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Abstract: High frequency wireless communication aims to provide ultra high-speed transmissions
for various application scenarios. The waveform design for high frequency communication is chal-
lenging due to the requirements for high spectrum efficiency, as well as good hardware compatibility.
With high flexibility and low peak-to-average power ratio (PAPR), discrete Fourier transformation
spreading-based orthogonal frequency division multiplexing (DFT-s-OFDM) can be a promising
candidate waveform. To further enhance the spectral efficiency, we integrate faster-than-Nyquist
(FTN) signaling in DFT-s-OFDM, and find that the PAPR performance can also be improved. While
FTN can introduce increased inter-symbol interference (ISI), in this paper, we deploy an isotropic
orthogonal transform algorithm (IOTA) filter for FTN-enhanced DFT-s-OFDM, where the compact
time-frequency structure of the IOTA filter can significantly reduce the ISI. Simulation results show
that the proposed waveform is capable of achieving good performance in PAPR, bit error rate (BER)
and throughput, simultaneously, with 3.5 dB gain in PAPR and 50% gain in throughput.

Keywords: waveform; DFT-s-OFDM; FTN; IOTA filter; PAPR; high frequency

1. Introduction

High frequency, i.e., millimeter wave (mmWave) and terahertz (THz) wireless commu-
nication technology, which exploits the treasure of large bandwidth in higher frequency,
has become a research hotspot with the evolution of B5G and 6G [1–4]. The aim of high
frequency technology is to provide extremely high-speed data rate for various applica-
tions, such as vehicular networks, satellite backhauls, extended reality (XR) applications,
etc. [5–10]. The characteristics of the devices and the propagation environment are signifi-
cantly different at high frequency. For example, the linear range of the amplifier at high
frequency is small, which causes unexpected distortion on the signal waveforms with a
large variance [11]. The design of the waveform thus becomes a major concern in enabling
high frequency communication.

The designs of waveforms based on orthogonal frequency division multiplexing
(OFDM) have been commercialized in 4G/5G, and are now the baseline of 6G high fre-
quency communication [12,13]. Parallel transmission of high speed data is realized in
OFDM through time and frequency division multiplexing, which has good resistance to
multi-path fading and can support efficient multi-user access. Discrete Fourier transform
(DFT) spreading technique has been incorporated in OFDM, termed DFT-s-OFDM, to
achieve lower peak-to-average power ratio (PAPR) so as to make it compatible with the
low-ability power amplifier, e.g., cellular uplink and ground-to-satellite link. While main-
taining the characteristics of single-carrier waveforms, DFT-s-OFDM offers more flexibility
compared to the conventional single-carrier system. DFT-s-OFDM has been applied in
high frequency communication scenarios [14], which realize multi-user multiplexing when
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ensuring good PAPR performance. It has also been proved that DFT-s-OFDM can achieve
a balance between user scheduling flexibility and computational complexity of channel
equalization [15], which enables usage in wireless hotspots with densely distributed user
equipment. Recently, waveform variants based on DFT-s-OFDM, e.g., generalized DFT-s-
OFDM which redesigns the cyclic prefix (CP) [16,17], have triggered more research interest
in achieving lower latency and out-of-band emission. Despite the above variances, achiev-
ing the improvement of both the PAPR and throughput at the same time is a challenge.
To enhance the spectral efficiency, utilizing high-order modulation is a straightforward
method. However, the different amplitudes of modulated symbols leads to larger PAPR,
which makes reducing PAPR and enhancing throughput contradictory. As for the methods
which achieve lower PAPR, e.g., applying DFT spreading on OFDM, they cannot improve
the spectral efficiency. PAPR can be further lowered by methods such as peak clipping.
However, this can cause signal distortion and the spectral efficiency is sacrificed. FTN
signaling is an efficient method for enhancing the spectral efficiency, with the disadvantage
of low transmission reliability due to the additional ISI brought by acceleration.

In order to further enhance the spectral efficiency of transmission, faster-than-Nyquist
(FTN) technology has been put forward and introduced into some existing waveform
frameworks. Compared to the systems based on Nyquist criteria, FTN signaling can
achieve 25% improvement in symbol rate without sacrificing the error rate performance.
Basic ideas of incorporating FTN signaling in OFDM-based waveforms are introduced
in [18]. FTN also exhibits high compatibility with different modulations, where [19] val-
idates the capacity and SNR gain of FTN-based low-order modulations, and [20] proves
the power gains of FTN-based high-order modulations in a multi-carrier system. As
for the receiving technology of FTN, Ref. [21] investigates the maximum posterior-based
detection of FTN signaling, which achieves up to 186% gains in spectral efficiency com-
pared with its counterpart of Nyquist signaling. To reduce the computational complex-
ity of the FTN receiver, Ref. [22] proposes a deep learning-aided FTN signal detection
method for an uplink multi-user transmission scenario. Despite its throughput gain, the
major drawback of FTN is that the accelerated symbols will introduce additional inter-
symbol interference (ISI), which degrades the transmission reliability [23]. The proposed
method provides a candidate solution for jointly enhancing the performance of PAPR and
throughput. We first increase the spectral efficiency by integrating FTN with the low-PAPR
DFT-s-OFDM. At the same time, we design an IOTA shaping filter to reduce the ISI. The
proposed method is simple but efficient, which can improve the performance of PAPR and
throughput simultaneously.

In this paper, to enhance the performances of PAPR and throughput simultaneously,
we consider the incorporation of FTN with DFT-s-OFDM and aim to tackle the problem of
additional ISI caused by FTN. Specifically, we propose an FTN-DFT-s-OFDM waveform
based on an isotropic orthogonal transform algorithm (IOTA) filter, which can lower the
ISI while keeping the spectral efficiency enhanced. Good focusing ability on both time
and frequency domain can be found in IOTA filters, which is vital for reducing the ISI
and ICI [24]. Besides, experimental results have shown that IOTA filters help in obtaining
higher computational efficiency [25]. By combining the above-mentioned ingredients,
the detailed design of the proposed transmission waveform is presented in the following
sections. The low ISI characteristic also makes the low-complexity frequency-domain
equalization-based method available for reliable detection. Monte Carlo simulation is
performed to validate that the joint benefits of deploying IOTA and FTN technologies in
DFT-s-OFDM can be obtained with respect to PAPR, bit error rate (BER) and throughput.
Different modulation coding schemes (MCSs) have been simulated, where up to 3.5 dB
PAPR gain, 50% throughput gain in the high SNR region, can be achieved by the proposed
scheme, compared to conventional waveforms.

The rest of this paper is organized as follows. Section 2 of this paper illustrates the
signal model and performance metrics used in the simulation process. Next, the proposed
IOTA-based FTN-DFT-s-OFDM Waveform Design is introduced in Section 3, including the
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transmission waveform design and receiver design. Then in Section 4, extensive simulation
results of the proposed waveform are shown, with respect to PAPR, BER, and throughput
under various MCSs. Finally, Section 5 concludes this paper.

2. Signal Model and Performance Metrics

In this section, we consider a general waveform framework, as well as the metrics
which can evaluate the performance of a given waveform.

2.1. General Waveform Framework

Multi-carrier waveform supports parallel transmission, where high-rate data stream
is decomposed into multiple parallel low-rate sub-data streams. Each sub-data stream is
independently modulated and superimposed to form the transmission signal.

Orthogonal Frequency Division Multiplexing (OFDM) waveform is a special kind of
multi-carrier transmission technology. In the OFDM system, the transceiver filters form the
special modulation filters, where the transmitting filter can be realized by IDFT and the
receiving filter can be realized by DFT. With the usage of cyclic prefix, OFDM technology
solves the problem of multi-path fading with low complexity. The following part describes
the general framework of OFDM.

Denote s as the symbol index, l as the sub-carrier index, L as the number of sub-carrier
and n as the time index. Define ds,l ∈ C as the source symbol. Then the general waveform
framework based on the concept of OFDM can be expressed as

x(n) =
∞

∑
s=−∞

L−1

∑
l=0

ds,l · p(n− sL) · ej2πlF(n−sL), (1)

where p(n) is the prototype filter and ej2πlF(n−sL) is the Fourier transformation kernel
corresponding to the value of frequency shift in the l-th sub-carrier, where F is the reciprocal
of L, i.e., F = 1/L. The above-mentioned time and frequency transformation relationship
is also illustrated in Figure 1.

Figure 1. Time & frequency transformation of multi-carrier waveform.

2.2. Performance Metrics

Some major performance metrics of waveforms, i.e., PAPR and throughput, are dis-
cussed in the following.
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2.2.1. Peak-to-Average Power Ratio

Denote x(n) as the transmit signal. The performance metric PAPR is defined as the
ratio of the peak value to the average value of x(n), which is given by

PAPR =
max|x(n)|2

mean |x(n)|2 . (2)

Due to the limited dynamic range of the power amplifier in high frequency transmis-
sion, the signal with high PAPR suffers from non-linear distortion. Therefore, PAPR is a
key indicator of the power efficiency of the multi-carrier system.

The OFDM signal is composed of multiple independently modulated sub-carrier
signals. When the phases of the sub-carriers are the same or similar, the superimposed
signal will be modulated by the same initial phase signal, resulting in a larger instantaneous
power peak value, which further causes a high PAPR. Due to the high PAPR, the OFDM
signal can easily reach the boundary of the dynamic range of a power amplifier [26]. This
can cause unexpected distortion, especially in high frequency transmissions, and may even
cause inter-carrier interference due to the leakage. This has hindered the application of
OFDM-like waveforms in mmWave and THz communication systems [27,28].

2.2.2. Throughput

Throughput refers to the amount of data that are successfully transmitted per unit of
time. The throughput of a transmission system is defined as

Throughput = (1− BLER)× TBS/T, (3)

where BLER denotes the block error rate, TBS denotes the transport block size and T is the
period of transmission data block.

The throughput of OFDM systems depends on the modulation order, channel coding
rate and the number of occupied sub-carriers. However, for future-oriented new scenarios,
the transmission rate supported by OFDM is still not high enough. In order to provide
good performance for complicated application scenarios, waveforms with low PAPR and
high spectrum efficiency are required for high-frequency wireless transmission.

3. Proposed IOTA-Based FTN-DFT-s-OFDM Waveform Design

We consider improving the spectral efficiency and reducing the PAPR on the basis of
OFDM. Based on the commonly deployed DFT spreading technique, we further enhance
the spectral efficiency with FTN signaling, where FTN acceleration can reduce the trans-
mission time of each symbol. However, due to the introduction of FTN, ISI is unavoidable.
Therefore, the design of prototype filter with better focusing capability is studied.

In Section 3.1, we present the design of the waveform framework. The corresponding
receiving method is illustrated in Section 3.2.

3.1. Transmission Waveform Design

In this part, the components of the proposed transmission waveform are introduced,
including DFT spreading, FTN signaling and IOTA filter design, respectively.

3.1.1. DFT Spreading

DFT spreading can be regarded as a kind of precoding before OFDM modulation. By
deploying DFT spreading on the source symbols, the resulted waveform, termed DFT-s-
OFDM, can hold the characteristics of single carrier waveform. For the s-th OFDM symbol,
we denote cs = [cs,0, cs,1, . . . , cs,m, . . . , cs,M−1]

T as the M-dimensional source symbol vector.
Then the transformed signal for the s-th symbol duration after M-point DFT is given by

ds,l =
1√
M

M−1

∑
m=0

cs,m · e−j2πml/M, (l = 0, 1, . . . , M− 1). (4)
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Substituting (4) into (1), we have the overall transmit signal for DFT-s-OFDM. The in-
herent single carrier structure make the above signal a promising enabler of high-frequency
communication.

3.1.2. FTN Signaling

Given the discrete transmit symbol (1), FTN signaling aims to transmit each symbol
with a shorter time interval to reserve the time resources. We reuse the above notations, and
denote x(n) as the input to the FTN module. Denote T0 as the normal symbol transmission
interval (i.e., the interval under Nyquist sampling), the exact symbol interval after FTN
signaling is given by T = αT0, where α is the acceleration factor ranging within [0, 1]. The
acceleration factor α represents the compression degree of FTN, where the FTN waveform
under small α has large spectral efficiency. Denote g(t − nT) as the shaping filter and
overall received signal is derived by

y(t) =
√

Es ∑
n

x(n)g(t− nT) + n(t), (5)

where n(t) denotes the additive white Gaussian noise (AWGN), g(t − nT) denotes the
shaping filter and Es denotes the average power of the transmitting signal.

FTN can be defined as pulses that are shorter in time and thus no longer orthogonal.
We can easily observe that smaller α results in a higher data rate. However, due to the
non-orthogonality of pulses in FTN signaling, there are overlaps among carriers, and ISI
appears. The performance of communication systems thus degrade because of the presence
of ISI. In the next, we introduce IOTA filter, which helps to resolve the ISI brought by
FTN signaling.

3.1.3. IOTA Filter Design

IOTA is obtained from orthogonal Gaussian pulse which holds the optimal time-
frequency focusing property. The IOTA pulses are generally called root-Nyquist self-
transform pulses, where self-transform means that the beginning of the derivation is
Gaussian-shaped pulse and root-Nyquist means the end of the derivation is orthogo-
nal pulse.

IOTA filter orthogonalizes the Gaussian filter, and has the same good time-frequency
focusing performance as the Gaussian filter [29]. It can be used to reduce the out-of-band
emission, PAPR and the ISI brought by FTN signaling.

In the time-domain, the IOTA pulse, denoted as ξτ0(t), can be given by [30]

ξτ0
(t) =

1
2

K−1

∑
k=0

{
dk,v0

[
hEGF

(
t +

k
v0

)
+ hEGF

(
t− k

v0

)]}
·

K

∑
l=0

[
dl,τ0 cos

(
2πl

t
τ0

)]
,

− 4τ0 ≤ t ≤ 4τ0,

(6)

where K is a constant parameter for IOTA, hEGF(t) represents the extended Gaussian filter
(EGF) in the time domain and dl,v0 represents the IOTA coefficients given by

dl,v0 =
Q−1

∑
q=0

bk,q · e−π(2q+k), 0 ≤ k ≤ K− 1, 0 ≤ q ≤ Q− 1, (7)

with Q also being a constant value and bk,q the pre-defined weight coefficients.
The important parameters to generate IOTA filter are listed in Table 1.
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Table 1. Parameters of IOTA filter [29,30].

Parameters Specifications

τ0 1/
√

2
v0 1/

√
2

t [−2
√

2, 2
√

2]
K 15
Q 8

hEGF(t) = 2
1
4 e−πt2

The proposed waveform uses an IOTA filter as the prototype filter by replacing p(n)
in (1) with (6). We get p(n) by discrete sampling on IOTA filter, with the sampling period
the same as DFT-s-OFDM (i.e., T/L), where p(n) can be found by

p(n) =
1
2

L−1

∑
l=0

{
dl,v0

[
hEGF

(
nt
L

+
l

v0

)
+ hEGF

(
nt
L
− l

v0

)]}
·

L

∑
l=0

[
dl,τ0 cos

(
2πl

nt
τ0L

)]
,

− 4τ0 ≤ t ≤ 4τ0.

(8)

IOTA has good performance of focusing on the time and frequency domain, and thus
is better at resisting ISI and inter-channel interference (ICI) than a rectangular waveform or
root-raised cosine (RRC) filter. IOTA filter also holds similar out of band (OOB) performance
as the RRC filter as shown in Figure 2. This indicates that no additional bandwidth is
required for deploying IOTA.

Figure 2. OOB performance of IOTA filter.

3.2. Receiver Design

Even with an IOTA filter, the existence of ISI still requires a more complicated receiver
to recover the original transmission signals. In the sequel, we design the receiving algorithm
for the proposed waveform based on frequency-domain equalization (FDE). The receiver
design should lay the basis for the conventional DFT-S-OFDM waveform while considering
the specific characteristics of FTN and IOTA filters
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Shiya Sugiura [31] proposes a frequency domain equalization (FDE) receiver structure
based on minimum mean square error (MMSE), which can achieve low demodulation
complexity, especially for long channel FTN schemes. Specifically, in the FDE scheme, a
short cyclic prefix (CP) is added to each transport block and a finite-tap cyclic matrix is
adopted to approximate the ISI generated by FTN signaling. Thus, an efficient FFT method
and a low-complexity MMSE detection algorithm can be used in the receiver. FDE can
achieve near-optimal BER performance without increasing demodulation complexity and
power consumption.

In the AWGN channel, the output signal after a matched filter given (5) can be ex-
pressed as

ŷ(t) = y(t) ∗ g(t) =
√

Es ∑
n

x(n)ĝ(t− nτT) + η(t), (9)

where ĝ(t) =
∫

g(τ)g∗(τ − t)dτ, η(t) =
∫

n(τ)g∗(τ − t)dτ and Es represents the average
power of transmitting signal. Assuming that the time synchronization is perfect between
the transmitter and receiver, the sampled value of the k-th signal at the receiver can be
written as

ŷk = ŷ(kτT)

=
√

Es ∑
n

x(n)ĝ(kτT − nτT) + η(kτT)

=
√

Esx(n)ĝ(0) +
√

Es ∑
n 6=k

x(n)ĝ(kτT − nτT) + η(kτT),

(10)

where the first part is the symbol at present, the second part is ISI and η(kτT) is the
zero-mean random Gaussian variable.

Figure 3 is the transceiver structure of MMSE-FDE scheme. A CP with length 2v is first
added after N modulated symbols to realize the symbol transmission based on the block.
Then, the first and last v receiving signal samples are removed from the entire N + 2v
samples, and we obtain a received signal block with length N, which can be expressed as

ŷ = [ŷ1, . . . , ŷN ]
T ∈ CN

= Gx + η,
(11)

where x = [x1, x2, . . . , xn]
T is the transmitting signal and η = [η1, η2, . . . , ηN ]

T is the corre-
sponding channel noise component. The k− th row of tap coefficient matrix G ∈ RN×N is

G =



g(−vτT) · · · g(vτT) 0 · · · · · · · · · · · · 0
0 g(−vτT) · · · g(vτT) 0 · · · · · · · · · 0
0 0 g(−vτT) · · · g(vτT) 0 · · · · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 0 0 · · · 0 g(−vτT) · · · g(vτT) 0
g((2v− 1)τT) · · · g(vτT) 0 · · · 0 g(−vτT) · · · g((2v− 2)τT)
g((2v− 2)τT) · · · g(vτT) 0 · · · 0 g(−vτT) · · · g((2v− 3)τT)

...
. . . . . . . . . . . . . . . . . . . . .

...
g(0) · · · g(vτT) 0 · · · 0 g(−vτT) · · · g(−τT)


. (12)

Due to the cyclic structure of matrix G, singular value decomposition can be done as
G = QTΛQ∗, with Q ∈ CN×N being the eigenmatrix of G, Λ being a diagonal matrix and
elements in the i− th row being the corresponding FFT coefficients. DFT vector can be
used to derive the element in the l − th row and k− th column of Q.
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To reduce the computational complexity, the considered FDE algorithm aims to equal-
ize the time-domain receiving signal in the transform-domain with the eigenmatrix Q,
which is derived as

ŷ f ' Q∗ŷ = ΛQ∗x + Q∗n = Λx f + n f , (13)

where x f and n f refer to the transformed signal and noise vector, respectively. Then the
equalization matrix W ∈ CN×N is derived based on Λ according to the MMSE criteria, with
ω(i,i) and λ(i,i) the i− th rows of the diagonal matrix W and Λ, respectively. Here, ω(i,i) can
be expressed as

ω(i,i) = λ∗(i,i)/
(∣∣∣λ(i,i)

∣∣∣2 + N0

)
(14)

Finally, we get the estimated value x̂ of the transmit symbol x = [x1, x2, . . . , xn]
T as

x̂ = QTWŷ f = QTW
(

Λx f + n f

)
. (15)

The computational complexity of the FDE receiver includes three parts: FFT com-
plexity, weight calculation complexity and MMSE algorithm complexity. (13) uses FFT
to transform the received signal into the frequency domain, with its complexity of order
NlogN. The calculation of the weight in (14) requires 4N multiplications and the MMSE
operation in (15) requires 2N multiplications, whose complexity are both of order N. Thus,
the proposed receiver has the overall computational complexity of O(NlogN + N). The
complexity of the FDE receiver is only related to the receiving block length N, but not to
the FTN acceleration factor α, filter type, or tap length. Therefore, the receiver complexity
of the the IOTA-based scheme proposed in this paper is the same as that of the RRC-based
NOW scheme. Compared with the time-domain equalization algorithm, whose complexity
exponentially increases with tap length, the FDE receiving algorithm used in this paper has
lower complexity, especially under high ISI.

Until now, we finish the signal demodulation and successfully cancel the ISI. What
is worth noticing is that FDE has relatively low complexity and can similarly achieve the
detecting performance of optimal receiver.

Figure 3. The transceiver design of the proposed waveform.

4. Simulation Results and Analysis

In this section, we implement the proposed IOTA-based FTN-DFT-s-OFDM and evalu-
ate the PAPR, BER and throughput performance under various MCS settings and accelera-
tion rates. Link-level Monte-Carlo simulations are conducted to valuate the performance
gain of the proposed scheme over DFT-s-OFDM and non-orthogonal waveform (NOW) [32],
which adopts RRC pulse as the prototype filter of FTN waveform. The main simulation
parameters are presented in Table 2.
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Table 2. Parameters for Simulation.

Carrier Frequency 70 GHz [33]

Subcarrier spacing (SCS) ∆ f = 960 kHz

Symbol Interval T = 1.04 µs

System bandwidth 800 MHz

DFT size 7792

Guard band 40 MHz

Allocated subcarriers M = 792 (DFT size)

FFT size 1024

Roll-off factor of RRC β = 1/9

RRC taps
20(α = 1)/28(α = 0.95)/30(α = 0.9)/

32(α = 0.83)/34(α = 0.77)/42(α = 0.64)/
52(α = 0.5)/68(α = 0.38)/102(α = 0.25)

Up-sampling factor for signal K′ = αK0(K0 = 78)

Channel AWGN

Channel coding LDPC

Modulation QPSK, 16QAM, 64QAM

Baseline Waveforms DFT-s-OFDM/NOW [32]

4.1. PAPR

In this section, PAPR performance is compared within different MCSs, each with
different values of acceleration factor α.

Figures 4–6 show the PAPR performance based on QPSK under various MCSs. From
the figures, we can conclude that no matter what filter is used (i.e., IOTA or RRC), the PAPR
of FTN first decreases and then increases with the decrease of the acceleration factor α, and
the PAPR of FTN reaches the optimal value when the acceleration factor is about 0.75–0.85.
For higher modulation orders, higher spectral efficiency can be expected, and thus higher
PAPR values can be seen. However, PAPR performance has little relation with the coding
rate R when modulation orders are the same.

Figure 4. Performance of PAPR based on QPSK with R = 120/1024.
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Figure 5. Performance of PAPR based on 16QAM with R = 490/1024.

Figure 6. Performance of PAPR based on 64QAM with R = 948/1024.

Besides, in the simulation process we have, in total, nine MCSs, each with nine
indexes (i.e., we have 81 cases actually). The corresponding modulation order, coding
rate and spectral efficiency are listed in Table 3, including the corresponding value of α
with experimentally best PAPR performance and PAPR gains based on IOTA in each case.
Denoted modulation order as Mod, coding rate as R, spectral efficiency as SE, α for best
PAPR on IOTA as best α -IOTA and α for best PAPR on RRC as best α -RRC.
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Table 3. PAPR gains under different MCS cases.

MCS
Index

Mod
Order

R
[/1024] SE Best α

-IOTA
Best α
-RRC

PAPR Gain
over RRC /dB

PAPR Gain
over DFT /dB

0 2 120 0.2344 0.77 0.77 2 3.5

1 2 379 0.7402 0.77 0.77 2 3.5

2 2 679 1.3262 0.77 0.77 1.8 3.5

3 4 340 1.3281 0.83/0.9 0.77 1.6 2.6

4 4 490 1.9141 0.83 0.77 1.3 2.4

5 4 658 2.5703 0.83 0.83/0.77 1.5 2.5

6 6 438 2.5664 0.83 0.83/0.77 0.9 1.9

7 6 719 4.2129 0.83 0.83 1.3 1.7

8 6 948 5.5547 0.83 0.83 1.1 1.8

The reason why proposed method can reduce PAPR is analyzed in Figures 7–9. When
the acceleration factor α of FTN is large, the degree of compression is relatively low.
With the increase of compression degree, the average value increases continuously. The
increment of peak value mainly depends on the size of the tails of the pulse. When FTN is
further compressed, the size of the peak part is mainly determined by the central envelope
of other pulses. In this case, the peak value increases sharply with the increase of the
compression degree.

Figure 7. Peak value of RRC filter-based signal with α = 1.
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Figure 8. Peak value of RRC filter-based signal with α = 0.64.

Figure 9. Peak value of RRC filter-based signal with α = 0.25.

Comparison is made between the peak value and average value of the FTN waveform,
which is shown in Figure 10. As the FTN acceleration factor α decreases, the average value
keeps increasing, whereas the peak value first decreases and then slowly increases and
finally increases sharply. Therefore, the PAPR of FTN first decreases and then increases
accordingly. This explains the observations of PAPR performance in Figures 4–6.
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Figure 10. Comparison of peak and average value of FTN under different acceleration factor α.

4.2. BER

This part compares the BER performance of IOTA and non-orthogonal waveform
(NOW), based on QPSK and 16QAM with different value of coding rate R and accelera-
tion factor α. NOW denotes the algorithm of FTN-DFT-s-OFDM signaling based on the
RRC filter.

Figures 11 and 12 illustrate the BER performance based on the modulation order
corresponding to MCS2 and MCS5 in Table 3.

Figure 11. Performance of BER based on QPSK with R = 679/1024.
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Figure 12. Performance of BER based on 16QAM with R = 658/1024.

From the above two figures, we can derive that the BER performance of IOTA will
exceed that of the RRC under small values of α, and also the algorithm based on IOTA can
support smaller α. When higher spectral efficiency is achieved with higher modulation
orders, BER performance based on IOTA shows a slower decreasing trend compared with
RRC. Thus, we can arrive at the conclusion that IOTA seems to be more suitable for FTN
signaling, especially for the case with high spectral efficiency.

Similarly to PAPR performance mentioned above, we give Table 4 listing the BER
performance based on IOTA. SNR loss compared to RRC and baseline is listed, as well as
the minimum supportable α of IOTA and RRC.

Table 4. Throughput Gains under different MCS Cases.

MCS
Index

Mod
Order

R
[/1024] SE Min α

-IOTA
Min α
-RRC

Throughput
Gain

0 2 120 0.2344 0.25 0.38 0.52

1 2 379 0.7402 0.38 0.5 0.32

2 2 679 1.3262 0.5 0.64 0.28

3 4 340 1.3281 0.5 0.64 0.28

4 4 490 1.9141 0.64 0.77 0.20

5 4 658 2.5703 0.64 0.83 0.30

6 6 438 2.5664 0.64 0.83 0.30

7 6 719 4.2129 0.77 0.9 0.17

8 6 948 5.5547 0.77 0.9 0.17

4.3. Throughput

In this part, thoughput performance of IOTA and RRC is compared under different α.
The throughput is calculated as

Troughput = (1− BLER) ∗ TBS/(T1× α + T2), (16)
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where BLER is block error rate, TBS is the transport block size, which represents the number
of bits in each block, T1 is the transmission period of data block (i.e., slot time) and T2 is
the transmission period of CP.

Figures 13–15 show the throughput performance of systems based on IOTA and RRC
filter when different acceleration factors are applied.

Figure 13. Throughput performance of IOTA and RRC with α = 0.9.

Figure 14. Throughput performance of IOTA and RRC with α = 0.83.
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Figure 15. Throughput performance of IOTA and RRC with α = 0.5.

By adjusting the MCSs in Table 4, we derive the red line in Figure 13 which depicts the
envelope of the achievable throughput of RRC-based waveform under different SNRs. For
the RRC-based waveform, due to the ISI brought by FTN, the signal to interference plus
noise ratio (SINR) required for successful decoding of the MCS with a larger index can not
be fulfilled even with increased SNR up to 20 dB. This makes the achievable throughput
maintain a constant value in a large SNR region. However, for the IOTA-based wave-
form, reduced ISI enhances the SINR and throughput can be enhanced by changing the
MCSs. We observe that significant throughput improvement can be seen with SNR between
15–18 dB, which corresponds to the relative SE of MCS 1 and 5 in Table 4. Similar obser-
vations can be drawn in Figures 14 and 15. The throughput performance gain of IOTA is
mainly due to its effective ISI reduction.

5. Conclusions

In order to meet the new requirements of waveforms applied in high frequency
communication, where ultra high-speed transmission is one of the vital targets, high
spectrum efficiency with reliability is required in the designed waveforms. Based on the
OFDM waveform which is basically used in 4G/5G, DFT spreading and FTN signaling are
utilized to make the waveform have lower PAPR and higher spectral efficiency, respectively.
To further enhance the throughput performance of communication systems, FTN-DFT-
s-OFDM waveform based on an IOTA filter is proposed in this paper. The good time-
frequency focusing characteristic of the IOTA filter enables the ISI reduction, and thus the
transmission performance of the waveform is improved. On the receiver side, we apply an
FDE receiver to demodulate the signal, with a complexity of O(NlogN + N). Simulation
results have shown that the proposed scheme can offer joint performance gain in terms of
PAPR reduction, BER and throughput improvement. Specifically, 3.5 dB gain in PAPR and
50% gain in throughput can be achieved compared with the existing waveforms.

For future work, improvements can be further achieved in the waveform design
and receiver design. Spectral efficiency and PAPR performance enhancement can be
explored based on other waveforms, such as constant envelope OFDM, filter bank of
multi-carrier, orthogonal time frequency space, etc. Moreover, low-complexity iterative
design to compact the ISI and ICI is also a promising direction. The state-of-the-art artificial
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intelligence techniques can also be exploited to enhance the waveform design in an end-to-
end fashion [10,34].
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Abbreviations
The following abbreviations are used in this manuscript:

OFDM Orthogonal frequency division multiplexing
DFT Discrete Fourier transformation
DFT-s Discrete Fourier transformation spreading
ISI Inter-symbol interference
ICI Inter-channel interference
FTN Faster-than-Nyquist
IOTA Isotropic orthogonal transform algorithm
PAPR Peak-to-average power ratio
BER Bit error rate
CP Cyclic prefix
MCS Modulation coding scheme
AWGN Additive white Gaussian noise
EGF Extended Gaussian filter
FDE Frequency domain equalization
MMSE Minimum mean square error
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