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Abstract: For data-driven intelligent manufacturing, many important in-process parameters should
be estimated simultaneously to control the machining precision of the parts. However, as two of
the most important in-process parameters, there is a lack of multi-task learning (MTL) model for
simultaneous estimation of surface roughness and tool wear. To address the problem, a new MTL
model with shared layers and two task-specific layers was proposed. A novel parallel-stacked auto-
encoder (PSAE) network based on stacked denoising auto-encoder (SDAE) and stacked contractive
auto-encoder (SCAE) was designed as the shared layers to learn deep features from cutting force
signals. To enhance the performance of the MTL model, the scaled exponential linear unit (SELU)
was introduced as the activation function of SDAE. Moreover, a dynamic weight averaging (DWA)
strategy was implemented to dynamically adjust the learning rate of different tasks. Then, the
time-domain features were extracted from raw cutting signals and low-frequency reconstructed
wavelet packet coefficients. Frequency-domain features were extracted from the power spectrum
obtained by the Fourier transform. After that, all features were combined as the input vectors of
the proposed MTL model. Finally, surface roughness and tool wear were simultaneously predicted
by the trained MTL model. To verify the superiority and effectiveness of the proposed MTL model,
nickel-based superalloy Haynes 230 was machined under different cutting parameter combinations
and tool wear levels. Some other intelligent algorithms were also implemented to predict surface
roughness and tool wear. The results showed that compared with the support vector regression
(SVR), kernel extreme learning machine (KELM), MTL with SDAE (MTL_SDAE), MTL with SCAE
(MTL_SCAE), and single-task learning with PSAE (STL_PSAE), the estimation accuracy of surface
roughness was improved by 30.82%, 16.67%, 14.06%, 26.17%, and 16.67%, respectively. Meanwhile,
the prediction accuracy of tool wear was improved by 46.74%, 39.57%, 41.51%, 38.68%, and 39.57%,
respectively. For practical engineering application, the dimensional deviation and surface quality of
the machined parts can be controlled through the established MTL model.

Keywords: multi-task learning; parallel-stacked auto-encoder; dynamic weight averaging; surface
roughness estimation; tool wear estimation

1. Introduction

Traditional manufacturing has been smoothly transformed into data-driven intelligent
manufacturing because of the rapid development of intelligent sensing instruments, arti-
ficial intelligence, and industrial internet of things. Metal cutting is an important part of
the manufacturing industry. There is an increasing demand to predict multiple in-process
parameters to control the machined surface quality. Surface roughness and tool wear
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are two of the most important in-process parameters, which are related to the machining
accuracy and efficiency of the parts. As an important evaluation index of machined surface
quality, surface roughness affects the working state of mechanical parts in the assembly [1],
the fatigue strength, and creep life of the parts [2,3]. In addition, the machining precision,
machining efficiency, and surface integrity will be affected by the tool wear conditions.
Severe tool wear may directly lead to the scrapping of production parts and machine
downtime. Previous research has shown that the abnormal tool wear conditions will cause
20% of downtime [4]. Therefore, it is necessary to achieve both surface roughness and tool
wear estimation toward precision machining.

Many models or methods have been proposed for surface roughness and tool wear
estimation. Estimation models related to surface roughness were approximately divided
into three categories: models based on the machining theory, models established with mul-
tiple linear regression empirical formula, and data-driven prediction models [5]. Similarly,
machining-theory-based models and data-driven models have been established for tool
wear estimation [6]. Considering the validity and applicability, data-driven prediction mod-
els are the most suitable for current data-driven manufacturing environments, as they do
not rely on complex cutting theory and can be integrated with the manufacturing systems.

For data-driven prediction models, the mainstream research process mainly includes
the following steps: cutting signals collection, feature extraction and selection, data-driven
model establishment and training, and model validation. For example, Huang et al. realized
the surface roughness prediction with gray system theory and the time-domain features
extracted from cutting force signals [7]. Du et al. achieved the estimation of multiple
surface quality characterization parameters with a machine-learning model and multiple
cutting signals [8]. Li et al. constructed a tool wear prediction model with meta-learning
and physics-informed model [9]. Qiao et al. proposed a parallel deep-learning structure
for feature extraction and realized tool wear estimation with multiple sensors fusion [10].
These studies fully demonstrated the effectiveness and prospects of artificial intelligence
models combined with intelligent sensing devices in tool wear and surface roughness
estimation. Furthermore, some researchers considered tool wear an unavoidable factor
during the machining process. Thus, tool wear was also considered as the input of the
surface roughness estimation models. Li et al. established a surface roughness prediction
model with the least squares support vector machine (LSSVM), and the basic cutting
parameters and tool wear were combined as the input variables [11]. Agustina et al.
evaluated the effect of tool wear on the surface roughness [12]. Pimenov et al. adopted
the random forest model to predict the surface roughness under the consideration of tool
wear [13]. In addition, some other researchers believed that tool wear states would be
reflected on the surface topography, so the surface roughness was used as the input data to
establish the tool wear estimation models. For example, energy, entropy, inertial moment,
and correlation were extracted from surface topography, and then, the tool wear states
were estimated through these features [14,15]. Jain et al. established a tool wear monitoring
model with the current and previous surface roughness values as the input variables [16].
Kene et al. established a tool health monitoring system using cutting force and surface
roughness signals [17]. The above studies fully demonstrated the strong correlation between
surface roughness and tool wear. In addition, as important in-process parameters, tool
wear is directly related to dimensional deviation of the machined parts [18], and surface
roughness is important in evaluating the machined surface quality. Therefore, both surface
roughness and tool wear should be estimated simultaneously. However, these studies did
not establish unified models for simultaneously predicting surface roughness and tool
wear. Wang et al. proposed a hybrid deep-learning model for tool condition prognosis,
and surface roughness was also predicted based on the monitored tool wear [19]. Rao et al.
established an optimized gray model (OGM) (1,N) to predict surface roughness and tool
wear simultaneously using vibration signals [20]. Huang et al. estimated tool wear and
surface roughness simultaneously with one-dimensional convolutional neural network
(1D CNN) and multiple sensors fusion method [21]. Similarly, Chen et al. studied the
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applications of 1D CNN and vibration signals in tool wear detection and surface roughness
estimation [22]. Although those data-driven models have achieved simultaneous prediction
of surface roughness and tool wear, the established models were still single-task prediction
models. In other words, the common knowledge and complementary information of
surface roughness and tool wear were not considered.

To fully utilize the correlation and common information between surface roughness
and tool wear, a joint prediction model should be employed to explore the common in-
formation [23]. As a type of joint prediction model, the multi-task learning (MTL) model
has been developed to improve the generalization ability of a single task through shared
representation and implicit data augmentation [24]. Due to the information-sharing mecha-
nism focusing on the mutual effective features and simultaneous estimation of multiple
related tasks, MTL models have been successfully applied to gas detection and concentra-
tion estimation [25], Alzheimer’s disease progression detection [26], and maintenance of
mechanical system health status [27]. For the practical machining process, Liu et al. estab-
lished a MTL model with the deep neural network for accurate prediction of tool wear and
chipping [28]. Wang et al. constructed a MTL model with the deep belief network (DBN) for
identifying surface quality and tool wear condition [29]. Although both surface roughness
and tool wear were considered, only the classification problem was solved. Moreover, the
training process of DBN is time consuming with the contrastive divergence algorithm, and
the stochastic probability mechanism that existed in DBN is prone to unstable results [30].
Therefore, a suitable MTL model with robust performance needs to be proposed to solve
the regression problem of surface roughness and tool wear estimation.

Based on the understanding of the above studies, a number of data-driven mod-
els with intelligent sensors have been proposed for tool wear monitoring and surface
roughness estimation, and satisfactory results were obtained. These studies have made
important contributions to the development of intelligent, networked, and digitalized
machining processes, in line with the requirements of Industry 4.0 [31]. However, these
studies mainly focused on the development and application of intelligent sensing devices
and advanced machining algorithms [32]. Surface roughness prediction and tool wear
monitoring were regarded as two independent tasks. The complementary information
and common knowledge of multiple in-process parameters in the machining process were
ignored. Moreover, the machine-learning algorithms used can be divided into two cate-
gories: shallow machine-learning models, such as artificial neural network, support vector
machine, and gray model; and deep-learning models, such as CNN and recurrent neu-
ral networks (RNN). Nevertheless, shallow machine-learning models cannot learn deep
features from input vectors, and the estimation accuracy may not be satisfactory. The
deep-learning models similar to CNN can learn deep features, but they have requirements
on the amount of experimental data. Collecting sufficient data is a time-consuming and
costly process. Therefore, unsupervised or semi-supervised algorithms should be fully
used to fill in this limitation [33]. To solve these problems, a multi-task learning model was
proposed to fully mine and exploit complementary information and common knowledge of
multiple in-process parameters. A novel unsupervised algorithm named parallel-stacked
auto-encoder network was developed to learn deep features related to surface roughness
and tool wear, and it was used as the shared layers of the MTL model. Eventually, not only
surface roughness and tool wear estimation were achieved simultaneously, but also the
accuracy of both was significantly improved.

Overall, a novel MTL model with shared layers and two task-specific layers was
proposed for the simultaneous estimation of surface roughness and tool wear. Firstly, the
effective features were extracted from the original cutting force signals, power spectrum,
and reconstructed low-frequency wavelet packet coefficients, which were fed into the
proposed MTL model. To learn deep features from the extracted statistical features, a
new parallel-stacked auto-encoder (PSAE) based on a three-layer stacked denoising auto-
encoder (SDAE) and a three-layer stacked contractive auto-encoder (SCAE) was developed
as the shared layers. Two dense layers were employed as the task-specific layers for surface
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roughness and tool wear estimation. Furthermore, a scaled exponential linear unit (SELU)
was introduced as the activation function of SDAE to further improve the efficiency of
the MTL model. Finally, to balance the contribution degree of different tasks, the learning
rate of different tasks was dynamically adjusted through the dynamic weight averaging
(DWA) strategy.

2. The Proposed Multi-Task Learning Model

Multi-task learning (MTL) model was proposed to enhance single-task generalization
ability by sharing the common knowledge in the related tasks. The essence of MTL lies
in parameter sharing. Currently, the parameter sharing strategies mainly include hard
parameter and soft parameter sharing. Hard parameter sharing is suitable for multiple
related tasks. By comparison, soft parameter sharing is more flexible and does not require
task relevance, but many additional parameters will be added, which will bring a burden
to the model training. Considering the strong correlation between surface roughness and
tool wear [18], a novel MTL model based on the hard parameter sharing principle was
proposed in this paper.

2.1. Multi-Task Network Structure with Parallel-Stacked Auto-Encoder

The proposed MTL model with hard parameter sharing mainly includes shared layers
and task-specific layers. The shared layers were designed to share and complement the
domain-specific information, and the task-specific layers were designed to learn specific
features for different tasks. In this paper, a novel unsupervised network structure called
PSAE based on SDAE and SCAE was developed as the shared layers. Two dense layers
were employed as the task-specific layers. Then, the time-domain features were calculated
from raw cutting signals and reconstructed wavelet packet coefficients with a low frequency.
The power spectrum obtained by the Fourier transform (FT) was used to extract frequency-
domain features. Finally, all features were merged as the input data of the proposed
MTL model.

2.1.1. Standard Stacked Auto-Encoder

A standard stacked auto-encoder is constructed by stacking several auto-encoders.
The auto-encoder (AE) belongs to the unsupervised learning algorithm, mainly includ-
ing the encoder and decoder, as shown in Figure 1. For a given training sample x =
[x1, x2, x3, . . . , xn−1, xn], the feature representation h = [h1, h2, . . . , hm−1, hm] is obtained
through nonlinear mapping in the encoding step. The output vector y = [y1, y2, y3, . . . , yn−1, yn]
is reconstructed to fit the input data x by minimizing the loss function in the decoding step.
The specific encoding and decoding operations are expressed as

h = f (WEx + bE) (1)

y = f (WDh + bD) (2)

where {WE, bE} and {WD, bD} denote the parameter set of the encoder and decoder,
respectively, and f represents the activation function, which determines the mode of
feature transformation of the AE. However, there is no mature theory for determining
a suitable activation function. According to previous research [34,35], Sigmoid, Tanh,
SoftPlus, exponential linear unit (ELU), and rectified linear unit (RELU) are commonly
used to design deep neural networks. In addition to these five activation functions, the
scaled exponential linear unit (SELU) is also introduced as the activation function in this
paper [36]. The feature representation of the input data mapped by SELU can well meet
normalization distribution, which accelerates the convergence speed. The waveforms of
the six activation functions are shown in Figure 2.
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Then, the parameter set θ = {WE, bE, WD, bD} of AE is adjusted to minimize the
reconstruction error between x and y. In this paper, the reconstruction error was calculated
in terms of the mean squared error, which is expressed as

LAE =
1
n

n

∑
i=1
‖xi − yi‖

2

(3)

where n represents the number of the training datasets, and LAE denotes the loss function
(reconstruction error). To learn deep feature representation from the extracted features, the
stacked auto-encoder (SAE) is constructed with several trained auto-encoders, as shown in
Figure 3. To be specific, the feature representation h1 of AE-1 is sent to the input layer of



Sensors 2022, 22, 4943 6 of 25

the contiguous AE-2. Similarly, the feature representation h2 of AE-2 is fed into the input
layer of the AE-3. Then, the SAE is obtained by a layer-wise construction process.
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2.1.2. SDAE and SCAE

In practical applications, the training dataset samples are often mixed with some noise,
leading to the loss of data authenticity. Therefore, the feature representation obtained from
SAE contains some errors due to the noise. To solve this problem, a denoising auto-encoder
(DAE) was proposed by adding a certain amount of noise to the input data, and then, the
robust feature representation of input data is learned. The corresponding formula is shown
as follows:

x̂ = x + noise(x) (4)

Moreover, to enhance the ability to learn feature representation, a contractive auto-
encoder (CAE) was developed by adding a contractive penalty term to the loss function [31].
Additionally, the modified reconstruction error is expressed as

LCAE =
1
n

n

∑
i=1
‖xi − yi‖

2

+ λ‖Jw(x)‖2 (5)

where λ is the regularization coefficient parameter. Jw(x) represents the Jacobian matrix of
the encoder, which is expressed as

‖Jw(x)‖2 = ‖∂w
∂x
‖

2
=

m

∑
j=1

n

∑
i=1

(
∂w
∂x

)
2

(6)

Jw(x) =


∂w1
∂x1

∂w1
∂x2

· · · ∂w1
∂xn

∂w2
∂x1

∂w2
∂x2

· · · ∂w2
∂xn

...
...

...
...

∂wm
∂x1

∂wm
∂x2

· · · ∂wm
∂xn

 (7)

Similar to the construction process of SAE, SDAE and SCAE are constructed through
the layer-wise construction process.

2.1.3. The Overall Framework of the MTL Model

Generally, the individual stacked auto-encoder is prone to poor performance and
low generalization in dealing with diverse and complex cutting signals. To overcome
the limitations of the individual stacked auto-encoder, ensemble learning is regarded as
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an effective technique to improve generalization and robustness by combining different
stacked auto-encoders [35,37]. Ensemble learning is not a machine-learning algorithm, but
it completes the learning task by combining several learners. Therefore, combining the
complementary advantages and characteristics of SDAE and SCAE, the PSAE based on the
three-layer SDAE and three-layer SCAE is proposed to learn more effective features, and it
is used as the shared layers. To learn specific features for individual tasks, a set of dense
layers are designed as task-specific layers. Moreover, when the machining process runs
under variable working conditions, the amplitude of cutting signals and the degradation
pattern of the cutting tool are affected by the variable working conditions. Therefore, the
basic cutting parameter information is also considered to improve the accuracy of surface
roughness and tool wear prediction. To obtain effective features, the cutting parameter
information is further processed by a dense layer, which is also used as the shared layers.
After that, the deep features learned by the PSAE are concatenated with the effective
features obtained from the basic cutting parameters to form hybrid information. Then, the
hybrid information is fed into two parallel task-specific layers for simultaneous prediction
of surface roughness and tool wear, as shown in Figure 4.
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The parameters in the MTL model that need to be optimized include two parts:
shared and task-specific parameters. To achieve joint optimization of all parameters,
the optimization goal is defined as the weighted sum of loss functions of different tasks
as follows

LMTL = λ1
1

Nb

Nb

∑
i=1

(Sai
pre − Sai )

2 + λ2
1

Nb

Nb

∑
i=1

(VBmaxi
pre −VBmaxi)

2 (8)

where LMTL represents the loss function of the MTL model, λ1 and λ2 denote the loss
weight of surface roughness and tool wear, respectively; Nb represents the number of
samples in each batch during model training, Sa

pre and VBmax
pre represent the surface

roughness and tool wear values obtained by the MTL model, respectively; Sa denotes the
actual surface roughness value, and VBmax represents the measured tool wear. Due to high
computational efficiency and low memory footprint, the Adam algorithm is selected to
adjust all parameters in the MTL model. In addition, the hyper-parameters of the MTL
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model, such as the number of hidden layer nodes in the AE and the number of epochs, need
to be determined to improve the accuracy of the model. Similarly, with Equation (8) as the
optimization objective, the hyper-parameters were determined using the validation dataset
with the help of the grid search framework. Grid search can obtain satisfactory results
in low-dimensional space and is easily applied to deep-learning model framework [38].
Its main idea is that if there are k hyper-parameters that need to be optimized, the values
are taken at equal intervals according to the range of the hyper-parameters. Then, all
parameter combinations are considered in a searching loop manner (grid format). The
hyper-parameter combination of the model was determined when the loss of the validation
dataset was minimal, as shown in Table 1.

Table 1. Hyper-parameters of the proposed MTL model.

Parameters Value Range Determined Value

Optimization algorithm (Adam, SGD, RMSprop) Adam
Batch size (8, 16, 32) 16

The number of epochs (300, 400, 500, 600, 700, 800) 500
Activation function of SDAE (Sigmoid, Tanh, SoftPlus, ELU, RELU, SELU) SELU
Activation function of SCAE (Sigmoid, Tanh, SoftPlus, ELU, RELU, SELU) RELU

Hidden layer nodes of SDAE Hidden layer 1: (60, 50, 40), Hidden layer 2: (40,
30, 20), Hidden layer 3: (20, 10, 5) (50, 30, 10)

Hidden layer nodes of SCAE Hidden layer 1: (60, 50, 40), Hidden layer 2: (40,
30, 20), Hidden layer 3: (20, 10, 5) (50, 30, 10)

Nodes of the dense layers for surface
roughness prediction Dense layer 1: (20, 10), Dense layer 2: (10, 5) (20, 10)

Nodes of the dense layers for tool wear prediction Dense layer 1: (20, 10), Dense layer 2: (10, 5) (10, 5)
Nodes of the dense layer for cutting parameters (10, 5) 5

2.2. Dynamic Weight Averaging

For the MTL model, the weights λ1 and λ2 of the multi-task loss function are used to
measure the relative contribution of each task. All tasks should be made equally important,
rather than allowing learning to be dominated by easier tasks. Without finding a suitable
balance between these tasks, it is difficult to learn multiple tasks. Therefore, dynamic
weight averaging (DWA) is introduced to dynamically adjust the learning rate of different
tasks [39]. According to the loss function value of surface roughness and tool wear during
the iterative process, the mathematical model of DWA is expressed as

wk(t : t + 4) =

t−1
∑

i=t−5
Lk(i)

t−6
∑

j=t−10
Lk(j)

(9)

λk(t : t + 4) =
K · exp(wk(t : t + 4))

2
∑

k=1
exp(wk(t : t + 4))

(10)

where K represents the number of tasks to be jointly learned, t represents the current
iteration number, and Lk(.) denotes the loss function of the k-th task. To reduce the
uncertainty from stochastic gradient descent, the loss value Lk(.) is calculated as the average
loss over five consecutive loss function values. wk(.) represents the relative descending rate
of the k-th task. λk(.) denotes the adjusted weight of the k-th task, and the initial weights
for surface roughness and tool wear are set to 1. Then, the learning rate of multiple tasks is
adjusted and balanced during model training with the help of DWA.
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3. Experimental Setup

To illustrate the efficiency of the proposed MTL model, milling experiments were
carried out on the five-axis machining center DMU 80 mono-BLOCK (DMG, Munich,
Germany). Due to excellent high temperature strength, corrosion resistance, and long-term
thermal stability, Haynes 230 is employed as the main material of gas turbine combustor
shells, which have a high requirement for surface quality. In addition, the cutting tool is
prone to wear during the machining process because of the low thermal conductivity and
adhesion phenomenon between the workpiece material and cutting tool. Thus, Haynes
230 was determined as the workpiece to be machined, and its mechanical properties and
chemical compositions are listed in Tables 2 and 3. Among them, the hardness of the
material was measured by the Vickers hardness tester MHVS-30AT with a load of 0.5 kg
(4.9 N) for 10 s.

Table 2. Mechanical properties of Haynes 230.

Elasticity
Modulus (MPa)

Yield Strength
(MPa)

Tensile
Strength (MPa) Poisson Ratio Hardness (HV)

180 440 842 0.3 175

Table 3. Chemical compositions of Haynes 230 (wt%).

Elements Ni Cr W Mo Mn Si Al

Content 57 20–24 13–15 1.0–3.0 0.3–1.0 0.25–0.75 0.2–0.5

The cutting tool used for machining Haynes 230 is XOMX090308TR-M08 F40M coated
with PVD, and the cemented carbide is served as the matrix material. Its geometry is
shown in Table 4. To study the correlation between tool wear and surface roughness, two
cutting tools with a maximum flank wear of 100 µm were prepared in advance. A total
of four cutting tools were used in the experiment, including two fresh cutting tools and
two cutting tools with a maximum flank wear of 100 µm. In addition, considering the
structural constraints of the parts and the difference in machining requirements, cutting
parameters may need to be dynamically changed in the actual production process. Thus,
the milling experiments were carried out under different cutting parameter combinations
and tool wear levels. To facilitate machining, and considering that tool wear is not sensitive
to the change of cutting width, the value of cutting width was fixed at 15 mm. In addition,
according to the recommended parameters of the production department of the gas turbine
combustor shells and preliminary experiments, the variation ranges of the other cutting
parameters were determined with the cutting tool life as the evaluation standard, as shown
in Table 5.

Table 4. The geometry of the milling insert.

Number of
Cutting Edges

Rake
Angle

Clearance
Angle

Corner
Radius

Insert
Thickness Coating

2 10.5◦ 15◦ 0.8 mm 3.6 mm PVD

Table 5. Variation ranges of cutting parameters and tool wear during milling.

Cutting
Parameters Abbreviation Range Value Interval Units

Cutting speed Vc 50–90 10 m/min
Feed per tooth fz 0.05–0.1 0.01 mm/tooth
Cutting depth ap 0.2–0.4 0.05 mm

Tool wear VBmax 15–220 / µm
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During the machining process, the workpiece Haynes 230 with a size of 70 mm
× 60 mm × 25 mm was mounted on a three-component dynamometer (Kistler 9257B,
Switzerland), and the cutting force signals were collected with a sampling frequency of
5 kHz (Fx, Fy, and Fz), as shown in Figure 5a. End milling was adopted with each cutting
stroke of 70 mm. The cutting width was 15 mm, so a complete surface was milled four
times (60/15 = 4), as shown in Figure 5b.
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Figure 5. Experimental setup and data acquisition. (a) The actual diagram of experimental setup;
(b) The tool path of cutting; (c) The measurement position of surface topography.

After machining, the maximum wear width near the tool tip and the machined surface
topography were measured with the confocal laser scanning microscope (KEYENCE VK-
100, Japan). According to the ISO 3685, the typical pattern of tool flank wear is shown in
Figure 6a. The wear is relatively uniform in the middle part of the cutting edge involved in
cutting (area B), and VB is often utilized to represent the average flank wear width. The
maximum flank wear width is represented by VBmax. However, in our experiment, the
wear area of the flank wear is distributed in a circular arc, and there is no obvious uniform
wear area. Moreover, the maximum tool flank wear is often used as the criteria to define
the end of effective tool life [40]. Therefore, the maximum wear width near the tool tip was
measured, as shown in Figure 6b. Considering that the machined surface is not an ideal
regular surface, some adhered material particles, plowing grooves, and scratch marks may
exist in the machined surface [41]. In addition, tool wear was considered in the experiment,
and irregular vibration caused by the tool wear will also be reflected on the machined
surface. If two-dimensional surface roughness Ra is used as the evaluation index, the
surface roughness value at different positions of the machined surface may vary greatly. To
avoid randomness and accidental errors, the three-dimensional surface roughness Sa was
calculated from the scanned surface topography based on ISO 25178. The measurement
positions of the surface topography are shown in Figure 5c. To avoid the effect of vibration
upon tool entry and exit, the measurement positions are concentrated in the middle of the
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machined surface, and each measurement position is 10 mm apart. After determining the
measurement position, the target surface was scanned with the microscope equipped with
a laser to record the spatial distribution. In addition, to improve the measurement accuracy,
the surface topography at different positions under the same set of cutting parameters
was measured three times, and the averaged surface roughness value was taken as the
final value.
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Figure 6. The typical pattern and measurement of flank wear. (a) The typical pattern of the flank
wear; (b) The schematic diagram of flank wear measurement.

To judge the stability of the milling process and the rationality of the cutting parame-
ters, a modal test was carried out on our machining system. An MSC-1 impact hammer
with a 500 kgf sensor was used to generate stimulus signals. A YD 67 acceleration sensor
with a sensitivity of 0.38 PC/(m.s−2) was adhered to the selected position of the cutting tool
to obtain response signals, as shown in Figure 7. According to the frequency response func-
tion in the X and Y direction, the approximate natural frequency of the machine tool–tool
system was 2000 Hz.
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Figure 7. Modal test and frequency response function. (a) Modal test; (b) Frequency response
function of machining system.

Natural frequency plays an important role in judging whether chatter occurs during
machining. The dominant chatter frequency is always near the natural frequency of the
tool system and can be easily detected by the frequency spectrum. Therefore, the fast
Fourier transform (FFT) was performed on the cutting force signals. In general, the greater
the cutting depth, the more likely that chatter will occur. Thus, taking the cutting force
signals with a cutting speed of 90 m/min, a feed per tooth of 0.05 mm/tooth, a cutting
depth of 0.4 mm as an example, the frequency domain analysis was carried out, as shown
in Figure 8. The diameter of the tool holder used in our experiment was 20 mm, so the
spindle speed was n = 1432 r/min, and the spindle rotation frequency (domain frequency)
was f = n/60 = 23.87 Hz.
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Figure 8. Original cutting force signals and corresponding frequency spectrum. (a) Fx component
force in X direction; (b) The corresponding frequency spectrum of Fx; (c) Fy component force in Y
direction; (d) The corresponding frequency spectrum of Fy; (e) Fz component force in Z direction;
(f) The corresponding frequency spectrum of Fz.

From the frequency spectrum of cutting forces in three directions, the frequencies
mainly focus on domain frequency and its multiple frequency. No frequencies close to
natural frequency were observed. The results show that the milling process is stable, and
the selection of the cutting parameters is reasonable.

Due to the high sampling frequency of the cutting force, if the cutting force signals are
directly fed into the MTL model, the modeling process of the MTL model is time consuming.
Thus, effective features are calculated from the original cutting signals to preserve the main
characteristics of the cutting signals and reduce the input dimension of the MTL model.
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According to previous studies [42–44], a total of fourteen features were extracted, as shown
in Table 6.

Table 6. The extracted features and corresponding expressions.

Domain Extracted Features Expression

Time domain

Mean M = 1
N

N
∑

i=1
xi

Maximum (Max) and
Minimum (Min) Max = max(|xi|)&min(|xi|)

Peak-to-Peak (PP) PP = max(|xi|)−min(|xi|)

Variance (Var) Var = ∑N
i=1 (xi−M)2

N−1

Skewness (Skew)
Skew(X) =

N
∑

i=1
(xi−M)3

(N−1)s3

Kurtosis (Kurt)
Kurt =

N
∑

i=1
(xi−M)4

(N−1)s4

Energy (E) E = 1
N

N
∑

i=1
x2

i

Frequency domain

Amplitude of power spectrum
(Am) Am = max(Pi)

Mean of power spectrum (Me) Me = mean(Pi)

Variance of power spectrum
(VPS) VPS = 1

n−1

n
∑

i=1
(Pi −Me)2

Modified equivalent
bandwidth (MEB) MEB =

√
(

n
∑

i=1
( fi − f )

2
Pi)
/ n

∑
i=1

Pi

Frequency Band Energy (FBE) FBE =
n
∑

i=1
Pi

2

Mean Square Frequency
(MSF) MSF =

n
∑

i=1
fi

2Pi

/ n
∑

i=1
Pi

Note: xi represents the original cutting force data or reconstructed wavelet packet coefficients. s is the standard
deviation. fi is the frequency signals obtained by Fourier transform (FT); Pi is the power spectrum of fi.

Because of a large difference in the magnitudes of the calculated features, normaliza-
tion technique is needed to improve the performance of the MTL model. The Max–Min
normalization method is adopted to normalize the extracted features, and its expression is
shown as follows:

Feai
norm =

Feai −min(Feai)

max(Feai)−min(Feai)
(11)

where Feai represents the ith extracted feature.
To fully exploit the features hidden in the cutting force signals, wavelet packet trans-

form (WPT) was also performed on the cutting signals, and the schematic diagram of the
four-level WPT was shown in Figure 9. In the first level, A1 represents the approximation
coefficients, and D1 is the detail coefficients. Starting from the second level, if the initial
letter is A, it represents the approximation coefficients obtained by the decomposition of
the previous level. Similarly, if D is the initial letter, it represents the detail coefficients.
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Figure 9. Structure diagram of WPT.

Traditional wavelet decomposition only decomposes the low-frequency parts of the
cutting signals, while WPT decomposes both low- and high-frequency signals, which is
a more delicate feature extraction method. Previous research showed that the features
extracted from four-level WPT are more effective for surface roughness estimation [45].
Therefore, four-level WPT was performed on the original cutting force signals, and then,
decomposed wavelet packet coefficients were reconstructed. Taking the Fz component
force in the Z direction as an example, at a cutting speed of 70 mm/min, a feed per tooth of
0.08 mm/tooth, a cutting depth of 0.2 mm, the reconstructed wavelet packet coefficients
of the first four nodes are shown in Figure 10. The amplitude and overall trend of the
reconstructed wavelet packet coefficients in the first node are basically consistent with
the original cutting force signals. Starting from the second node, the waveforms of the
wavelet packet coefficients are closer to the noise signals. In addition, the power spectrum
of the first node contains only two main low-frequency components, whereas from the
second node, the power spectrum starts to become chaotic. This objectively shows that
the wavelet packet coefficients of the first node are related to the actual cutting process,
and the wavelet packet coefficients of the other nodes are mainly determined by the
cutting noise signals. Considering that the frequency of tooth passing and spindle rotation
belongs to low frequency, the frequency range of AAAA4 is 0~156.25 Hz according to
previous research [45], which contains the frequency of tooth passing and spindle rotation.
Therefore, time-domain features were extracted only from the reconstructed wavelet packet
coefficients AAAA4.
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Figure 10. The original cutting force and corresponding wavelet packet transform results of the
first four nodes. (a) The original cutting force signals; (b) The schematic diagram of cutting force;
(c) The reconstructed wavelet packet coefficients of the first node (d) The corresponding power
spectrum of the first node; (e) The reconstructed wavelet packet coefficients of the second node;
(f) The corresponding power spectrum of the second node; (g) The reconstructed wavelet packet
coefficients of the third node; (h) The corresponding power spectrum of the third node; (i) The
reconstructed wavelet packet coefficients of the fourth node; (j) The corresponding power spectrum
of the fourth node.

4. Results and Discussion
4.1. Correlation Analysis between Surface Roughness and Tool Wear

To determine the degree of correlation between surface roughness and tool wear, the
Pearson correlation coefficient (PCC) was calculated. In statistics, PCC is employed to
analytically evaluate the linear correlation between two continuous variables, and the
expression is given as follows:

PCC =
∑ (Sai − Sa)(VBmaxi −VBmax)√
(Sai − Sa)

2
(VBmaxi −VBmax)

2
(12)

where Sa is the mean value of surface roughness, and VBmax is the mean value of tool wear.
The value of PCC ranges from −1 to 1. The larger the absolute value of PCC, the stronger
the correlation between two continuous variables. The variation trend of surface roughness
versus tool wear is shown in Figure 11, and the value of PCC is 0.7022.
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The value of PCC indicates that the surface roughness and tool wear have a strong cor-
relation according to the judgment criteria. This theoretically illustrates that the proposed
MTL model based on hard parameter sharing is suitable for the simultaneous estimation of
surface roughness and tool wear.

4.2. The Selection of Activation Function for AE

The selection of the activation function has a significant influence on the performance
of AE. To improve the performance of the proposed MTL model, a new type of activation
function called SELU was introduced. Two different performance indicators were intro-
duced to quantitatively evaluate the efficiency of the proposed MTL model with DWA,
mainly including the mean absolute error (MAE) and root mean squared error (RMSE). The
expressions are shown as follows:

MAE = 1
N

N
∑

i=1

∣∣Vaexp,i −Vapre,i
∣∣

RMSE =
√

1
N ∑N

i=1 (Vaexp,i −Vapre,i)
2

(13)

where Vaexp,i denotes the actual surface roughness value or tool wear value, and Vapre,i
represents the estimated surface roughness value or tool wear value by the trained MTL
model. N is the sample size of the testing dataset. The detailed results with different
activation functions are shown in Figures 12 and 13, respectively.

As can be seen from Figures 12 and 13, for different variants of AE, the optimal
activation function is different. For the simultaneous prediction of multiple in-process
parameters in the machining field, the best activation function for the denoising auto-
encoder is SELU, while the optimal activation function for the contractive auto-encoder is
RELU. In addition, compared with the most commonly used activation functions Sigmoid
and RELU, when SDAE adopted the nonlinear function SELU as the activation function, the
estimation accuracy of surface roughness was improved by 31.25% and 19.71%, respectively.
Additionally, the estimation accuracy of tool wear was improved by 52.87% and 47.44%,
respectively, as shown in Figure 12. This can be explained, as SELU has self-normalization
and strong regularization ability [46]. The adverse effects caused by abnormal samples are
mitigated through the normalization ability of SELU. Furthermore, the negative semi-axis
of SELU is no longer set to 0, which solves the problem of nerve death in RELU [47]. It is
worth noting that when SCAE adopts SELU as the activation function, the performance
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of the model has a downward trend. This reflected that the performance of SELU will be
influenced by the loss function of the established neural network.
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4.3. The Selection of Mother Wavelet for WPT

The choice of mother wavelet is an important issue in WPT. Some criteria have been
proposed for selecting mother wavelet [42,48], such as maximum energy, minimum entropy,
permutation entropy, but each selection criterion results in different mother wavelets. To
determine the appropriate mother wavelet for WPT, five commonly used mother wavelets
were selected from each wavelet family (Daubechies, Symlet, Coiflet, and Bior) according
to previous studies [45,48,49], as shown in Table 7. A total of 20 mother wavelets were
selected to study their impact on the multi-task learning model. Then, the optimal mother
wavelet was determined by trial and error, and the performance of the MTL model under
different mother wavelets was shown in Figure 14.
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Table 7. Mother wavelet used in this research.

Type Family Order

Biorthogonal Biorthogonal bior1.3, bior2.2, bior3.3, bior4.4, bior5.5

Orthogonal

Daubechies db3, db4, db6, db8, db10

Coiflet coif1, coif2, coif3, coif4, coif5

Symlet sym2, sym3, sym4, sym6, sym8
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As can be seen from Figure 14, for our engineering problem, mother wavelet db3
is most suited for the MTL model, followed by db10. When mother wavelet coif4 is
implemented for WPT, the prediction accuracy of the surface roughness is the highest,
but the tool wear prediction accuracy is not ideal. Finally, mother wavelet db3 is used in
this study.

4.4. Performance Evaluation of the Proposed MTL Model

To verify the superiority and effectiveness of the proposed MTL model, several other
models are also used to predict surface roughness and tool wear, mainly including the sup-
port vector regression (SVR), kernel extreme learning machine (KELM), multi-task learning
model only with the stacked denoising auto-encoder as the shared layers (MTL_SDAE),
multi-task learning model only with the stacked contractive auto-encoder as the shared
layers (MTL_SCAE), and single-task learning model with the proposed parallel-stacked
auto-encoder (STL_PSAE).

SVR: As a conventional machine-learning model, it is often utilized to solve regres-
sion problems. The performance of SVR is sensitive to the selection of the kernel function
coefficient and the penalty coefficient. Therefore, an enhanced whale optimization algo-
rithm (EWOA) with an adaptive nonlinear position updating mechanism and differential
mutation operation is employed to optimize these two coefficients. The whale optimiza-
tion algorithm belongs to the swarm intelligence optimization algorithm, and its specific
implementation can be referred to in the literature [50].

KELM: KELM is a single hidden layer feed-forward neural network, firstly proposed
by Huang et al. [36]. Compared with the traditional neural network, KELM does not
require backpropagation to adjust the parameters, and it has a better convergence speed
and generalization performance. Similar to SVR, the performance of KELM is sensitive



Sensors 2022, 22, 4943 19 of 25

to the selection of the regularization parameter and the kernel parameter. Therefore, the
EWOA is also utilized to determine the optimal values of these two parameters.

MTL_SDAE and MTL_SCAE: To verify the superiority of the proposed PSAE struc-
ture, only the SDAE or SCAE are used as the shared layers. Other parts of the structure
and parameters of the models are the same as the proposed MTL model.

STL_PSAE: To verify the effectiveness of the multi-task learning structure, only one
task-specific layer is designed for surface roughness or tool wear prediction. Other parts of
the structure and parameters of the models are the same as the proposed MTL model.

In the current milling experiments, 114 sets of data were obtained. To verify the
efficiency of the proposed MTL model, 20% of the dataset was randomly selected, served as
the testing dataset, and the remaining data were utilized as the training dataset for training
the models. After the models’ training was finished, the testing dataset was implemented
to verify the performance of those trained models, and the surface roughness and tool wear
estimation results were shown in Figures 15 and 16, respectively.

As can be seen from Figures 15 and 16, both in surface roughness and tool wear, the per-
formance of the proposed MTL model outperforms SVR, KELM, MTL_SDAE, MTL_SCAE,
and STL_PSAE. The estimation results of the proposed MTL model are very close to the ac-
tual values, especially for the tool wear estimation results. According to the characteristics
of the multi-task learning framework, the results can be explained by the following three
reasons. Firstly, the common knowledge and complementary information of surface rough-
ness and tool wear are fully explored through the shared layers. Secondly, the multi-task
learning structure can be regarded as a penalty term, which makes the model less prone to
overfitting, leading to more stable and general prediction results [51]. Thirdly, the learning
rate of surface roughness and tool wear is adjusted dynamically with the DWA strategy. In
addition, the values of MAE and RMSE were calculated, as shown in Figure 17 and Table 8.

Among those models, the MAE and RMSE of the proposed MTL model are minimal,
which illustrates the efficiency of the proposed MTL model for simultaneously improv-
ing the prediction accuracy of multiple related tasks. As shown in Table 8, in terms of
MAE, compared with SVR, KELM, MTL_SDAE, MTL_SCAE, and STL_PSAE, the esti-
mation accuracy of surface roughness is improved by 30.82%, 16.67%, 14.06%, 26.17%,
and 16.67%, respectively. Meanwhile, the estimation accuracy of tool wear is improved
by 46.74%, 39.57%, 41.51%, 38.68%, and 39.57%, respectively. For the actual production
process, when the surface roughness of the machined surface exceeds production quality
requirements, it is also necessary to replace the cutting tool in time [52]. Therefore, the pro-
posed MTL model is more suitable for practical applications to monitor multiple in-process
parameters simultaneously.

Table 8. Performance analysis of different models.

Surface Roughness Tool Wear

MAE RMSE MAE RMSE

SVR 0.159 0.198 7.83 12.5
KELM 0.132 0.153 6.90 8.79

MTL_SDAE 0.128 0.158 7.13 8.95
MTL_SCAE 0.149 0.179 6.80 9.35
STL_PSAE 0.128 0.169 6.90 9.81

The proposed
MTL model 0.110 0.132 4.17 5.22

Note: Fonts in black indicate the best prediction results.
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5. Conclusions

For data-driven intelligent manufacturing, it is significant to monitor multiple in-
process parameters simultaneously. In this paper, a novel MTL model with shared layers
and two task-specific layers was proposed for the simultaneous prediction of surface
roughness and tool wear. The complementary information and common knowledge of
surface roughness and tool wear were fully mined and exploited through the established
MTL model. To learn deep features, a new unsupervised algorithm named the PSAE
network structure based on SDAE and SCAE was proposed as the shared layers. Moreover,
the DWA strategy was introduced to balance the learning rate of different tasks. Compared
with previous studies, surface roughness and tool wear were simultaneously predicted, and
the accuracy of both was significantly improved. Moreover, as an unsupervised algorithm,
PSAE achieved satisfactory results even under small-sample data.

The superiority and effectiveness of the proposed MTL model were verified with
milling experiments under different cutting parameter combinations and tool wear levels.
Taking MAE as the quantification indicator, compared with SVR, KELM, MTL_SDAE,
MTL_SCAE, and STL_PSAE, the prediction accuracy of surface roughness was improved
by 30.82%, 16.67%, 14.06%, 26.17%, and 16.67%, respectively. Meanwhile, the prediction
accuracy of tool wear was improved by 46.74%, 39.57%, 41.51%, 38.68%, and 39.57%,
respectively. The proposed MTL model is effective for solving the regression prediction
problems of multiple in-process parameters. In the future, multi-task learning can be
combined with transfer learning to solve the simultaneous estimation of multiple in-process
parameters under variable working conditions with limited data. Moreover, more effective
features related to tool wear and surface roughness can be extracted from multiple sensors.
The fusion of multi-source sensors is worth studying to improve prediction accuracy.
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Nomenclature

MTL Multi-task learning
PSAE Parallel-stacked auto-encoder
SDAE Stacked denoising auto-encoder
SCAE Stacked contractive auto-encoder
SELU Scaled exponential linear unit
DWA Dynamic weight averaging
PCC Pearson correlation coefficient
SVR Support vector regression
KELM Kernel extreme learning machine
Sa Three-dimensional surface roughness
VBmax Maximum flank wear width
STL Single-task learning
MAE Mean absolute error
RMSE Root mean squared error
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