolling robot with compliant SMA
wires which has the perfect terrain adaptability and maneuverability. An active Tendril-
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Backbone Robot (ATBR) was built [43] as the manipulator backbone and actuator which
utilized the SMA helix. Fuzzy logic control is implemented to control the displacement
by currents for underwater robots in [44]. A scheme to drive multiple flexible fins, was
presented and verified the feasibility on a flexible robotic fish driven by SMA wire which is
inspired by the swimming mode of devil fish, that was able to achieve more stable motion
of the fish, and the movement of the whole fish body was more natural and flexible [45]. A
2DOF soft robotic neck was developed and controlled [46] actuated by a flexible SMA based
actuator that allows movements of inclination and orientation. PATRICK, a soft robotic
brittle star [47] was the first untethered underwater soft robot using the SMA springs to
actuate as in Figure 1e and it was built with a high dimensional actuation space, allowing
deeper exploration of planning and control principles. SMALLBug, a crawling microrobot
that can locomote at actuation frequencies of up to 20 Hz, was designed, fabricated and
tested [48]. The robot is driven by an electrically powered 6 mg bending actuator that is
composed of a thin SMA wire and a carbon-fiber piece that acts as a loading leaf-spring
and four legs capable of generating anisotropic friction. The papers that reported or
designed and developed SMA-based soft robots are presented (in chronological order) in
the Table 1 which displays the control handle and the parameters that are measured for the
particular application.

Table 1. Control methods of SMA-based flexible and soft robots.

Control Method Features/Control Parameter Application Reference

Passive control Heat transfer and
constitutive model FlexiBot Alireza et al., (2010) [11]

Passive control Short-time pulse activation Four-legged robot Thanhtam et al., (2010) [12]
PWM 1 Force to stroke Omegabot J. Koh et al., (2010) [13]
PWM Peristaltic motion mechanism Micro in-pipe Gao et al., (2011) [14]

PID 2-fuzzy Position control Snake robot Khodayari et al., (2011) [15]

Passive control Continuous
deformable structure Bio-inspired Rossi et al., (2011) [16]

Passive contol Stroke control of a coiled SMA Millirobots Kohut et al., (2011) [17]

Passive contol Curvature—phase
transformation Robotic pectoral fin Qin Yan et al., (2012) [18]

Passive control Stiffness to force Flea inspired catapult Noh et al., (2012) [19]
Passive control Motion control Biomimetic microrobot Guo et al., (2012) [20]
Passive control Agonistic-antagonistic Octopus muscular hydrostat. Follador et al., (2012) [21]

Passive control Circumferential motion to
ring actuators Pipe crawler Singh et al., (2013) [22]

BB and IL 3 Iterative learning control Mesh-worm Seok et al., (2013) [23]
PP 4 Path planning control Starfish-like robot Mao et al., (2013) [24]

PID and BB 5 Positional
asymmetric excitation Flexible microrobot Abiri et al., (2013) [25]

Passive control Periodic current control Stiquito hexapod Février et al., (2013) [26]

Sequential control
Kinematic model for

motion control to
displacement and force

Starfish robot Shixin et al., (2013) [27]

Passive control Controlling the modulation of
current Micro-aerial vehicle Colorado et al., (2014) [28]

PID Bending curvature control Caudal fin Coral et al., (2015) [29]
Passive control Strain to steer mobility Mobile robot Hadi et al., (2015) [30]

Closed loop controller Speed and force Robotic swimmer Sfakiotakis et al., (2015) [31]

Passive control Force coupled with
displacement Textile robots Kennedy and

Fontecchio (2017) [32]
PWM Differential friction Inchworm robot Pillai et al., (2017) [33]

Passive control Acceleration and angular
velocity Robotic fish Li and Li (2017) [34]
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Table 1. Cont.

Control Method Features/Control Parameter Application Reference

Passive control Passive force to
length of wires Frog like robot Ren et al., (2017) [35]

PWM Control peristaltic motion and
the orientation Soft robot Alcaide et al., (2017) [36]

ON/OFF control Liang dynamic model Flexible SMA actuators Ranjith et al., (2018) [37]
Open-loop position control Shear stress control Legged and non-legged Avadhoot et al., (2018) [38]

Open-loop testing Finite element model Soft gripper Saeed et al., (2019) [39]

Passive control Deformation and torque for
roll yaw directions Legged robots Ishibashi et al., (2019)[40]

PID controller and CCA 6 Bending movement Soft robots Yang et al., (2019) [41]

Passive control Improved mobility and good
terrain adaptability Rolling robots Nader et al., (2020) [42]

Passive control Bending
angles—angular speed Continuous manipulator Sonaike et al., (2020) [43]

Simulation 3D motion Bionic Devil Fish Chen and Liu (2020) [44]
BPID 7 Inclination and orientation Soft robotic neck Copaci et al., (2020) [45]

MP and GPA 8 Applied current to bending Underwater robots Cruz et al., (2020) [46]
Patterson et al., (2020) [47]

Passive control
High-speed

thermally-induced
transformations

SMALLbug Nguyen et al., (2020) [48]

1 Pulse Width Modulation, 2 Proportional-Integral Derivative, 3 Bang Bang and Interative Learning, 4 Path
Planning, 5 Bang bang, 6 Compressing Compensating Algorithm, 7 Bilinear Proportional Integral Derivative, 8

Motion Planning and Greedy Planning Algorithm.

3. Drivers and Servo Actuations

SMA is an actuator that experiences reduced length enabling a displacement along
with force to bring out the work done at that point. Here, the basic element to design is
to have an SMA element and a biasing element which would be a passive spring or it
can also be active by using SMA elements in an antagonistic configuration to generate
a bi-directional movement. The proper design and the understanding of its inherent
property changes can enable design of a system with uni-directional or bi-directional linear
or rotating movement and any point of application, which proves its use as a driving
actuator by substitution in places of traditional classical actuators. An accurate self-sensing
method [49] based on the SMA strain to resistance curves for the control of shape memory
alloy (SMA) wires biased with passive spring to function as actuated flexures were modeled.
An SMA wire actuated gripper was developed [50] to convert the small linear displacement
into the angular movement of the gripping fingers to enable open and close functions.
A compliant gripper using an SMA coil was fabricated [51] along with a middle flexure
joint replicating the behavior of a caterpillar locomotion. A MIniature SwitchAble (MISA)
connection system for a stochastic modular robot was designed and implemented [52]
which can be switched on and off by controlling four SMA spring actuators. A methodology
of actuation to create flow generation in a flexible tube by inducing a variable pressure
difference within the tube by external actuation by SMA wires was proposed in [53]
shown in Figure 2a. A gripper with soft fingers with 2-DoFs using silicone elastomer rods
embedded with shape memory alloy actuators [54], displaying anthropopathic actions
was created.

The sensor-less self-sensing circuit for positioning the 1-DOF manipulator arm using
antagonistic self-sensing SMA wires as shown in Figure 2b by implementing fuzzy-PID
control was proposed and a real-time experiment was performed [55]. An impact drive
mechanism (IDM) using SMA wires for positioning applications was found in [56]. A
joint with two degrees of freedom (DOF) driven by antagonistic SMA triple wires using
a resistance feedback signal in a closed-loop was designed [57]. SMA wires were char-
acterized to function as a High Phase Order Motor (HPOM) using PWM control [58]. A
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gripper was designed for a robot arm with an anti-slipping control rule to avoid grabbing
an unknown object with insufficient force [59]. A conventional PID controller cascaded
with a bilinear compensator, known as BPID, is found to be a promising alternative for
controlling the position of the SMA actuator [60]. Antagonistic SMA wires were designed
in a configuration to the function as a servomechanism [61] for bidirectional control in
a super-articulated system. Self-sensing antagonistic SMA wires were used to establish
servo mechanism with bi-directional control in a 1-DOF manipulator arm [62]. A compliant
differential SMA actuator [63], composed of two antagonistic SMA wires and a mechanical
joint, were coupled with a torsion spring. The master-slave system was set up [64] in which
the master is equipped with antagonistic SMA wires to perform the actions to control
the 2-DOF slave and also to generate force feedback. A smart soft composite (SSC) hinge
actuator using SMA wire in a polydimethylsiloxane (PDMS) matrix was embedded with
segmented rigid components capable of a pure bending motion concentrated on specific
sections of the actuator [65]. A SMA springs actuated gripper [66] is operated to close
and open by applying voltage. A tendon-driven bending actuator [67] using smart soft
composite (SSC) and SMA, and a sliding mechanism, which mimics flexion of the human
hand were designed. A SMA springs actuated gripper is operated to close and open by
applying a voltage as in [68]. Active variable stiffness fibers made from shape memory
alloy and thermally responsive polymers that can move to a new position and then hold
that position without requiring additional power was designed [69].

A SMA-based soft three-fingered curved gripper [70] was designed which is capable
of lifting force nearly three times larger than the gripper. A SMA springs-based soft
actuator module (SAM) [71] assembling a connected series of four SAM to develop a
soft manipulator was designed, which is capable of three-dimensional spatial grasping
motion. Finger-wearable haptic devices [72] for multi-DoF cutaneous force feedback
driven by four SMA wires for tip-tilt mechanisms and the planar XY spring with four
SMA helixes are employed. An artificial finger [73] is a reproduction of the human
finger bone and phalangeal structure, actuated by SMA wires. Shape control [74] of
compliant, articulated meshes created from shape memory alloy (SMA)-based linear
actuators (Active Cells) capable of ~25% linear strain was explored as shown in Figure 2c.
A gecko-like gripper [75] that uses series shape memory alloy (SMA) wire for actuation
was created. A compact and modular rotary motor using embedded shape memory alloy
(SMA) wire was developed as in [76]. The contraction/expansion of the SMA wires is
transmitted as rotational motion that enables the motor to generate continuous rotation
and provides higher torque with relatively short-length SMA wires. An antagonistically
arranged SMA wire-based actuator was fabricated in [77], which can provide angular
displacements in both clockwise and counter-clockwise directions with compliance.
Robotic grippers with multiple SMA wires in series along with cross-shear coupler to
achieve a larger stroke of actuation were designed [78]. A control method for soft robots
on predicting the bending force and RBF compensation to obtain accurate position-
tracking performance with adjustable stiffness in both open- and closed-loop control
systems was presented in [79].

A continuous bidirectional rotary motor driven by NiTi SMA mini springs was de-
signed in [80]. It is noticeable that its torque/volume and torque/mass ratios are prominent
when compared to other motors of the same class. An improved method was based on
online data-driven control to drive the robot wrist joint driven by SMA [81]. An Adaptive
Neuro-Fuzzy Inference System (ANFIS)-based modeling and control of a 1-DOF modular
SMA-based rotary actuator with a compliant motion and fast response was proposed in [82].
A control algorithm for the inversion of the Preisach model for a SMA wire spring-biased
actuator under time-varying stress produced accurate results and was computationally
efficient was formulated in [83]. A foldable nanosized shape memory actuator into 3D
configurations presented in [84] can move around. A numerical was developed for repro-
ducing the mechanical response to integration of the time evolution nonlinear equations
governing the response of the SMA spring [85]. The control of a soft planar gripper for
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grasping deformable objects without integrated sensors, in presented in [86]. The soft finger
is a closed-loop PID control system to achieve the desired deformation by introducing a
camera as a vision sensor, to detect the bending deformation of the soft finger in real-time.
The papers that reported or designed and developed SMA-based actuator-based driving
mechanisms are presented in Table 2 which displays the control handle and the parameters
that are measured for the particular application.

Table 2. Control methods of SMA as driving mechanisms.

Control Method Features/Control Parameter Application Reference

Passive control Strain to resistance modeling Gripping fingers Chao-Chieh et al., (2010) [49]
Passive control Linear into angular movement Three-fingered gripper Khodayari et al., (2011) [50]

Passive Contol Gripping force changes with the
length of the flexure joint Bio-inspired gripper Gwang-Pil et al., (2011) [51]

Passive control Differential actuation system Connection Guoqiang et al., (2012) [52]
Passive control Variable pressure difference Displacement pumps Keerthi et al., (2013) [53]

Passive control
Gripping force distribution

between the finger
and the object

Soft robot gripper Obaji and Zhang (2013) [54]

Fuzzy-PID control Strain to differential resistance 1-DOF manipulator arm Josephine et al., (2013) [55]

PI control
Bidirectional

strain/displacement to
step movement

Positioning device Shinya et al., (2013) [56]

Fuzzy-PID control Resistance feedback Ball joint for end effector Zhenyun et al., (2014) [57]

PWM control Enhancement of
force and control SMA based motor Rossi et al., (2014) [58]

Fuzzy sliding-mode control Anti-slip control by
force sensing Robotic gripper Shaw and Lee (2014) [59]

PID controller cascaded
with a BPID Position control Position control Álvaro et al., (2015) [60]

Fuzzy-SMC Strain to position control Ball balancing beam Sunjai et al., (2015) [61]
(underactuated)

Sliding mode control Strain to differential resistance 1-DOF bidirectional servo
actuation Josephine et al., (2015) [62]

PI and saturated PI Stiffness and compliance Servomechanism Zhao et al., (2015) [63]

PD control Electrical resistance and force
feedback (haptics) Master-slave systems Josephine et al., (2016) [64]

Passive control Pulling and grasping Three-fingered gripper Wei et al., (2016) [65]
Passive control Bending and load holding Robotic hand Hyung et al., (2016) [66]

PWM Close and open Gripper Rad et al., (2016) [67]
Passive control Actuation and variable stiffness Robotic skin Yuen et al., (2016) [68]

Passive control Thermoconstitutive model
deformation of the actuator Curved gripper Hugo et al., (2017) [69]

Higher-order SMC Differential electrical resistance 1-DOF manipulator arm Josephine et al., (2017) [70]
PWM SMA resistance, self-feedback Soft manipulator Zhang et al., (2017) [71]

Passive control Touch/pressure—shearing force Haptic device Lim et al., (2017) [72]
Passive control Extension and flexion force Prosthetic hand Van der et al., (2017)[73]

PD control Shape control based linear
actuators -Active Cells MACRO Nawroj et al., (2017) [74]

Passive control Adhesive pressure control Gecko inspired gripper Mehdi et al., (2018) [75]

Open-loop testing Continuous and
bidirectional rotation Wearable rehabilitation Hwang et al., (2018) [76]

PID control Angular displacements
with compliance

Soft bio-inspired
robotic systems Youngshik et al., (2019) [77]

Open-loop testing
Theoretical model of grasping

force for different
capturing targets.

Robotic gripper Yifan et al., (2019) [78]

Radial basis function
(RBF) + SMC Two different position controls Soft robot Junfeng (2019) [79]
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Table 2. Cont.

Control Method Features/Control Parameter Application Reference

Open-loop control
Numerical and experimental

responses of angular
displacement, force, and torque

Servo drive (motor) José et al., (2020) [80]

Data driven control Displacement control Rehabilitation medical devices Zhang et al., (2020) [81]
ANFIS Closed-chain serial mechanism Bio-inspired and soft robotics Mansour et al., (2020) [82]

Open-loop control Active cooling system for
efficient response Wearable robotics Joey et al., (2020) [83]

Open-loop control Curvation variation Foldable robot Cordelia (2021) [84]
Backward Euler time

integration algorithm and
the prediction-

correction technique

Euler time integration
algorithm and the

prediction-correction technique
SMA actuator Esposito et al., (2021) [85]

PID control Gripping force Soft gripper Wei et al., (2021) [86]

Sensors 2022, 22, x FOR PEER REVIEW 8 of 17 
 

 

introducing a camera as a vision sensor, to detect the bending deformation of the soft 
finger in real-time. The papers that reported or designed and developed SMA-based ac-
tuator-based driving mechanisms are presented in Table 2 which displays the control han-
dle and the parameters that are measured for the particular application. 

 
 

(a) (b) 

 
(c) 

Figure 2. Actuator mechanisms (a) flexible pump [52] (b) bi-directional servo [54] (c) linear actuator–
sketch [73]. 

Table 2. Control methods of SMA as driving mechanisms. 

Control Method Features/Control Parameter Application Reference 
Passive control  Strain to resistance modeling Gripping fingers Chao-Chieh et al. (2010) [49] 
Passive control Linear into angular movement Three-fingered gripper Khodayari et al. (2011) [50] 

Passive Contol Gripping force changes with the length 
of the flexure joint Bio-inspired gripper Gwang-Pil et al. (2011) [51] 

Passive control Differential actuation system Connection  Guoqiang et al. (2012) [52] 
Passive control Variable pressure difference  Displacement pumps Keerthi et al. (2013) [53] 

Passive control Gripping force distribution between the 
finger and the object 

Soft robot gripper Obaji and Zhang (2013) [54] 

Fuzzy-PID control Strain to differential resistance 1-DOF manipulator 
arm 

Josephine et al. (2013) [55] 

PI control 
Bidirectional strain/displacement to step 

movement Positioning device Shinya et al. (2013) [56] 

Fuzzy-PID control Resistance feedback Ball joint for end 
effector 

Zhenyun et al. (2014) [57] 

PWM control Enhancement of force and control SMA based motor Rossi et al. (2014) [58] 
Fuzzy sliding-mode 

control Anti-slip control by force sensing Robotic gripper Shaw and Lee (2014) [59] 

Figure 2. Actuator mechanisms (a) flexible pump [52] (b) bi-directional servo [54] (c) linear actuator–
sketch [73].

4. Artificial Muscle

SMA actuators, due to their inherent high force to weight ratio feature is an ideal
element to replace human muscle, skin, joints, and the skeleton with proper design, con-
figuration, and power units. In this regard, they also found a remarkable place in the
development of such a human mimic system. In recent years, our research group has
developed a new flexible shape memory alloy actuator that provides more freedom of
movement and better integration in wearable robots, especially in soft wearable robots [87].
McKibben developed artificial muscle actuators with shape memory polymers (SMP) [88]
to drive robotic joints and these are used in pairs to establish the antagonistic biasing. The
wearable supportive device with multiple SMA wires for pulling of the skin (mask) through
wires attached to the face as reported in [89].
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Biomimetic control of a finger actuated by three antagonistic shape memory alloy
(SMA) muscle pairs in [90] was designed, where they are each configured in a dual spring-
biased configuration by implementing a fuzzy PWM-PID controller. A modified Hysteresis
Functional Link Artificial Neural Network (HFLANN) to control an SMA wire actuator [91]
was developed. Artificial skeletal muscle (AM) with functions of actuating, energy-storing,
and self-sensing using SMA wires and bias spring as shown in Figure 3 was presented
in [92]. A single-joint driving system of a bionic finger using pre-shaped SMA wire as
the finger skeleton and the joint was designed [93]. To realize bending and stretching of
the proposed finger flexibly, a couple of thermoelectric devices (TEDs) were deployed.
Impedance control for antagonistic shape memory alloy (SMA) actuators [94] to operate
the lower limb exoskeleton was implemented.
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Flexible artificial muscle using coiled shape memory alloy (SMA) wires were cre-
ated [95] to establish bending motion. The possibility of using a parallel arrangement
of SMA wires as an actuator in a robotic hand was showcased in [96]. A high-strain
flexible actuator using SMA wire that is wrapped around the two pulleys housed inside
the Bowden cable sheath for a wrist exoskeleton was designed [97]. A hybrid actuator
combining SMA and a DC motor as described in [98] was designed for prosthetic fingers to
improve the rate of grasping force rise in the grasping reflex. A robotic hand using SMA
springs was developed [99] and by actuating the SMA springs, the fingers can bend or
open. The soft robotic hand designed [100] using shape memory alloy (SMA) and woven
type smart soft composite (SSC), used 7 DOF in total. Additionally, 11 woven SSC actuators
are integrated with soft material as the united structure. A finger-like manipulator [101]
operated using antagonistic NiTi SMA wire was reported. Dynamically artificial flower
ornaments using SMA wires [102] to perform, the bending of stems, blooming of petals,
spreading of fragrance, and flapping of butterflies were developed. The wearable soft
grasping support exoskeleton [103], which has a thin and active fixture, is composed of an
SMA wire and an air chamber. A biomimetic control method with a 5 × 3 SMA springs
array prototype that has characteristics of artificial muscle [104] was framed. The prosthetic
finger uses a linkage mechanism creating an underactuated finger motion and driven by
an SMA wire actuator to provide high energy density as presented in [105]. The grasping
force model for a two-fingered soft robotic gripper [106] using SMA fiber with variable
stiffness was developed. It has been noted that quantitatively the kinematics and the static
grasping force of the soft finger can be predicted and the grasping force of the soft finger
could be adjusted by changing the Young’s modulus of SMA fiber used in the soft finger.
The artificial muscle embedded with SMA improves the effective strain of the SMA wires,
and thereby improves the artificial muscle modules significantly [107].

Critical issues due to designing a shape memory alloy (SMA) actuation system for a
soft robotic finger with a directly 3D-printed stretchable skin-like multilayered tactile sen-
sor [108] were raised. Underwater experiments were conducted using a nonlinear controller
to enable precise fingertip force control using feedback from the compliant tactile sensor.
A biomimetic 2-DOF SMA-actuated robotic arm [109] controlled by a wearable sleeve in
real-time which can mimic users’ shoulders and elbow flexion extension was designed. A
muscle-like SMA coil spring, presented in [110], was embedded in the stretchable active
coolant circulation system. Modeling of the hand rehabilitation exoskeleton equipment
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was tested on the index-finger prototype driven by SMA wire, and the finger muscle force
was analyzed based on the Hill model as shown in [111]. Bioinspired composite fingers
used SMA wires as self-locking joints to perform long-time and high-load grasping tasks
with low power consumption as proposed in [112]. An Ionic glove, wearable over a robotic
hand, was developed in [113] which contains sensing, computation, and actuation onboard
use shape memory alloy (SMA) actuators integrated into an armband to gently squeeze
the user’s arm when pressure is sensed in novel electro-fluid. The types of literature
that reported or designed and developed SMA-based actuator-based driving mechanisms
are presented in Table 3 which displays the control handle and the parameters that are
measured for the particular application.

Table 3. Control methods of SMA as artificial muscle and finger.

Control Method Features/Control Parameter Application Reference

Passive control Tension to length relationship Robotic arm joints Kazuto et al., (2010) [88]
PID controller Displacement/Strain Robot mask system Jayatilake et al., (2010) [89]

Fuzzy PWM-PID Bi-directional motion Anthropomorphic
artificial finger Junghyuk et al., (2011) [90]

Predictive control HFLANN Linkages Nguyen et al., (2012) [91]

Fuzzy tuned PID controller Force–velocity and
force–length relationships 1 DOF robotic ankle-foot Jianjun et al., (2012) [92]

PI controller Strain to bending angle Bionic finger Sun et al., (2012) [93]
PID controller Impedence control Exoskeletons Araujo et al., (2012) [94]

Passive control Bending angle Flexible Artificial
Muscle Actuator Hironari (2013) [95]

adaptive PID Hysteresis-prone phase
transition Robotic hand Gerrit et al., (2015) [96]

Hammerstein-Wiener
modeled PID gains Position and speed control Wrist exoskeleton Villoslada et al., (2015) [97]

Passive control Improving reflex speed by
controlling voltage Prosthetic finger Fei Gao et al., (2015) [98]

Passive control Strain to bending angle Prosthetic finger Ahmadi et al., (2015) [99]
Passive control Bending curvature control Bio-mimetic soft hand. Kim et al., (2015) [100]
Passive control Thermal setting technique Robotic finger Dilibal et al., (2015) [101]

PWM Deflection control Artificial flowers Pan et al., (2015) [102]

Passive control Holding/grasping force Grasping support exoskeleton Hasegawa and T.
Suzuki (2015) [103]

Programmable logic controller Displacement and Force Artificial muscle Ying et al., (2015) [104]
Passive control Underactuated finger motion Robotic finger Lee et al., (2016) [105]

Characterization Cosserat theory-based
grasping force model Soft robotic gripper Yin et al., (2018) [106]

Open-loop tension tests Strain and weaving angle
correlation Artificial muscle modules Kong et al., (2018) [107]

PID control
Precise fingertip force control

using feedback from the
compliant tactile sensor

Underwater gripper Maohua et al., (2020) [108]

PID controller Joint angular position Rehabilitation, haptics, and,
surgical robotics Golgouneh et al., (2020) [109]

Open-loop control Active cooling system for
efficient response Wearable robotics Jeong et al., (2020) [110]

PWM Coupling dynamic model for
modeling and analyze Exoskeleton Wang et al., (2020) [111]

Open-loop control Self-locking joints
Assisting UAV for perching

and grasping
bio-inspired finger

Hu et al., (2021) [112]

Open-loop control Intuitive grasping Prosthetic hand Simons et al., (2021) [113]
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5. Conclusions

In this review article, three major subclasses of SMA-based robotic systems were in-
vestigated and discussed: soft robots designed with flexible actuators, driving mechanisms
to bring out both translational and rotational movement, and vital parts (artificial human
parts) for developing some elements to replace the human motor system for rehabilitation
or exoskeleton module use. The review analysis of each subclass is summarized as fol-
lows. (1) The flexible/soft robots mainly featuring the locomotive-legged kind of robots
are most commonly designed and developed. For this, the most commonly used control
strategies were traditional on/off control or passive control via the open-loop manner.
For the open-loop control, the on/off time remains constant and the speed of operation
cannot be changed without programming it. Therefore, the types of robots activated by
passive control were functioned to jump, crawl, climb, and roll which can be easily operated
by SMA wires/springs in combination with proper biasing elements. (2) In the driving
mechanism, the SMA element is employed to independently develop as a mechanism to
facilitate movement. Thus, it can either be open or closed and uni-direction as in linear
translation and bi-directional movement. In this operation, we need a little more precision
when compared to the movement of the soft /flexible robots. One of the widely used
controllers in the driving mechanism is the fuzzy-PID controller which can be incorporated
with the knowledge of the system. (3) In the development of artificial skin/muscle, the
controller must be a closed-loop system so that it can handle real-time movement of human
motion and mostly this is designed to be a human interface device. For example, both
position and speed should be precisely controlled in the SMA-based wrist exoskeleton
mechanism using the feedback controllers such as fuzzy tuned controllers. In this field,
to develop more sophisticated human-machine interface devices that should guarantee a
higher precision in terms of positioning and generating force, more robust feedback control
strategies such as a sliding mode controller need to be implemented for SMA actuators.

It is finally concluded that one of the most significant limitations of application of SMA
to various types of robotic systems is a relatively slow response to input stimuli such as
current/thermal input compared with other smart material actuators such as piezoelectric
ceramic. The response of SMA is closely and directly related to the control bandwidth of
application robotic systems exhibiting dynamic movement in a wide frequency spectrum.
Recently, to resolve this problem, a new type of SMA activated by magnetic field has been
developed, but its application for control of robotic systems is burgeoning.
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