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Abstract: High-accurate and real-time localization is the fundamental and challenging task for au-
tonomous driving in a dynamic traffic environment. This paper presents a coordinated positioning
strategy that is composed of semantic information and probabilistic data association, which improves
the accuracy of SLAM in dynamic traffic settings. First, the improved semantic segmentation network,
building on Fast-SCNN, uses the Res2net module instead of the Bottleneck in the global feature
extraction to further explore the multi-scale granular features. It achieves the balance between seg-
mentation accuracy and inference speed, leading to consistent performance gains on the coordinated
localization task of this paper. Second, a novel scene descriptor combining geometric, semantic, and
distributional information is proposed. These descriptors are made up of significant features and
their surroundings, which may be unique to a traffic scene, and are used to improve data association
quality. Finally, a probabilistic data association is created to find the best estimate using a maximum
measurement expectation model. This approach assigns semantic labels to landmarks observed in the
environment and is used to correct false negatives in data association. We have evaluated our system
with ORB-SLAM2 and DynaSLAM, the most advanced algorithms, to demonstrate its advantages.
On the KITTI dataset, the results reveal that our approach outperforms other methods in dynamic
traffic situations, especially in highly dynamic scenes, with sub-meter average accuracy.

Keywords: dynamic traffic environment; semantic information; probabilistic data association;
Fast-SCNN

1. Introduction

Real-time localization in the dynamic traffic environment is one of the essential tech-
nologies for unmanned autonomous vehicles (UAVs). The environment has high dynamic
characteristics with many participants and significant scene changes. Simultaneous localiza-
tion and mapping (SLAM) are often used to solve the problem of autonomous localization
in unknown environments. It determines the current location of the autonomous vehi-
cle based on the surrounding environment data observed by the sensors. The ability to
deal with dynamic situations and changes, according to [1], is a significant problem for
autonomous driving localization. Traditional SLAM systems make the assumption that
all objects in the environment would remain static. These SLAM systems use outlier fil-
tering approaches [2] and robust implicit penalties [3] to deal with dynamic environment
difficulties, while Kerr et al. [4] show that these methods are only robust in low dynamic
circumstances. The research of [5] also demonstrates that the topic of real-time dynamic
environment localization is still unsolved and that the existing technical level needs to be
improved further.

In recent years, deep learning has achieved great success in visual perception, and its
inference speed and perception accuracy have achieved consistent performance improve-
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ments in autonomous driving applications. VSLAM can be combined with deep learning
to jointly complete the real-time positioning task of autonomous vehicles. In this paper, the
semantic information obtained by deep learning is added to the visual SLAM system, and a
coordinated localization method of semantic information and probabilistic data association
is proposed to meet the challenge of real-time localization in dynamic traffic environments.
The improved semantic segmentation network extracts multi-scale granular features to
understand better and describe scene semantic information. To ensure the quality of data
association, semantic information is used to eliminate the interference of dynamic feature
points. However, strictly removing interference may overlook matching pairings in the
data connection to some extent. As a result, the expected measurement likelihood model is
used in this work, which can identify the best estimate for the optimization model when
the data is incomplete or contain unobserved latent data.

The main contributions of this paper can be summarized as follows:

(1) The improved semantic segmentation network, building on Fast-SCNN, uses the
Res2net module instead of the Bottleneck in the global feature extraction to further
explore the multi-scale granular features. It achieves the balance between segmen-
tation accuracy and inference speed, leading to consistent performance gains on the
coordinated localization task of this paper.

(2) The robust scene descriptor fuses geometric, semantic, and distributional information
to improve the quality of data association.

(3) The probabilistic data association is created to find the best estimate using a maximum
measurement expectation model. This approach assigns semantic labels to landmarks
observed in the environment and is used to correct false negatives in data association.

2. Related Word

Astonishing progress has been made in SLAM technology, enabling large-scale appli-
cations and witnessing the development of autonomous positioning. SLAM technology
can be divided into LIDAR SLAM and Visual SLAM according to different sensors. Since
LIDAR is expensive, low-cost cameras are more suitable for commercial promotion, and
visual SLAM has developed rapidly with computer vision in recent years. As early as 1999,
P.M. Newman [6] studied vision and SLAM-related issues and confirmed that visual SLAM
could learn from machine vision-related research results. People thought that only stereo
cameras could achieve visual SLAM for a long time until A.J. Davison [7] used monocular
cameras to complete SLAM, creating monocular visual SLAM. The PTAM framework, the
basic framework of visual SLAM, was proposed by Klein G. and Murray D. [8], which
comprises two threads of tracking and mapping. The Track thread uses FAST [9] to ex-
tract features and initially estimate the camera pose, and the Map thread uses the Bundle
Adjustment [10] algorithm to correct the pose estimation deviation. Raúl Mur-Artal et al.
proposed ORB-SLAM [11], which adds map initialization and closed-loop detection func-
tions to the PTAM framework, optimizes keyframes selection and map construction and
has good processing speed and map accuracy. The ORB-SLAM2 version [12] supports
monocular, binocular, and RGB-D interfaces. Moreover, the ORB-SLAM3 version [13] adds
IMU coupling and supports the fisheye camera, which can run stably in real-time in small
and large indoor and outdoor scenes. These classic SLAM systems show outstanding
performance in static or low-dynamic environments but cannot get rid of the interference
of dynamic objects in high-dynamic environments.

Visual SLAM in dynamic environments has become a hot research topic. The systems
can usually be divided into three methods to eliminate the effects of dynamic objects:
direct, feature point, and deep learning. Alcantarilla P.F. et al. [14] used dense disparity
maps and dense optical flow between consecutive frames to estimate dense 3D scene
flow, which they paired with motion likelihood to detect moving objects. This method
enhances localization and mapping outcomes for dense and dynamic situations by omitting
erroneous measurement information from the estimation. Jiyu Chenga et al. [15] employed
the optical flow of consecutive frames to differentiate dynamic feature points in an image.
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Dynamic feature points will be added to the feature map, and static feature points will
be entered into the visual SLAM system to ensure the accuracy of the posture estimate.
Forster C et al. [16] utilized a direct technique to monitor and triangulate high-gradient
pixels and motion information and a robust probabilistic depth estimation algorithm to
achieve greater accuracy in low-texture dynamic scenarios.

None of the above methods goes beyond traditional geometric reconstruction to im-
prove the system’s understanding of the environment. With the rapid development of
deep learning technology, more and more research attempts to introduce deep learning
into SLAM, and some work has achieved good results. These jobs can be roughly divided
into two categories. One category is deep learning methods to replace some modules in
traditional visual SLAM [17–20]. The method for extracting depth information from picture
pairs was proposed by Zbontar J. and LeCun Y. [17]. This method uses a convolutional
neural network to learn picture similarity and a binary classification dataset for stereo
matching to retrieve depth information. A lightweight point tracking system was devised
by DeTone D. et al. [18]. In this system, a neural network extracts the image’s important
2D points, and another network predicts the homography of these points and matches
them, boosting the tracking system’s real-time performance. Garg R. et al. [19] introduced
an unsupervised convolutional neural network for single-view depth prediction, which
addressed the shortcomings of manually annotated data. The network is comparable
to other state-of-the-art slams in terms of performance. Borna Besic and Abhinav Val-
ada [20] suggested an end-to-end deep learning architecture for filtering dynamic objects
from RGB-D sequences and fixing occlusion regions in dynamic objects. Specifically, the
generative adversarial network uses a gated loop feedback method to improve temporal
consistency by training the model from coarse to fine. The model also adjusts the depth
of the images, ensuring geometric consistency throughout the inpainting architecture’s
end-to-end training.

Another study adds semantic information to classic SLAM technology by combining
visual SLAM with deep learning [21–24]. DynaSLAM is a system proposed by Berta Bescos
et al. [21] that uses deep learning and multi-view geometry to recognize dynamic objects,
restore background frames, build static scene maps that reduce emotional interference, and
improve localization performance in dynamic situations. DynaSLAM II, according to Berta
Bescos et al. [22], combines instance semantic segmentation and ORB features with Object
Data Association to add dynamic objects to Bundle Adjustment to monitor dynamic items.
As a result, the environment around dynamic objects is better understood, and posture
prediction is improved. DS-SLAM [23] combines a semantic segmentation network with
motion consistency checking to decrease the influence of dynamic objects and generate
dense semantic glyph maps. Yuxiang Sun et al. [24] used motion segmentation to optimize
the loss function, resulting in more accurate results. Nikolay Atanasov et al. [25] employ
object detection to extract semantic information from sensors, create maps with semantic
labels, and solve the semantic localization problem using ensemble-based Bayesian filters
in polynomial time.

Precision localization in autonomous driving scenarios has gotten a lot of interest
from industry and research in recent years. Peiliang Li et al. [26] employed 2D boxes and
viewpoint classification to construct lightweight 3D box inference systems. The rough
initial position is immediately derived from the 2D frame in this work. The dynamic target
tracking is completed utilizing the BA optimization method combined with semantic and
features information. Wentao Cheng et al. [27] employed semantic information in the
route to address the autonomous vehicle localization challenge. The CenterNet network
is used to detect road semantic features, key points represent lane lines and road signs,
and semantic associations are used to optimize the overall state. Tong Qin et al. [28] devel-
oped a lightweight autonomous driving positioning framework that included vehicle-side
mapping, cloud-based maintenance, and user-side positioning. Learning-based semantic
segmentation is used to extract significant landmarks. The semantic landmarks are then
converted to 3D and registered on the local map. The cloud server will receive the local
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map. The data collected by different vehicles are combined by the cloud server, which
compresses the global semantic map. Finally, for localization, the compact map is delivered
to production vehicles.

In this paper, we examine the strengths and shortcomings of previous work and
present a joint localization solution for dynamic traffic conditions. The technique makes
heavy use of semantic priors and probabilistic data associations and a maximum expectation
measurement estimation algorithm to achieve good pose estimate accuracy in the presence
of unobserved latent data in varied dynamic traffic scenarios.

3. Method
3.1. System Overview

Figure 1 depicts a high-level overview of the system framework. To accomplish pixel-
level real-time semantic segmentation without losing accuracy, the video streams pass
through an enhanced Fast-SCNN network. The system can swiftly delete dynamic feature
points based on the semantic information received by the segmentation network to prevent
impacting the quality of subsequent data linkages. In dynamic traffic conditions, more
complex scene descriptors include geometric, semantic, and distributional information to
increase localization accuracy. A maximum expectation measurement approach is used
to predict the best camera posture and landmark locations by giving semantic labels to
observed landmarks in the backdrop using probabilistic data association.
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Figure 1. System overview, showing all the steps performed in semantic segmentation, scene
description, and probabilistic data association.

3.2. Dynamic Objects Segmentation and Culling

The fact that dynamic feature points participate in matching and contribute to local-
ization failure is one of the most common visual SLAM system flaws. Fast-SCNN [29],
a dual-branch encoder-decoder network, achieves pixel-wise segmentation of pixels in
real-time, allowing dynamic objects to be quickly distinguished without compromising
the SLAM system. At low resolution and full input resolution, Fast-deep SCNN’s and
shallow two-layer networks collect global context and learn spatial features, respectively.
The four modules of the Fast-SCNN network (shown in Figure 2) are all built using depth
wise separable convolutions, which means they have less network parameters and faster
segmentation, but they also have the problem of losing segmentation accuracy. This re-
search offers the Res2net module [30] to replace the Bottleneck for multi-scale feature
representation in order to address the problem that the global feature extraction of this
network is rough, and that the segmentation impact is not perfect. The difference between
Res2net and the Bottleneck block is shown in Figure 3.
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Conv2D DSConv Bottleneck PPF Upsample DWConv
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（a）bottleneck
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Y1 Y2 Y3 Y4

（b）Res2net

Figure 2. The Fast-SCNN network architecture consists of four parts: learning down sample, global
feature extraction, feature fusion, and classifier. The network performs real-time semantic segmenta-
tion on the target in the camera frame and determines its dynamic and static attributes according to
the category to which the pixel belongs.
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Figure 3. Compare the difference between (a) Bottleneck and (b) Res2net. Res2net represents more
detailed multi-scale features, conducive to learning complex correlations between object categories
and improving network prediction accuracy.

The Res2net module creates hierarchical residual connections within the residual block,
which may be put into the Fast-SCNN model’s backbone to achieve long-term performance
improvements. The Res2net module separates the input feature maps into numerous
groups, uses the previous group’s output map as the input for the next group, and then
uses the 1 × 1 filter to fuse the feature maps of all groups. This module improves the
receptive field of networks at all levels by extracting multi-scale features at the granularity
level. It also effectively simplifies the complexity of the correlation between learning object
categories and improves the accuracy of classification boundaries.

The modified Fast-SCNN network benefits from hierarchical residual connections,
which improve segmentation accuracy without adding too many network parameters. The
new network parameter is 1.27 million, which is only 0.16 million greater than the previous
one. This ensures the network’s applicability in dynamic traffic conditions. The network’s
performance is confirmed in experiment A, with segmentation accuracy 2.11 percent greater
than the original version and inference speed 216.3 fps, striking a solid balance between
inference speed and segmentation accuracy. Table 1 displays the segmented semantic labels,
which include the majority of the object categories seen in vibrant traffic scenes.
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Table 1. Categories of semantic segmentation.

Categories Properties Detail

human dynamic person, rider
vehicle dynamic car, truck, bus, bicycle, motorcycle, on-rails
animal dynamic dog, cat, bird, deer

construction static building, wall, guard-rail, fence, bridge, tunnel
object static pole, traffic-sign, traffic-light

flat static road, sidewalk, ground, parking, rail track
nature static vegetation, terrain

3.3. Scene Description Using Geometric and Semantic Information
3.3.1. Geometric Feature Descriptor

Given the real-time requirement of traffic scene localization, ORB [31] descriptor
has the characteristics of rotation invariance and low computational cost and can quickly
extract and match scene features. FAST corners are pulled on multiple scales of the Gaussian
pyramid, and feature points at different levels are removed according to the allocation
strategy of each layer. Equation (1) is the expression of the allocation strategy for each layer:

Ni =
N(1− s2)((s)2)

i

(1− (s2)m)
(1)

where N is the total number of extracted feature points, s is the scaling factor of the image
pyramid, and m is the number of image pyramid layers.

The selection of feature points follows the principle: the pixel gray value changes
beyond the threshold, and the semantic label in the corner of the static object. The following
formula is used to express the selection criteria:

m(x, y) = ωij

√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (2)

θ(x, y) = ωijtan−1
[

L(x + 1, y)− L(x− 1, y)
L(x, y + 1)− L(x, y− 1)

]
(3)

where ωij is the semantic label weight of the candidate feature point, the emotional type
weight is set to 0, and the static target’s weight increases. The weights of the categories
construction and object have been increased by three times, while the weights of the other
categories have remained the same. The method is easy and effective for extracting static
feature points, increasing the ratio of target feature points dispersed across construction
and object categories, and boosting the quality of subsequent data association and ultimate
positioning accuracy.

The feature points are concentrated in the local part of the image, and the effect of
the descriptor will be very unsatisfactory. To this end, the quadtree algorithm [32] can
uniformize the feature points. The rendering of the final feature point extraction is shown in
Figure 4. The ORB descriptor determines the orientation of feature points through intensity
centroids and uses binary strings to describe the pixel variation information of feature
points and their neighborhoods.

3.3.2. Semantic Feature Descriptor

Descriptors based on visual geometric features cannot accurately describe dynamic
traffic scenes due to visible aliasing or changes in visual appearance. Incorporating semantic
information and distribution information into descriptors can improve the above problems.
Descriptors that fuse semantic and geometric features tradeoff uniqueness and robustness.
It is not affected by perspective transformation and can also solve the difficulty of matching
multiple feature points with the same category between different frames.
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Figure 4. (a) Feature point map extracted from the original ORB descriptor; (b) Semantic segmentation
renderings; (c) Feature point map for improved ORB descriptor extraction. After our improvement,
the extracted feature points are no longer distributed on dynamic objects but more concentrated on
objects with object categories such as poles and traffic lights.

The semantic segmentation network extracts high-level semantic information at dif-
ferent levels and becomes the original data for constructing semantic information. The
improved Fast-SCNN above shows the competitiveness of pixel segmentation, and the
following formula represents the extracted semantic information:

SK = (Sc
k, Sl

k, Ss
k) (4)

where Sk represents the semantic result of the kth segmentation, characterized by the
category Sc

k, the position Sl
k, and the confidence Ss

k of the pixel point.
Static objects commonly found in traffic environments can provide robust descriptive

features, so semantic context descriptors with inherently static features are generated in
this work. The points with dramatic changes in semantics, that is, the feature points where
the category of pixel points changes, are selected as the key points of semantic information
description, and Equation (5) is used to express the selection of key points. The construction
of the semantic descriptor is to aggregate the features of key points and the distribution
features from the neighborhood and tell them in the form of a matrix. Figure 5 shows the
construction process of the semantic descriptor.

SD(P, P′) = ∑ sgn(P(m,n) − P′(m,n)) P, P′ ∈ Sc
k(m,n) (5)

where sgn() is a sign function. When the pixel types in the semantic descriptor of the key
point are the same, it is recorded as 1. Otherwise, it is 0.
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Figure 5. Our proposed semantic descriptor is based on semantic information and its distribution.
The semantic segmentation network extracts high-level semantic information at different levels and
selects the feature points with the most significant changes in semantic information as key points. The
semantic information distribution of its neighborhood is analyzed for key points, and the semantic
descriptors are represented in matrix form.

3.4. Probabilistic Data Association

Data association aims to establish a mapping of sensor observations {Zt}T
t=1 to road

sign positions {lm}M
m=1 and vehicle attitude {Xt}T

t=1 relation. The traditional SLAM pose
estimation optimization is divided into two steps, firstly estimating the data association,
and then substituting the data association estimation results into the pose and road sign
estimation. This leads to data association results that greatly affect the accuracy of pose
estimation optimization. To this end, probabilistic data association methods add semantic
labels to observed landmarks in the environment, improving the problem of data asso-
ciation accuracy. Figure 6 is an illustrative overview of a probabilistic data association
method. The maximum expected measurement likelihood model [33] considers the overall
distribution of data associations and poses estimation as an overall optimization problem.
This method finds the maximum estimate for an optimized model when data associations
are incomplete or when there are unobserved latent data. The overall optimization model
is specifically expressed as:

Xi+1, Li+1 = arg max
X,L

ED

[
log P(Z|X, L, D)|Xi, Li, Z

]
(6)

where Xi, Li represent the initial sensor attitude and road sign estimations, respectively.
ED represents all the predicted values associated with the data, which can be warped as:

Xi+1, Li+1 = arg max
X,L

∑
D∈D̂

P(D|Xi, Li, Z ) log P(Z|X, L, D ) (7)

The estimated value will change drastically with the camera pose, landmark position,
and landmark category, traverse the possibilities of all data associations under Xi, Li, and
Z until an optimal global value maximizes the overall weight. The expected and observed
values are obtained from the specific data-related expected value and the observed value
corresponding to the overall expected maximum value. At this time, these values are the
optimal solution combination for the system. The above Equation (7) can be transformed:

Xi+1, Li+1 = arg max
X,L

K

∑
k=1

n

∑
j=1

ωkj
log P( zk

∣∣∣xαk, lβk ) (8)

where ωkj
is the data correlation value corresponding to the overall expected maximum

value, and xαk, lβk are the equivalent sensor observation values at this moment.
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Figure 6. The illustrative overview of our proposed probabilistic data association approach. Top:
Semantically segmented multiple objects with the same semantic label, and these objects are oc-
cluded. Bottom: Finding the optimal combination based on the current expected measurement
likelihood model.

4. Experiments

Experiments are performed on this scheme on the KITTI dataset [34] to test its
performance in dynamic traffic environments. All investigations are implemented on
Ubuntu18.04, NVIDIA-Linux-x_64-460.84, and CUDA11.1 development tools. The im-
proved Fast-SCNN network is implemented on the PyTorch deep learning framework
using Python, and the rest is implemented in C++ on the ROS operating system [35].

4.1. Evaluation of Models for Extracting Semantic Information

The upgraded Fast-SCNN network extracts picture semantic information, which is
used to eliminate dynamic feature points and build semantic descriptors. The original
Fast-SCNN network implementation is used in the trials, and the Bottleneck module is
replaced by Res2Net to improve semantic segmentation accuracy. On two NVIDIA TITAN
Xp GPUs, the network is trained with Batch Size 256 mini-batches. With an initial value of
0.001, the learning rate is dynamically set. The momentum coefficient was initially fixed to
0.5, but over several epochs, it was gradually annealed to 0.9.

This research compares the performance of the upgraded Fast-SCNN network and
the original grid on the KITTI semantic segmentation dataset [36] to demonstrate its
effectiveness. All experiments are conducted on laboratory workstations developed with
the PyTorch deep learning framework to maintain constant experimental circumstances.
IoU Class, IoU Category, and FPS are used to assess the model’s performance.

IoU =
TP

TP + FP + FN
(9)

where TP represents the number of positive examples predicted by the model and the actual
number of positive samples, FP represents the number of negative examples predicted
by the model but positive examples, and FN represents the number of negative examples
predicted by the model but positive examples. The calculation formulas of the IoU Class
and IoU Category are similar, and the difference is that the objects are different.

It can be seen from Table 2 that the performance of the improved method in the IoU
Class and IoU Category is 1.25% and 2.11% higher than the original method, respectively.
Although the processing speed is slightly inferior to the original network, it also meets the
real-time segmentation requirements in dynamic traffic scenarios. It achieves an effective
balance between inference speed and segmentation accuracy.
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Table 2. Comparing the performance of our proposed improved Fast-SCNN network and the original
network on the KITTI semantic segmentation test set.

Model IoU Class (%) IoU Category (%) Input Size FPS (fps)

Fast-SCNN 62.64 84.17 1242 × 375 265.8
Ours 63.89 86.28 1242 × 375 216.3

4.2. Evaluation of Positioning Accuracy under KITTI Dataset

In the experiments, the image pyramid is set to m = 8, s = 1/1.2. In the feature point
extraction stage, FAST-9 is chosen, and the threshold is set low enough to obtain more
corner points. Harris corner filter selects appropriate corners as feature points. When
generating the semantic descriptor, its size is specified to 21 × 21 and the threshold to 55,
which has the best performance.

The localization performance is comprehensively evaluated on the KITTI dataset to
verify the effectiveness and superiority of the association of scene descriptors and proba-
bilistic data [25]. The KITTI odometer benchmark consists of 22 stereo sequences containing
real-world data collected in urban, rural, and highway scenes. According to the degree of
scene dynamics, comparative experiments are performed on static sequences (KITTI 00),
low dynamic sequences (KITTI 04, 05), and high dynamic sequences (KITTI 01, 09).

Considering the errors caused by other factors unrelated to the algorithm, the evalua-
tion indicators include relative pose error (RPE) and absolute trajectory error (ATE). RPE
is used to evaluate the system’s anti-drift performance, while ATE assesses the system’s
comprehensive positioning capability. The findings of the root mean square error (RMSE)
comparison between systems are shown in Table 3. The less the root mean square error, the
more accurate the posture estimation is and the better the system’s overall performance is.
The best accuracy is indicated in black. It can be seen from the table that compared with
other systems, this scheme has the best performance in all dynamic sequences; especially
in high dynamic sequences, the performance is greatly improved. The effect is very similar
to the state-of-the-art ORB-SLAM2 system in static sequences.

Table 3. Comparison of camera translation trajectory errors under KITTI datasets.

Sequence
ORB-SLAM2 DynaSLAM Ours

RPE
%

RPE
◦/100 m

ATE
m

RPE
%

RPE
◦/100 m

ATE
m

RPE
%

RPE
◦/100 m

ATE
m

KITTI 00 0.7 0.25 1.3 0.74 0.26 1.4 0.71 0.25 1.37
KITTI 01 1.39 0.21 10.4 1.57 0.22 9.4 1.15 0.16 8.80
KITTI 02 0.76 0.23 5.7 0.80 0.24 6.7 0.69 0.24 5.54
KITTI 03 0.71 0.18 0.6 0.69 0.18 0.6 0.69 0.18 0.63
KITTI 04 0.48 0.13 0.2 0.45 0.09 0.21 0.43 0.11 0.19
KITTI 05 0.40 0.16 0.8 0.40 0.16 0.8 0.37 0.16 0.68
KITTI 06 0.51 0.15 0.8 0.50 0.17 0.8 0.48 0.15 0.80
KITTI 07 0.50 0.28 0.5 0.52 0.29 0.5 0.50 0.25 0.44
KITTI 08 1.05 0.32 3.6 1.05 0.32 3.5 1.07 0.32 3.49
KITTI 09 0.87 0.27 3.2 0.93 0.29 1.6 0.88 0.26 1.47
KITTI 10 0.60 0.27 1.0 0.67 0.32 1.2 0.58 0.27 1.02

The tracking trajectories in 3D space are converted to 2D space and plotted in the same
graph as the ground truth to express the experimental comparison results more intuitively.
The performance of the three algorithms in the static sequence (KITTI 00) environment is
not much different, as shown by the visualization results of the camera trajectory error
in Figure 7. The estimated value of the camera trajectory is not much different from the
ground truth, and they are all relatively precise.
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Figure 7. Comparison of camera translation trajectory errors in static sequence. (a–c) are the perfor-
mance of ORB-SLAM2, DynaSLAM and our method on KITTI 00, respectively. Blue indicates the
smallest trajectory error, followed by green, and red indicates the largest trajectory error.

The absolute trajectory error of the system under a low dynamic sequence is shown
in Figure 8. This method can overcome the interference of dynamic objects and has
the best performance in ground truth trajectory estimation. However, this advantage
is not prominent in low dynamic scenarios. The reason may be due to the (RANSAC)
outlier detection method used by ORB-SLAM2 and its resistance to a certain degree of
active interference.
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Figure 8. Comparison of camera translation trajectory errors in low-dynamic sequence.

As shown in Figure 9, in sequences with high dynamics and large scene changes, the
outlier detection method used by ORB-SLAM2 is no longer applicable. It is affected by
dynamic objects, and its estimated camera trajectory has a large difference from the ground
truth, and even serious errors in some places. At the same time, the performance of this
system is far superior to that of DynaSLAM. Although the system’s accuracy is slightly
lower than DynaSLAM at certain moments, the error is quickly fixed, and the RMSE decline
is significantly smaller than DynaSLAM. This could be due to the difficulty of matching the
characteristics of low-texture regions with too comparable scenes. The maximum expected
measurement estimation model could predict the system’s excellent pose value in the case
of insufficient data association.
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5. Conclusions

For changing traffic settings, research-based on-scene descriptors and probabilistic
data association give precise localization solutions. The new Fast-SCNN network recovers
multi-scale features at a higher granularity level and extracts semantic information more
quickly without sacrificing spatial information. The approach overcomes the negative im-
pacts of dynamic targets on a broad scale using semantic information and prior knowledge.
More complex scene descriptors aggregate geometric information, semantic information,
and distribution information, which improves the accuracy of feature point matching.
When there is unobserved potential data, the probabilistic data association approach finds
the best-estimated value for the optimization model to achieve accurate positioning in
dynamic traffic circumstances.

Comparative experiments with other excellent SLAM systems show that this method
can achieve the highest accuracy in high and low dynamic traffic scenes. Although this
research has made some progress in robustness and accuracy, there is still a long way
to go. On the one hand, follow-up work strengthens research on precise localization in
dynamic traffic environments with significant visual changes. It increases the applicability
of SLAM systems in more challenging scenarios. On the other hand, the technology will be
tested and fine-tuned in real traffic environments to improve the system’s ability to handle
dynamic objects.
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