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Abstract: Cognitive biometrics is an emerging branch of biometric technology. Recent research
has demonstrated great potential for using cognitive biometrics in versatile applications, including
biometric recognition and cognitive and emotional state recognition. There is a major need to
summarize the latest developments in this field. Existing surveys have mainly focused on a small
subset of cognitive biometric modalities, such as EEG and ECG. This article provides a comprehensive
review of cognitive biometrics, covering all the major biosignal modalities and applications. A
taxonomy is designed to structure the corresponding knowledge and guide the survey from signal
acquisition and pre-processing to representation learning and pattern recognition. We provide a
unified view of the methodological advances in these four aspects across various biosignals and
applications, facilitating interdisciplinary research and knowledge transfer across fields. Furthermore,
this article discusses open research directions in cognitive biometrics and proposes future prospects
for developing reliable and secure cognitive biometric systems.

Keywords: biometrics; biological signal; classification; deep learning; feature extraction; pattern
recognition; representation learning

1. Introduction

Cognitive biometrics is an emerging branch of biometric technology complement-
ing traditional biometric modalities that relies on physiological characteristics (what we
possess) and behavioral characteristics (how we behave) by further incorporating ‘the
way we think, feel, and respond’. We define the scope of cognitive biometrics as those
based on biosignals from the brain, heart, and autonomic nervous systems, since these
biosignals carry information of cognitive and/or emotional processing, reflecting the cog-
nitive and emotional characteristics of a person. Unique physiological traits in terms of
anatomical structures [1,2], intrinsic behavioral traits in terms of the thinking manner and
preferences [3], and cognitive and emotional characteristics [4] together form the basis of
cognitive biometrics.

Cognitive biometrics based on biosignals offer advantages in terms of privacy compli-
ance [5], robustness against circumvention, intrinsic liveness detection, and user protection.
First, these biosignals are results of cerebral, cardiac, or nervous system activity. They are
internal traits that are not exposed to the public and many features are non-volitional, which
means that the user cannot deliberately divulge their identifiers [4]. Moreover, with cur-
rent sensing technology, it is unlikely that these biosignals could be captured covertly
or remotely without the user’s conscious engagement, making cognitive biometrics less
prone to spoofing attacks [6]. In addition, cognitive biometrics inherently support liveness
detection and continuous applications, which protects the users and reduces the possibility
of presentation attacks using spoof artifacts or lifeless bodyparts. Furthermore, cognitive
biometrics is potentially cancellable, since biosignals are not static. For example, brain
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biometrics based on event-related potentials allow replacing a compromised biometric
identifier with a new one that is elicited by a different stimulus or event [7]. This feature is
not possessed by traditional biometric modalities such as fingerprint, palmprint, and iris.
These advantages pave the way for new cognitive biometrics-based applications and have
inspired a large body of publications in recent years. It is necessary to review the latest
research results and point out future development directions.

To clarify our motivations and differentiate our survey from others, we provide a
summary of the related works. Campisi et al. [1] investigated the characteristics and neu-
rophysiological evidence of biometrics based on brain waves (i.e., EEG) and reviewed
the elicitation protocols, acquisition, and recognition methods for EEG-based biometric
systems. Gui et al. [7] continued the survey on brain biometrics, extending the review to
the acquisition, collection, processing, feature extraction, and classification of EEG-based
biometric systems. Similar surveys were also conducted for specific application scenar-
ios, including EEG-based user verification [8] and EEG-based subject identification [9].
Rathore et al. [2] reviewed heart biometrics and discussed the challenges in various cardiac
domains and prospectives for developing heart biometric systems. These surveys have
mainly focused on a small subset of cognitive biometric modalities without considering the
similarities and connections among the modalities. Blasco et al. [10] reviewed biometrics
based on a user’s physiological and behavioral traits collected with wearable devices. Maio-
rana [11] continued the survey on wearable devices-based biometrics with a categorization
of biometric traits. This is an overview of the maturity of wearable biometrics research,
not a comprehensive review of the recognition systems. Cognitive biometrics overlaps
with wearable device-based biometrics from the perspective of data acquisition, since some
biosignals for cognitive biometrics can be captured by wearable devices, such as ECG and
PPG. However, they are different topics.

In summary, cognitive biometrics is attracting increasing attention from both aca-
demics and industry, but there is so far no comprehensive survey on cognitive biometrics
that breaks the barriers among different biosignals and application scenarios. Figure 1
illustrates the typical structure of a cognitive biometric recognition system. This survey
covers each component. Meanwhile, recent years have witnessed the progress of advanced
machine learning models for processing biological signals in cognitive biometric recog-
nition systems. The latest research output, especially the generative models for learning
representations and various deep learning models for pattern recognition across different
biosignals and applications, should be systematically reviewed. This study is a comprehen-
sive review of cognitive biometrics to facilitate interdisciplinary research and knowledge
transfer across fields, with specific contributions as follows:

• A comprehensive review on cognitive biometrics is presented, which covers all the
major biosignal modalities and applications;

• A taxonomy is designed to structure the corresponding knowledge of cognitive bio-
metrics and guide the survey;

• We provide a unified view of the methodological advances in signal acquisition, pre-
processing, representation learning, and pattern recognition over various biosignals
and applications. In particular, the latest developments of generative learning models
and deep learning models in cognitive biometric recognition are included;

• A summary of the representative publicly available databases for cognitive biometrics
is presented.

• We identify open issues and suggest future research directions for cognitive biometrics
in machine learning, security, fusion, and persistence.

The remaining contents are arranged as follows. Section 2 proposes a taxonomy of
cognitive biometrics and summarizes the application scenarios. Section 3 reviews the
biosignals for cognitive biometrics and their acquisition and preprocessing approaches.
A list of publicly available databases for cognitive biometric research is also summarized.
Sections 4 and 5 review the representation learning and pattern recognition in cognitive
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biometrics, respectively. Section 6 summarizes the open research directions, followed by a
conclusion in Section 7.

Figure 1. A typical cognitive biometric recognition system

2. Taxonomy of Cognitive Biometrics and the Applications

In this section, we propose a taxonomy for cognitive biometrics, which consists
of four aspects: biosignal acquisition, biosignal pre-processing, representation learning,
and pattern recognition, as illustrated in Figure 2. The following sections will review each
aspect with an emphasis on representation learning and pattern recognition.

Figure 2. A taxonomy of cognitive biometrics.

Due to the nature of cognitive biometrics, the application of cognitive biometrics is not
limited to personal identification and verification, but also includes a wide range of scenar-
ios from human-computer interaction to adaptive control and decision support. Figure 3
depicts the application scenarios of cognitive biometrics, the corresponding recognition
tasks, and the connections between them.
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Figure 3. Application scenarios of cognitive biometrics and recognition tasks.

The application scenarios are summarized into the following groups:

• Security management. This is the main function of cognitive biometrics, and the
application scenarios include user login, access control, secure telecommuting and
e-learning, and biocryptographic systems [12];

• Human–computer interaction. Effective human–machine interaction requires that
the machine to adapt its behavior according to the user’s cognitive and emotional
states, behaviors, performance, and other personal information including identity [13].
Cognitive biometrics support dynamic recognition of a user’s identity and cognitive
and emotional states [14] and, therefore, are important tools for human–machine
interaction in social robots, human–machine systems, and human–swarm teaming
systems [15];

• Adaptive control. In closed-loop human–machine adaptive systems, the adaptive
control aims to automatically update system parameters by associating the user and
system states, so that the user and system can work together effectively and har-
moniously. Cognitive biometrics provides informative and dynamic human state
indicators, which are the basis for the adaptive control module to make decisions.
Such adaptive systems are used in automatic driving, air traffic control, advanced
cockpits, and other augmented cognition systems where recognition of the user’s cog-
nitive workload [16,17], attention [18], fatigue [19], and engagement states is achieved
through biosignals of cognitive biometrics (e.g., EEG, ECG, PPG, EOG, and EMG) [20];

• Decision and health aids. Other application scenarios include decision support and
education assistance. In such applications, cognitive biometrics are used to estimate
the user’s motivation, emotional state, and attention level to support the decision-
making process or improve the learning concentration [18]. Cognitive biometrics based
on biosignals from the brain and heart also possess inherent functions of monitoring
the brain and heart health conditions and diseases.

Although the application scenarios vary, the core function of the cognitive biomet-
rics module can be summarized as recognizing a person’s identity or a person’s cogni-
tive/emotional state.

• Person identification. This answers the question ‘who is the person?’ by solving a one-
to-N comparison problem. A person identification system takes a person’s biometric
data and compares it to a database of possible candidates in order to decide the identity
of the person. The performance of person identification systems is evaluated with the
correct recognition rate. In addition, when considering persons not included in the
database, the false positive identification rate is used to measure how good a system
is at identifying unregistered persons.

• Verification (authentication). This answers the question ‘are you who you claim you
are?’ by solving a one-to-one comparison problem. An authentication system takes a
user’s biometric data and claimed identity and verifies whether the user is who that
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person claims to be. Typical evaluation metrics for verification are false non-match rate
(FNMR) and false match rate (FMR), which measure the error rate of a genuine user
being falsely rejected as an impostor and the error rate of an impostor being falsely
accepted as a genuine user, respectively. Furthermore, researchers often generate
detection error trade-off (DET) or receiver operating characteristic (ROC) plots to
visualize the change of FNMR and FMR at different thresholds, from which the equal
error rate (EER) is obtained.

• Emotion recognition. Correct recognition of a user’s emotional state plays an im-
portant role in human–computer interaction. Since emotions are complex psycho-
physiological processes that are associated with thoughts, feelings, and behavioral
responses, it is natural to use cognitive biometric signals for emotion recognition.
Existing studies usually classify emotional states into two classes (e.g., positive and
negative), three classes (e.g., positive, neutral, and negative), or more (happy, sad,
neutral, and fear) [14]. Audio and visual stimuli, such as movie clips, are often used
to evoke emotions in the subjects, and the collected data are labeled according to the
stimuli presented and the subjects’ self-assessments.

• Cognitive workload assessment. Cognitive workload describes the level of mental
resources utilized by a person in performing a task. Depending on the tasks, there can
be different levels, usually from three to five [16,17].

• Cognitive fatigue (vigilance) estimation. A human presents different vigilance states,
such as awake, tired, and drowsy [19]. A vigilance estimation system aims to recognize
the user’s vigilance state and to detect fatigue or drowsiness. Real-time vigilance
estimation plays an important role in improving driving safety and facilitating effective
human–machine teaming.

• Attention recognition. The attention state of a human can change while performing
a task; an attention recognition system aims to detect the change and recognize the
attention level (e.g., low, neutral, high) [18]. Other recognition tasks include motivation
detection, engagement assessment, and disease detection.

From a computer scientist’s perspective, cognitive and emotional state recognition is
essentially a feature extraction and classification problem. Therefore, the performance eval-
uation of such recognition systems uses typical classification evaluation metrics, including
accuracy, precision, recall, F1 Score, etc. ANOVA analysis is also used in vigilance estima-
tion. The class labels are usually obtained through self-reporting or are determined by the
tasks. In addition, it is worth mentioning that there are three types of methods to assess
cognitive states (workload, vigilance, and attention) of users, including subjective measures
(which are in the form of questionnaires), performance measures (such as error rate, reac-
tion speed, and task completion time), and physiological measures such as EEG/ERP, EOG,
EMA, EDA, heart rate, and heart rate variability. The physiological measures provided
by cognitive biometric signals are superior to the others as they are objective, implicit,
continuous, and able to be integrated into the system in an unobtrusive manner.

In different applications of cognitive biometrics, although the targets are different,
the recognition systems share a similar structure as presented in the taxonomy in Figure 2.
This taxonomy integrates knowledge and technologies from different domains, signals,
and application scenarios for cognitive biometrics.

3. Biosignal Acquisition and Pre-Processing for Cognitive Biometrics
3.1. Biosignal Acquisition

To provide insights into how the acquisition and characteristics of different biosignals
are related, we categorize biosignals of cognitive biometrics considering the following five
dimensions: (1) sensing technique, which is related to the sensor and signal acquisition
device; (2) origin, this is, the original body part that generates the biosignal; (3) sensing
location, which describes where the sensors are placed on the body; (4) physical signal,
which indicates the kind of physical signal that the sensor reads; and (5) elicitation protocol,
indicating whether the recorded signal is a result of a spontaneous activity or evoked by
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internal tasks or external stimulation. Table 1 lists biosignals of cognitive biometrics in
existing studies based on these five dimensions. We only consider sensing technologies
that are lightweight, non-invasive, and suitable for practical application scenarios.

Table 1. Biosignals for cognitive biometrics.

Sensing Technique Origin Sensing Location Physical Signal Elicitation Protocol

EEG Brain Scalp Electrical Resting/Internal/External
ECG Heart Chest Electrical Resting
PPG Heart Finger Optical Resting
PCG Heart Chest Acoustic Resting
SCG Heart Chest Mechanical Resting
EMG Muscle Arm Electrical Resting
EDA Skin Fingertip Electrical Resting/External
EOG Eye Around eyes Electrical Internal/External

Resting: spontaneous activity. Internal stimulation: using internal or volitional tasks to elicit particular responses.
External stimulation: using external sensory stimuli to elicit particular responses.

3.1.1. Brain Signals

Brain signals used in cognitive biometrics are measured by electroencephalograph
(EEG). EEG captures the electrical activity of the cortex from the scalp by placing elec-
trodes at specific locations defined by relevant standards, for example, the international
10–20 system. For biometric applications, EEG signals are collected while the user is en-
gaged in a particular task, where the task impacts the nature of the signal elicited. We
classify the signal elicitation protocols used in EEG biometrics into resting-state protocols,
internal stimulation protocols, and external stimulation protocols. The resting-state pro-
tocol requires users to rest with their eyes open or closed [21,22]. The recorded signal is
continuous and reflects the spontaneous activity of the brain. The internal stimulation
protocol elicits the desired brain responses associated with higher cognitive processing
using internal or volitional tasks, such as pass-thoughts, motor imagery, imagining singing,
math calculation, and other mental tasks [3]. External stimulation protocols, on the other
hand, utilize external sensory stimuli, including visual, auditory, and somatosensory
stimuli [23–26], to evoke activity in particular brain functional areas. In internal and
external stimulation protocols, users usually need to repeat the task multiple times or
receive repetitive sensory stimulation. Then EEG signals recorded in multiple trials are
segmented and averaged to generate an event-related potential (ERP), which reflects the
brain activity elicited by the adopted mental task or stimulus. This type of method is often
referred to as ERP biometrics [4,27]. The resting-state protocol provides continuous data
and ease of deployment, while the internal and external stimulation protocols provide
higher signal-to-noise ratios and intra-subject stability, as the user’s mental state is under
experimental control.

3.1.2. Heart Signals

Heart activity can be measured from the chest and finger using different sensing
techniques, including electrocardiography (ECG), photoplethysmography (PPG), phonocar-
diography (PCG), and seismocardiography (SCG). Specifically, ECG captures the electrical
activity of the heart using electrodes placed on specific locations along the chest area.
The primary features of ECG signals are the P wave, QRS complex, and T wave. Extraction
of these features requires localizing the fiducial points of ECG signals. PPG measures the
reflected light from the fingertip, earlobe, or forehead using a pulse oximeter. The signal
reflects variations in the volumetric blood flow in the peripheral circulation, in which the
alternating component provides heartbeat information. The collected data is a timeseries
composed of periodic waves. PCG captures the acoustic signals generated by the heart
during cardiac activity using integrated microphones. The collected data is a timeseries
that contains two components, S1 and S2, in each cardiac cycle. These two components
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correspond to the closure of the atrioventricular valve and the semilunar valve, respectively,
and they exhibit different frequency domain characteristics and duration. SCG records
the mechanical vibrations induced by cardiac activity and heartbeat from the chest using
accelerometers. SCG provides an inexpensive and convenient method to acquire cardiac
activity, but its signal quality is lower compared to ECG due to exposure to ambient noise
and motion artifacts during data collection.

3.1.3. Muscle, Skin, Eye-Related Signals

Electromyography (EMG) measures the electrical activity produced by skeletal mus-
cles. EMG signals reflect the user’s muscle activation level and movement, and are often
used for gesture recognition, device control, and as an indicator to detect muscle fatigue in
addition to biometric applications. Electrodermal activity (EDA) reflects skin conductance,
which varies with the sweating condition of the skin. EDA contains two components,
in which the phasic component in response to a distinct stimulus is called an event-related
electrodermal response, and EDRs without an observable external stimulus are referred to
as nonspecific EDRs. EDA offers a convenient way to detect changes in autonomic nervous
system activity, which is associated with the user’s emotional and cognitive states. Elec-
trooculography (EOG) captures the potential changes induced in eye movements between
two electrodes attached around the eye, either horizontally or vertically. The collected data
is a timeseries in which the direction of eye movement can be identified from different
patterns in the signal. In addition to EOG, eye-tracking glasses and remote eye-trackers
are also used to assess users’ behaviors and cognitive states in human–computer interface
systems [28], especially for driver attention detection. The pupil response collected through
eye-tracking devices is associated with the user’s concentration or emotional state [29].
EMG, EDA, EOG, and other eye movement signals are often used as auxiliary modules of
multi-modal biometric systems to improve overall performance and robustness [14,30].

3.2. Publicly Available Databases and Biosignal Pre-Processing

The representative databases of the above-mentioned physiological signals for cog-
nitive biometrics are summarized in Table 2. Although in many studies researchers have
collected private data to evaluate their developed methods, the publicly available databases
offer a better platform to compare different methods. These representative databases are
selected since they provide data with a sufficient sample size from a relatively large number
of subjects in well-controlled protocols or conditions. Some of them provide recordings of
multiple sessions, an important condition for cross-session evaluation.

The acquisition of different cognitive biosignals employs sensors and devices with
different hardware configurations, sensing locations, sampling rates, and other specifica-
tions. Signal pre-processing is a necessary step to reduce noise and artifacts accumulated
during data collection in order to better extract true biometric features from the collected
biosignals. We summarize a unified pre-processing framework for major biosignals used
for cognitive biometrics (such as EEG and ECG), as in Figure 4. However, it is worth
mentioning that the specifics of signal pre-processing depend on the type of the signal.
For example, the pre-processing of EDA involves specific steps, including separating the
tonic and phasic components, identifying the onset and offset points, and estimating the
trend of the phase component [31]. In addition, the choice of pre-processing technical de-
tails depends on the signal acquisition equipment, configuration, and the actual application
scenario. Selecting appropriate pre-processing techniques requires taking into account
the signal acquisition equipment, configurations, data acquisition protocol and condition,
and application scenarios. In the following study of this survey, we will look into the
details of the sensors, devices, acquisition configurations, and pre-processing techniques
for cognitive biometric systems.
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Table 2. Public databases for cognitive biometrics.

Database Signal (#Ch.) Device/Sensor Sampling rt. Protocol/Condition #Subj. #Sess. Year

SEED-IV EEG (62) ESI NeuroScan † 200 Hz Movie video 15 3 2013

BED EEG (14) Emotiv EPOC+ ‡ 256 Hz
Resting, affective stimuli,
mathematical computation,
visual stimuli

21 3 2021

BCI2008 GrazA EEG (22), EOG (3) Unclear 250 Hz Resting, motor imagery 9 2 2008
BCI2008 GrazB EEG (3), EOG(3) Unclear 250 Hz Resting, motor imagery 9 5 2008
MMIDB EEG (64) BCI2000 ‡ 160 Hz Resting, motor imagery 109 1 2009
Alcoholism EEG (64) Unclear 256 Hz Picture stimuli 122 1 1999

DEAP
EEG (32), EOG (4),
EMG (4), EDA (1)

Biosemi ActiveTwo † 512 Hz Music video 32 1 2012

Keirn and Aunon EEG (6), EOG (1) Unclear 250 Hz

Resting, problem solving,
geometric figure rotation,
visual counting,
mental letter composing

7 1 1989

BCI CSU
EEG (32), EOG (4) Biosemi ActiveTwo † 1024 Hz

Resting, P300,
letter counting

9 1 2012EEG (8) g.Tec g.GAMMAsys † 256 Hz
EEG (19) Neuropulse Mindset ‡ 512 Hz

MAHNOB-HCI
EEG (32),
ECG, EDA

Biosemi ActiveTwo † 1024 Hz Movie video 27 1 2012

DREAMER
EEG (14)
ECG (4)

Emotiv EPOC+ ‡

Shimmer ‡
128
256 Hz

Movie video 23 1 2018

European ST-T ECG (2) Unclear 250 Hz Ambulatory ECG 79 1 2009
MIT-BIH ECG (2) Unclear 360 Hz Ambulatory ECG 47 1 2005
ECG-ID ECG (1) Unclear 500 Hz Resting 90 1–20 2014

CYBHi
ECG (2)
EDA

Dry electrode ‡

Ag/AgCl ‡ 1 kHz Undisclosed 125+ 2 2014

UofTBD ECG (1) Vernier ECG sensor ‡ 200 Hz Postures and motions 100 1–6 Unclear

PTB ECG (14) Wet electrode ‡ 1 kHz Clinical condition
290
(52 healthy)

1 2004

AHA ECG (2) Wet electrode ‡ 250 Hz Ambulatory ECG 155 1 2003

DRIVEDB
ECG (1), EMG (1),
EDA (1)

Wet electrode ‡ 496 Hz Driving condition 17 1 2008

BioSec. PPG PPG (1) Plux pulse sensor ‡ n.a. Office environment 100, 170 2 2020
† medical-grade devices. ‡ consumer-grade devices.

For multimodal approaches, synchronization between events/stimuli and the evo-
lution of biometric signals is a critical issue. Synchronization is essential because EEG,
ECG, or EDA acquisition devices may operate at different sampling rates, and these dif-
ferent data streams should be aligned in time. Event-based synchronization [32,33] is
often adopted in multi-model cognitive biometric systems, where each data stream is
time-stamped and aligned with a local clock or stream sequence number. Available tools
for time-synchronization and networking include the lab streaming layer [34], which is a
system designed for the unified collection of multiple data streams from different sensors
and devices, and between programs and computers.
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Figure 4. Biosignal pre-processing for cognitive biometrics.

4. Representation Learning in Cognitive Biometrics

Feature extraction, or representation learning, is a critical step in recognition systems.
It constructs informative and discriminative derived representations from a set of biosignal
data to facilitate the subsequent classification and generalization steps and provide better
interpretations. The quality, robustness, and generalizability of the representations directly
affect the recognition performance and reliability of the systems. This section examines
representations used in cognitive biometric recognition systems.

4.1. Handcrafted Representations

Handcrafted representations refer to features manually engineered based on domain
knowledge of the signal. Considering different characteristics of signals, handcrafted
features can be extracted by the following six groups of methods.

4.1.1. Domain-Specific Methods

This type of method relies on domain knowledge of the specific signals. Typical
representations include those based on fiducial points of the signals; particular peaks,
intervals, and other morphological characteristics related to fiducial points; peaks, and in-
tervals. They reflect the time-domain information of the signal in terms of shape, amplitude,
and morphological structure. For cardiac signals (ECG, PPG, PCG, and SCG), the fiducial
points are detected to segment a normal rhythm into multiple entities (e.g., P wave, QRS
complex, and T wave for ECG signals), from which morphological features relative to the
peak, interval, amplitude, slope, angle, and power ratio are extracted [35–39]. Domain-
specific representations for EOG signals include the energy features that describe the signal
amplitude, peak position features, slope features that characterizes the degree of sharpness,
and the derivative features that represent energy and position features for the first deriva-
tive signals [40]. For the brain signals, domain-specific representations are usually used
for ERP and VEP signals and contain particular peaks and valleys in response to certain
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sensory stimuli [24] and specific waveforms that are time-locked to elaborately designed
events [4,27]. The extraction of domain-specific features relies on peak/fiducial point
detection and wave segmentation algorithms. For example, the Pan–Tompkins algorithm
is widely used for real-time location of QRS complexes from ECG signals [41]. It uses a
series of filters for noise signals, emphasizes the QRS contribution by a derivative filter
and squaring, and finally applies adaptive thresholds to detect the peaks of the filtered
signal. Other peak detection methods are proposed based on the Shannon energy envelope,
Hilbert-transform (HT), and moving average (MA) filtering [42]. For EEG signals, the seg-
mentation of event-related potentials and peaks also relies on the human inspection and
the signal acquisition protocols [4,24].

4.1.2. Descriptive Statistics

In cognitive biometrics, descriptive statistics are generally applicable to extract features
from all signals and are not limited to specific fields. The most widely used statistical
representations can be divided into three categories, which describe the central tendency
(mean, median, and mode) [43–45], dispersion (variance, standard deviation, range, and
quartiles) [43,45,46], and shape (skewness and kurtosis) of the data [43], respectively. Other
statistical representations include the maximum and minimum value of a segment, and the
number and rate of zero-crossings (a zero-crossing is a point where the signal waveform
intercepts the zero or mean value) [43,47]. In these works, descriptive statistical features
are either extracted from the signal timeseries or calculated on top of other feature vectors
(such as power spectral density features).

4.1.3. Time-Series Models

An autoregressive (AR) model describes the time-varying processes in signals by spec-
ifying that the value of the timeseries at a certain time depends linearly on its own previous
values and on a stochastic term (white noise). AR coefficients are popular EEG features that
capture time-dependency information in the signal [21,48–52]. There are two main ways
for fitting an AR model to an EEG signal, namely the Yule–Walker method and the Burg
method. The Yule–Walker method solves the problem using the auto-correlation function,
which is estimated by the covariance function of the signal. It requires calculating matrix
inversion and the whole computation process needs to be repeated with a different order
p. The Burg method recursively computes the parameters of AR(p) using parameters of
AR(p− 1) based on the Levinson recursion while estimating the parameters by minimizing
the forward and backward prediction errors at the same time. It is more efficient and there-
fore more popular for feature extraction in EEG [53]. For the Berg method, the reflection
coefficients are also used as features in addition to the AR coefficients [53–56]. Extension of
the AR model includes the multivariate AR (mAR) model, where the value of each variable
at a certain time is predicted from the historical values of the same series and those of all
other timeseries. Parameters of the mAR model are potentially more informative features
for EEG than the AR parameters, as they incorporate physiologically relevant connections
between signals from different channels [57].

4.1.4. Information Theory and Complexity

Entropy, a key measure in information theory, quantifies the amount of uncertainty
involved in the value of a random variable. It is an effective tool to evaluate the dynamic
complexity of biological signals, especially for EEG, ECG, and EDA. For different subjects,
their signals may contain complex dynamics at different levels; therefore, transforming the
information encoded in the dynamics into appropriate entropy features with discriminatory
powers is one way to achieve cognitive biometrics. Entropy is also an effective biomarker
that has been widely used in clinical applications such as seizure detection in epileptic
patients [58]. The entropy estimation methods widely used in cognitive biometrics are
approximate entropy (ApEn) [59], sample entropy (SampEn) [60,61], and fuzzy entropy
(FuzzEn) [62]. ApEn describes the unpredictability or randomness of a finite length signal
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by embedding the signal into a phase space and estimating the increment rate of patterns
within a predefined value when the embedding dimension is increased by one. SampEn
improves ApEn by being less dependent on the length of the timeseries. FuzzEn extends
the hard and precise similarity boundary in previous entropy measures into a smooth
and contiguous boundary by replacing the Heaviside function with a fuzzy membership
function (e.g., the family of exponential function) [63,64]. This extension makes FuzzEn a
better fit for biological data, since the uncertainty at the boundaries between classes can
provide a shade of ambiguity. Existing findings also suggest that FuzzEn is potentially a
more reliable entropy measure for physiological data compared to non-fuzzy measures,
especially when the signal is short in length and contaminated with noise [58]. In addition,
differential entropy, which extends the idea of Shannon entropy, has been demonstrated
to be an effective feature for EEG emotion recognition [14,65]. Moreover, in some studies,
entropy is estimated after decomposing signals into multiple frequency bands or mode
functions (e.g., empirical mode decomposition) to gain finer representations [58,60,64].
Other complexity measures such as correlation dimension and Lyapunov exponents are
proposed for ECG signals [66].

4.1.5. Frequency-Based Methods

Power spectral density (PSD) reveals the power distribution of signals in the frequency
domain and is one of the most popular methods for feature extraction in cognitive bio-
metrics. To estimate the power spectrum, two types of approaches are proposed, namely,
non-parametric approaches based on discrete Fourier transform (DFT) and fast Fourier
transform (FFT) [22,59,67], and parametric approaches based on AR modeling using the
Yule–Walker or Burg method [68]. Typical PSD-based representations for EEG include
raw PSD values [22,59,67] and their derivatives such as the Welch’s averaged modified
periodogram [48,53,69,70], the spectral distribution [71], variance of spectral power, re-
gion of the power spectrum [59,72], spectral power and energy of selected frequency
bands [48,73,74], and power ratio of selected bands [75]. The selection of frequency bands
is often achieved by power spectrum analysis or digital bandpass filters (e.g., Butterworth
filter) [48,73]. The short-time Fourier transform (STFT) extends the Fourier transform
to reveal how the frequency content of physiological signals changes over time, thereby
incorporating non-stationary characteristics. A Hamming window is usually used to di-
vide the signal into segments where DFT is computed on each segment. The resulting
STFT coefficients are important time-frequency representations for EEG, ECG, SCG, PCG,
and EDA signals [76–80]. Continuous wavelet transform (CWT) also captures temporal
and spectral information simultaneously [81]. It operates convolution on the input data
timeseries with a set of functions generated by the mother wavelet. Compared to STFT,
CWT offers variable time-frequency resolution preserving time shifts and scaling, and
provides a flexible choice of the wavelet functions, among which the Morlet/Gabor wavelet
is preferred for being closely related to human perception [82]. Discrete wavelet trans-
form (DWT) with Haar wavelets and Daubechies wavelets are popular for EEG and ECG
signals [59,83–86]. DWT differs from CWT in how the scale parameter is discretized. It
provides sparse representations for cognitive biometric signals without high redundancy,
as in CWT and STFT. Therefore, the coefficients of DWT are usually directly extracted
into a feature vector for classification with conventional classifiers such as support vector
machines, hidden Markov models, and discriminant analysis [83,87]. In contrast, STFT
and CWT can be used to create two-dimensional time–frequency representations (often
referred to as spectrograms and scalograms, respectively), which are then fed into convo-
lution neural networks [76,77,88,89]. Wavelet packet decomposition (WPD) generalizes
the DWT in preserving the detail coefficients, which capture the information lost between
two successive approximation coefficients in each filtering step. Therefore, WPD offers
a finer and potentially more robust representation than DWT [84]. The decomposition
level varies in different studies; however, it is often set in the range of 3 to 5 to leverage
between time and frequency domain information [17,84,86]. This is because the coefficients
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of a higher decomposition level reflect more frequency details; however, they retain less
temporal information. Besides coefficients of the sub-bands, statistics and entropy features
are extracted on top of the power or energy of the sub-bands [59,82,85,86,90]. In addition,
coefficients of discrete cosine transform (DCT), autocorrelation-DCT, and Mel-frequency
cepstrum (MFC) also demonstrate strong potential in providing multiple frequency-based
features for EEG and ECG signals [35,36,55]. Existing studies also apply empirical mode
decomposition (EMD) to decompose a signal into intrinsic mode functions [91] and use
Hilbert–Huang transform (HHT) to obtain instantaneous frequency as features [92].

4.1.6. Connectivity-Based Methods

Connectivity is defined to measure the relationship between biosignals of various
regions/channels and has been widely used in the representation of EEG. In these studies,
connectivity is calculated on multivariate signals using different statistical and effective
metrics, as summarized in Table 3, where each metric measures the interaction from a
particular perspective and defines a peculiar subjective connectivity network. Some stud-
ies directly concatenate these raw connectivity values into a feature vector for biometric
recognition [21,22,25,93], while others extract node centrality features (such as degree and
eigenvector centrality) from connectivity graphs [94,95]. A recent study [96] examines
the impact of connectivity metrics and graph features (six nodal features and six global
features) on EEG biometric identification. This analysis suggests that phase synchronization
would bring more robust connectivity estimation than time-domain connectivity metrics,
and a proper combination of connectivity metrics and features is necessary to achieve good
identification accuracy and inter-state stability. In addition, deep learning models such
as convolution neural networks and graph convolution neural networks are proposed to
learn intrinsic structural representations from the EEG connectivity graphs [97,98]. Notably,
an important aspect of connectivity-based methods is thresholding the functional connec-
tivity matrices to reduce spurious connections, thereby restoring meaningful topological
properties of the graphs [99].

Table 3. Connectivity metrics.

Connectivity Metrics Perspectives Domains Value Ranges Study

Pearson’s correlation Linear correlation Time [−1, 1] [21,93,96,98]
Granger causality Causal relationship Time [0, ∞) [25]
Mutual information Information theory Time [0, ∞) [21]
Spectral coherence Coherence between spectral components Frequency [−1, 1] [22]
Phase locking value Variability of relative phase Phase [0, 1] [93,95–98]
Phase lag index Interdependence of relative phase Phase [0, 1] [93,94,96]
Phase synchronization index Deviation of relative phase Phase [0, 1] [96,100]

4.2. Automatic Representations

Representation learning allows the automatic extraction of the representations needed
for a recognition task, which offers a different perspective to feature engineering with
explicit algorithms. It can be achieved in either a supervised or an unsupervised manner,
as detailed below.

4.2.1. Automatic Representations via Supervised Learning

(1.1) Linear Discriminant Analysis (LDA): Given a training set, the LDA finds a linear
combination of features that separates different classes by maximizing the ratio of the
inter-class to intra-class scatter matrices. The resultant combinations can be viewed as
a new representation of the input data with a lower-dimension while preserving class
separability. In cognitive biometrics, LDA is often used as a classifier, and more commonly,
for feature transformation to reduce the dimensionality and improve separation before clas-
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sification [68]. In these studies, LDA representations are obtained from a linear projection
of the input signals and other features that are extracted by frequency-based methods (e.g.,
STFT in conjunction with DCT) [101] and PCA (e.g., the Eigenbrain projections) [72].

(1.2) Common Spatial Pattern (CSP): The CSP is a spatial filtering method that encodes
the most discriminative spatial information of signals by maximizing the ratio of variance
of two classes. Let C1, C2 ∈ RN×T denote two classes of signals; the CSP filters F are
obtained by

F = arg max
F

‖ FC1 ‖2

‖ FC2 ‖2 , (1)

where the rows of F are the spatial filters. An original signal s can then be represented
by projecting into the filter space by ŝ = Fs. CSP filtering is a popular method used in
the cognitive biometrics domain for two-class classification tasks such as motor imagery
classification and emotion recognition [102–104].

(1.3) Neural Networks: In cognitive biometrics, neural networks seek a mapping
function between the input signals and class labels. They are a powerful tool for modeling
biosignals, especially when the underlying relationship is complex and non-linear. In a
multi-layer neural network, a representation of the input is learned at the hidden layers,
which is subsequently used for classification at the output layer. In other words, the rep-
resentations are data-driven and classification task-oriented, and therefore often achieve
good classification results. Since the representations learned through neural networks are
embedded in the classification task and are part of the classification model, we will discuss
them in Section 5.

4.2.2. Automatic Representations via Unsupervised Learning

(2.1) Statistical Methods: Principal component analysis (PCA) is widely used for pre-
processing, feature extraction, and dimensionality reduction for EEG, ECG, EMG, and EOG
signals [86]. Since EEG and cardiac signals often comprise a high degree of correlation
between signals or features, PCA serves as a good tool to reduce signal or feature dimen-
sions while retaining the most useful information [46,72,82,105]. Independent component
analysis (ICA) is aimed at decomposing a multivariate source signal into multiple indepen-
dent components by optimizing the statistical independence of the estimated components.
ICA and its variants are widely used for removing artifacts from desired signals [106,107],
and extracting and separating EEG, ECG, and EOG signals [108,109].

(2.2) Clustering-based Methods: Clustering is a process of dividing data into clus-
ters such that each cluster holds the most similar data instances. Clustering algorithms
used in cognitive biometric recognition include K-means [110–112], fuzzy K-means [113],
and Gaussian mixture models (GMMs) [114]. K-means uses the data mean to update the
center of each cluster and perform deterministic assignments. It is fast to compute, but is
sensitive to outliers and only works well for certain data structures (e.g., convex data).
GMMs generate multivariate Gaussian distributions and provide probabilistic assignments
to clusters, therefore offering more flexibility than K-means. Fuzzy K-means extends K-
means so that each instance has a fuzzy degree of belonging to each cluster. In the field
of cognitive biometrics, clustering algorithms are used to obtain the inherent structure
information in biosignals such as EEG and ECG [110], to detect waves from cardiac signals
(e.g., detecting QRS-complexes from ECG) [111], and to pre-classify or transform extracted
features to facilitate classification [112,114]. For example, Orhan et al. adopted K-means
to cluster wavelet coefficient features for each frequency band and used the probability
distributions as inputs to a neural network classifier [112]. In another study, a GMM was
used as a fusion function to transform the multi-dimensional EEG representations extracted
from an auto-encoder into a single representation that reflects the underlying statistical
characteristics [114].

(2.3) Restricted Boltzmann Machines (RBMs): RBMs are a generative stochastic net-
work architecture containing two layers: a visible layer and a hidden layer. The visible
layer aims to represent the observable data, while the hidden layer captures the probability
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distribution of the features. In cognitive biometric recognition, RBMs have been success-
fully used for feature extraction and classification as a basic network block in deep belief
networks [115–117]. In addition, RBMs are integrated with other neural network architec-
ture for feature extraction and fusion. For example, RBMs are combined with autoencoders
to learn and fuse representations from EEG and eye movement signals collectively for
emotion recognition [14,115]. The results demonstrated that the extracted representations
contain complementary information from internal cognitive states and external subcon-
scious behaviors and hence enhance emotion recognition performance. Lu et al. [116]
proposed a deep learning scheme based on RBM to generate a new representation of EEG
features and achieve further performance improvement for motor imagery classification.
Li et al. [117] proposed a multi-layer network ERP-NET based on the multi-channel tempo-
ral RBM to learn complex spatial and temporal patterns from single-trial ERP signals. They
demonstrated that the ERP-NET is able to discover new ERP patterns and that the patterns
learned by the ERP-NET are discriminative ERP components in which the ERP signals are
properly characterized.

(2.4) Autoencoders (AE): AEs are an effective tool that learn data representation for
cognitive biometric recognition from biosignals in an unsupervised manner. A basic AE
structure consists of two neural network components, named the encoder and the decoder.
The encoder maps data to feature space while the decoder produces a reconstruction
of data by mapping the hidden code from feature space to data space. It is trained by
minimizing a reconstruction loss function, L(x, x′) = ||x − x′||2, where x and x′ are the
input and corresponding reconstruction by the autoencoder. Classical AEs are widely
used for feature learning and dimension reduction (data compression) in ERP signal
classification [118], EEG-based epilepsy detection [119], and emotion recognition tasks [120].
In these studies, other neural network constructs such as CNNs and LSTM are integrated
into the AE architecture to gain finer representations that encode spatial and temporal
information [118,119]. Moreover, Chai et al. [120] combined an AE network with a subspace
alignment solution to constrain the distribution discrepancy, and their results demonstrated
that this combination effectively improved emotion recognition accuracy. In addition, AEs
with different training strategies (i.e., channel-wise or without differentiating the channel)
have been analyzed for feature learning and visualization of short-time multi-channel EEG
recording [121]. Autoencoders with a gate-control regularization are also proposed for EEG
missing channel reconstruction [122].

Sparse AE and contractive AE are two variants that apply regularization constraints
to the classical AE. Specifically, the sparse AE adds a non-linear sparsity term, αKL(ρ||ρ̂,
to encourage the sparsity of the learned representation, where KL(ρ||ρ̂ is the Kullback–
Leibler divergence (relative entropy). The contractive AE penalizes the sensitivity of the
representation with respect to the input using a regularization term, β||J(x)||2F, which
is based on the Frobenius norm of the Jacobian matrix of the encoder. A recent study
combined CNN and sparse AE for EEG feature extraction in an emotion recognition task,
in which the sparse AE was used to reduce redundancy from representations learned by the
CNN [123]. Sparse AE provides a simple interpretation of the input data, while contractive
AE makes the mapping from the input vector to the representation converge with higher
probability [124]. Both of them improve the classification performance. Denoising AEs
enhance the robustness of classic AEs to deal with noisy input by learning a denoising
function [125]. The core idea is to add noises to the training data and force the AE to recover
the noise-free version of the training data. Accordingly, the loss function for optimization
in denoising AE is updated as LD(x, x̃′) = ||x − x̃′||2, where x̃ is the corrupted input of
x by a preliminary stochastic mapping (Gaussian, salt and pepper, or masking) and x̃′ is
the reconstructed data. Denoising AEs exploit the statistical dependencies inherent in the
input training data and eliminate the adverse effects of the noisy inputs corrupted in a
stochastic manner. Existing findings suggested that denoising AEs are more effective than
classical AEs in learning representations from biosignals, especially when these signals are
contaminated with noise and artifacts [126]. Denoising AEs with sparse regularization are
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also proposed for EEG feature extraction to gain robust and sparse representations [127].
This method shows great potential in analyzing non-stationary epileptic EEG signals.

Variational AE introduces regularization of the latent space to encode the input as a
distribution over the latent space instead of encoding it as a single point, as in previously
discussed AEs. Since biosignals in cognitive biometrics usually follow certain statistical
distributions, variational AE is more effective in learning matching representations that
generate a distribution in the latent space with similar statistical properties to the input
data [114]. A Gaussian distribution is often used in practical implementations, so that the
loss function can be written as: LV(x, x′) = L(x, x′) + KL(N(µ, σ), N(0, 1)), where the regu-
larization term pushes the distribution generated by the latent representations to approach
a standard normal distribution. Variational AEs have been widely used for learning rep-
resentations from biosignals to enhance biometric recognition performance [114,128–130].
In these studies, the variational AEs were integrated with other constructs such as au-
toregressive layers [114] and graph neural networks [128] to capture dynamics from EEG
timeseries for diverse classification tasks [114] and to learn graph embedding from EEG
functional connectivity input [128]. Latent representations learned by variational AEs also
show promising results in EEG-based emotion recognition [130] and ERP-based driver–
vehicle interface systems [129].

(2.5) Generative Adversarial Networks (GANs): The GAN, proposed by Goodfel-
low et al. [131], is a framework to teach a deep learning model to learn the distribution of
training data and thus to generate new data from that same distribution. A GAN is made
of two neural networks, a generator and a discriminator. These two networks emulate a
competition, where the generator takes a random vector sampled from a noise distribution
as input and tries to generate samples as ‘real’ as possible, and the discriminator takes
the generated samples as input and tries to distinguish them from the real samples. Dur-
ing training, the goal of the generator is to generate fakes to maximize the classification
error of the discriminator while the goal of the discriminator is to beat the generator by
identifying the generated samples. This zero-sum game is modeled as an optimization
problem by:

min
G

max
D

L(D, G), (2)

where
L(D, G) = Ex∼pdata(x)[log(D(x))]−Ex∼pz(z)[1− log(D(G(z)))]. (3)

D and G are the generator and discriminator, respectively. x is the training data, pdata(x) is
the distribution of training data, and z is a noise following a distribution pz(z). Training
of GAN is done in alternation between the discriminator and the generator to minimize
the generator loss and maximize the discriminator loss. Independent back-propagation
procedures are applied to both networks. GANs have the ability to learn any kind of
data distribution in an unsupervised manner and have been successfully used in various
domains such as computer vision, natural language processing, time-series synthesis, and
semantic segmentation [132,133].

In the field of cognitive biometrics, GAN has been widely used for learning robust
representation [134–136] and for data synthesis and dataset augmentation [81,137–146].
In these studies, the generator in the GAN framework was designed by different neural
networks considering the characteristics of the input signals. For example, Abdelfat-
tah et al. [142] adopted a recurrent neural network for the generator to learn the statistical
characteristics of the time dependencies of input EEG signals. Zhang et al. [137] proposed a
multi-generator conditional Wasserstein GAN method to generate a high-quality artificial
EEG signal that covers a more comprehensive distribution of real data. The adoption of the
multiple generators and the inclusion of label-based constraints enable the generators to
learn various features and to learn the data patterns of real data from various perspectives.
Panwar et al. [138] proposed a conditional Wasserstein GAN model with gradient penalty
(cWGAN-GP) to synthesize EEG data for different cognitive events. By using a deconvolu-
tion layer with bilinear weights initialization and a two-step upsampling technique, this
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model addresses several EEG signal modeling challenges, including frequency artifacts and
training instability. Hartmann et al. [139] proposed an EEG-GAN to generate naturalistic
EEG signals by gradually relaxing the gradient constraint in WGAN-GP to increase the
training stability. Similar cWGAN frameworks were also used to generate realistic EEG
data in differential entropy form for data augmentation to enhance emotion recognition
accuracy [140,141]. Moreover, cWGAN has been adopted in a driver sleepiness detection
system to augment EOG data for training an LSTM classifier [81]. Zhu et al. [144] used a
GAN composed of a bidirectional LSTM and CNN to generate synthetic ECG data. De-
bie et al. [134] proposed a privacy-preserving GAN model to generate and classify EEG
data. It was trained under a differential privacy model to enhance the data privacy level by
limiting queries of data from artificial trials that could identify the real participants from
their EEG signals. Fu et al. [135] designed a conditional GAN to map EEG data associated
with emotions to coarse facial expression images, and proposed a training strategy to
achieve fine-grained estimation and visualization of EEG-based emotion. Caoley et al. [147]
proposed a GAN-based deep EEG super-resolution approach to produce high spatial resolu-
tion EEG data from low-resolution samples. It can generate channel-wise up-sampled data
to effectively interpolate numerous missing channels and thus increase the information
contained in EEG signals. By adopting a modified sequence of convolutional layers, it
allows EEG data to be processed across channels. Golany et al. [136] proposed a simGAN
that incorporates the dynamics of ECG signals into the generative process for ECG classifi-
cation. Specifically, it uses a system of ordinary differential equations to represent heart
dynamics and incorporates this ODE system into the optimization process of the GAN
to create biologically plausible ECG training examples. The ECG simulation knowledge
learned by the simGAN has been proved to improve ECG classification. Shin et al. [146]
proposed a GAN that uses ECG as input to generate photoplethysmogram (PPG). This
study demonstrates that a GAN can be a potential tool to generate synthetic biosignals for
data augmentation purposes in low-resource settings. Other generative adversarial models
that could be useful for cognitive biometric data processing include the adversarial AE,
which uses a GAN to perform variational inference for an AE.

4.3. Discussions

A summary and discussion of the handcrafted and automatic representations de-
scribed in this section are as follows.

4.3.1. The Handcrafted Representations

Domain-specific representations are intuitive, possessing physical meanings that can
be interpreted by domain experts, and thus can be comprehended by a broad range of
audiences. However, the extraction of these features requires precise localization of fiducial
points or peaks in the signals and signal segmentation and alignment, which further
increases the complexity. In addition, these features are sensitive to amplitude changes and
noise, and their performance depends largely on good signal pre-processing.

Descriptive statistics-based representations reflect time-domain information in terms
of the amplitude and shape of the signals from a statistical perspective. They are computa-
tionally efficient and universal to all signals, with no dependency on their domains. These
representations can be affected by the length of signal segments; therefore, defining an
optimal segment length is usually required to enhance performance. Another disadvantage
is that they are susceptible to noise and amplitude fluctuations. For example, variations
in the signal acquisition environment, equipment, and sensor placement, as well as hu-
man artifacts can easily introduce errors in the raw signals, which could lead to unstable
representations or invalidate an established one.

Representations based on AR models capture the dependency relationship in signal
timeseries using linear functions. The premise of using an AR model is that the input
stochastic process is generalized as stationary. However, physiological signals usually
present non-stationary characteristics and therefore do not always meet the premise. There-
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fore, a common practice is to segment signals with a moving window and assume station-
arity within the short segment. AR parameters are important time-domain representations
for EEG signals in many applications, including personal identification, authentication,
and recognition of cognitive and emotional states. However, such representations have lim-
itations, as they only reflect linear temporal dependency information of signal timeseries.
A recent finding also suggests that AR representations are unstable and exhibit intra-
individual variations that hinder the performance of biometric recognition systems [98].

Entropy is a useful explanatory tool for cognitive biometrics, because it provides a
quantitative indicator of the randomness or complexity of dynamic signals, and at the same
time describes its informational characteristics. However, as entropy is calculated on the sig-
nal timeseries, it inherits the shortcomings of being sensitive to amplitude fluctuations and
noise. Moreover, it is a univariate feature that is extracted from single signals while ignoring
the relationship between different channels. The discriminant power of entropy-based
representations varies application-wise and depends largely on the recognition model.

Frequency-based methods have advantages in isolating noise and artifacts because
the signals for cognitive biometrics have their valid frequency ranges. More importantly,
for signals such as EEG, which are naturally described in terms of rhythmic activity in spe-
cific frequency bands, frequency-based representations reveal important information about
the signal in these bands and offer links to interpret results with findings in neuroscience.
Among the many methods, WT and WPD encapsulate temporal–spectral information
simultaneously, thus providing richer representations than DFT and FFT. Compared with
time-domain representations, frequency-based ones are more robust to intra-subject vari-
ability caused by cardiovascular conditions and cognitive/mental states. They are flexible
to compute; however, they are less intuitive for human comprehension and usually rely
on machine learning algorithms for classification. In cognitive biometric recognition, their
performance is subject to a sufficient feature dimensional space and the recognition model.

Connectivity-based representations encode relational information between signals,
which differs from univariate features that only capture characteristics of signals from
individual channels. Being a bivariate measure, they are more robust against amplitude
fluctuations of signals [22,98]. They are useful in reducing the intra-person and inter-session
variations, a critical aspect in improving the performance of biometric recognition systems.
However, the computation of connectivity requires multi-channel data collection. A suffi-
cient number of channels is usually required to obtain robust representations, especially for
graph-based methods [148].

4.3.2. The Automatic Representation Learning Methods

LDA and CSP are two supervised learning algorithms for learning representations
from cognitive biometric signals. The commonality of the two is that they both project
data into a transformed space in which data of different classes are separable, while the
difference is how they obtain the projection function. LDA can only separate data with
different means, while CSP uses variance instead of mean, which makes CSP suitable
for separating ERP from noise. CSP captures spatial information from multi-channel
signals and is often used as a spatial filter for feature extraction. LDA, in contrast, is
often used for feature transformation, which is a pre-classification procedure that aims to
reduce dimensionality of extracted features while retaining discriminative information,
or is directly used as a classifier.

Unsupervised representation learning serves different functions in cognitive biometric
recognition systems. Specifically, PCA and ICA are useful tools for denoising and artifact
removal and have been widely adopted in signal pre-processing. Moreover, they are able
to transform feature vectors into a lower-dimension while preserving the most important
information. Clustering methods (K-means and GMMs) are usually applied as a soft
classification step to facilitate the final classification process. RBNs and AEs are mainly
used for representation extraction, and GANs are more effective in data augmentation.
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AEs and GANs are two typical structures of generative neural network models. They
present a strong learning capacity in automatically capturing the stable and representative
representations from cognitive biometric signals. These models are data-driven; therefore,
the quality and generalization ability of the learned representations depend on whether the
training samples are sufficient and diverse. GANs generate more clear and more realistic
signal samples than those coming from AEs. Therefore, GANs are widely used for data
augmentation, while AEs are usually used for feature extraction. Data augmentation aims
to solve the problem of insufficient training samples in order to improve the classification
performance of deep learning models. It is worth mentioning that data insufficiency
is a practical problem and challenge in cognitive biometrics, as many databases have
a very limited sample size due to difficulties in data collection. For example, for EEG
data collection, subjects need to sit in a controlled environment wearing devices, which
is a demanding process. Existing research shows that GANs are powerful tools for data
augmentation for EEG, ECG, and PPG signals. Compared to AEs, GANs avoid the difficulty
in loss function design, but the training of GANs is much more finicky and the data
generation process cannot be directly controlled. Another advantage of AEs over GANs is
that they offer a clear way to evaluate the quality of the model.

Compared to ICA, PCA, and GMMs, AEs and GANs are inferior in providing theoreti-
cal insights. However, the flip side of this drawback is the advantage of AEs and GANs in
identifying valuable relationships that would be missed by statistical analysis or human
preconceptions. In addition, developing ICA, PCA, and GMMs requires understanding the
statistical characteristics of signals and checking the corresponding assumptions. AEs and
GANs can bypass these steps and are able to obtain better representations from noisy data,
for example, the ‘raw’ signals.

Table 4 summarizes all the handcrafted and automatic representations discussed
in this section in terms of the methods, domains, major uses, and deep learning (DL)
applicability. The domains describe what information is encoded and reflected in the
representations and include the time, frequency, space, and hyper domains. Biosignals
in cognitive biometrics are naturally observed in the time and space domains, as they
are timeseries data collected from single or multiple physical locations. The frequency
domain also plays a significant role, since these signals present important characteristics
over specific frequency ranges. Furthermore, we use a hyper domain to denote latent
information extracted through the multi-layer architecture of machine learning models
or obtained after transformations and projections. The DL applicability indicates how
applicable the representations are for use as input data for deep neural networks.

Table 4. Summary of representation extraction and learning methods discussed in this section.

Representation Foundations
Domains

Major Use DL Applicability
Time Frequency Space Hyper

Domain-specific Handcrafted 3 Extraction Low
Descriptive statistics Handcrafted 3 Extraction Low
AR models Handcrafted 3 Extraction Median
Entropy Handcrafted 3 Extraction Low
PSD, FFT Handcrafted 3 Extraction Median
EMD, HHT Handcrafted 3 Extraction Median
DCT, MFC Handcrafted 3 Extraction Median
STFT (spectrogram) Handcrafted 3 3 Extraction High
WT (scalogram), WPD Handcrafted 3 3 Extraction High
Connectivity, graph Handcrafted 3 3 3 Extraction High
LDA Auto. (supervised) 3 transform Low
CSP Auto. (supervised) 3 3 Extraction Median
NN Auto. (supervised) 3 Extraction and classification High (integrated)
PCA, ICA Auto. (unsupervised) 3 Transform, preprocessing Low
Clustering Auto. (unsupervised) 3 Pre-classification, wave detection Low
RBNs Auto. (unsupervised) 3 Extraction High (integrated)
AEs Auto. (unsupervised) 3 Extraction, data augmentation High
GANs Auto. (unsupervised) 3 Data augmentation High
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5. Pattern Recognition in Cognitive Biometrics

Recognition is another significant component in biometric recognition systems. This
section reviews the methods for recognition of cognitive biometrics in diverse applications.

5.1. Conventional Methods

We summarize the following six types of conventional methods for cognitive biometric
recognition. The representative studies are listed in Table 5.

5.1.1. Similarity-Based Classifiers

Similarity-based classifiers predict the class label of a test sample based on its simi-
larity to a set of labeled training samples and the pairwise similarity between the train-
ing samples. They are widely used for template (feature vector) matching in cognitive
biometrics-based authentication. Different similarity measures and distance functions
are applied, including cross-correlation [4,27,75], cosine similarity [24,48,53], Euclidean
distance [61,72,82], Mahalanobis distance [22,60,72], and Manhattan distance [54,55,72].
The generalized similarity-based classifiers also include k-nearest neighbor (kNN) and
dynamic time warping (DTW). kNN offers a better strategy, as it takes into account the
most similar points to the input and applies a majority voting rule to fuse the decisions [46].
Moreover, to cope with the intra-person variations of features, improved kNN algorithms
have been proposed, for example, fuzzy-rough nearest neighbor [149]. In these works,
the matching templates (feature vectors) are composed of different handcrafted features.
When cognitive biometric signals are directly used for classification without feature extrac-
tion, the DTW method is preferred. This is because DTW determines an optimal match
between two signal timeseries, which can reduce the impact of signal misalignment and
distortion on similarity measurements. Therefore, in cognitive biometrics, DTW is often
used to classify EEG, ERP, and ECG signals instead of feature vectors [150]. Similarity-based
methods are straightforward, fast to compute, and provide interpretable results. However,
similarity based-methods are prone to over-fitting; hence, the model can be badly affected
by outliers. In other words, their performance largely relies on the quality of the input
signals or templates. These methods also suffer the curse of dimensionality.

5.1.2. Discriminant Analysis (DA)

Discriminant analysis (DA) separates data samples of different classes by projecting
data into a lower-dimensional space and maximizing the inter-class distance. It is popular
in cognitive biometric recognition. Among the many linear and nonlinear discriminant
functions, linear DA (LDA) is the most commonly used one and is recognized as a good
choice for classifying handcrafted features in EEG-based person authentication and iden-
tification systems [84,86,95,105,151]. It is also used for classifying domain-specific and
frequency-based features of ECG and PCG signals [35,35,36,152,153]. Quadratic DA (QDA)
and its variants are also proposed for authentication [21]. LDA is also used for classifying
domain-specific and frequency-based features of ECG and PCG signals [35,35,36,152,153].
DA methods are simple and fast; but require the normal distribution assumption for the
input features.

5.1.3. Support Vector Machines (SVMs)

Support vector machines (SVMs) project the data onto a space where the classes are
separable using a hyperplane. The classification boundary is chosen to maximize the
margin distance between the classes and the hyperplane. SVMs are even more popular
than DA-based methods in cognitive biometric recognition. They have been used in a
wide range of classification tasks for EEG [56,67,71,83], ECG [37,66,154], SCG [89] and
EDA signals [43]. In these studies, the SVMs are equipped with linear kernels [48,83,155]
and non-linear kernels including the radial basis function [48,67,69,71], sigmoid function,
and polynomial function [48]. Linear SVMs are preferred in many studies, as they are
computationally lightweight, while non-linear SVMs are able to fit a non-linear decision
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boundary between classes to solve more complex classification problems, although the
computational cost is higher. The input of SVMs is various types of handcrafted features.
SVMs usually work well with small datasets and when the input feature vectors have a
clear margin of separation. However, performance will degrade severely when the input
data has noise or overlaps between classes. In addition, the selection of a proper kernel can
be computationally intensive.

5.1.4. Neural Networks (NNs)

Neural networks (NNs) are computational algorithms that are characterized by a
network structure composed of multiple layers of interconnected nodes, inspired by the
human nervous system. They can model complex patterns from observational data through
non-linear mapping of the input and output. They are gaining more and more attention
in cognitive biometric recognition in recent years. Multilayer perceptrons (a feedforward
structure) and Elman networks are used as classifiers in many cognitive biometrics studies
based on EEG [62,87,90,98,156], ECG [157,158], EDA [43], and PPG signals [159]. Most of
the NNs in these studies adopt the softmax function in the output layer and are trained
under a cross-entropy regime. Some NNs use SVM and random forest in the output
layer [156]. Other NNs used in cognitive biometrics include the linear vector quantizer [85].
Since many representations of cognitive biosignals are non-linear and contain complex
dynamics, NNs are advantageous classifiers over similarity-based and DA-based methods.
Disadvantages of NNs mainly lie in the computational complexity, difficulty in result
interpretation, proneness to over-fitting, and the empirical nature of model development.
Fortunately, researchers have started to tackle these problems. In Section 5.2, we will dig
into deep learning algorithms, which are more powerful NN models with deeper and more
complex architectures.

Other studies have applied the hidden Markov model (HMM), GMM, random forests
(RFs), and other methods to cognitive biometric recognition based on ECG [38,158,160],
PPG [161], SCG [89,162], PCG [79,163,164], EEG [52,83,165], and EDA signals [77]. Among
them, HMMs, which are able to model raw sequential data and detect non-stationary
changes, have been demonstrated to be efficient algorithms for classifying cognitive biolog-
ical signals. There is usually a proper match between features and classifiers. We show the
relationship between different handcrafted features and conventional recognition methods
in Table 5.
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Table 5. Summary of studies using handcraft representations with conventional recognition methods.

Representations Recognition (Conventional Methods)

(Handcrafted) Similarity-Based DA SVMs NN (Shallow) GMM, HMM, RF, etc.

T

Signal EEG [4,24,27] EEG [105] EEG [27] EEG [156]

Domain-specific ECG [35,158,166] ECG [37,154] ECG [38,158] PPG [161]
PPG [167,168] PCG [39] EDA [43] ECG [35,36,152] EDA [43] ECG [158] EDA [43] SCG [162] PCG [163]

Statistics EEG [46] EEG [44] EEG [45,47,83] EEG [59] EEG [45]
EDA [43] EDA [43] EDA [43] PPG [159]

AR EEG [48,53–56] EEG [21,48,49,49] EEG [50,56] EEG [51,56,98] EEG [52]
Entropy EEG [60,61] EDA [43] EEG [98] ECG [66] EDA [43] EEG [59,62] EDA [43]

F
PSD EEG [48,53,61,72] EEG [21,48,151] EEG [48,67,69,71,169] EEG [23,70,170] EEG [45,165]

EEG [56,68] EDA [43] EEG [170,171] EEG [45,50,56] EDA [43] EEG [56,59] EDA [43]

HHT/EMD/DCT/MFC EEG [55,56,92] PCG [39,101] EEG [92] EEG [47,56,155] ECG [160] EEG [56,85,172] ECG [157,160,173]
ECG [35,36,157] ECG [35] ECG [157,174] ECG [157] PCG [79,164]

T + F STFT/WT/WPD SCG [89] EEG [84,86] EEG [83,175] EEG [59,87,90] EEG [83] ECG [78] PCG [79]
ECG [38,82] PCG [153] EDA [77] SCG [89] EDA [77] SCG [89]

T/F + S Connectivity/graph EEG [22,53,61,94,96] EEG [21,95] EEG [50,169] EEG [98]

T—time domain; F—frequency domain; S—space domain.
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5.2. Deep Learning-Based Recognition

Table 6 summarizes the latest studies on deep learning-based recognition in cognitive
biometrics, mainly covering methods based on deep feedforward neural networks (DFNNs),
deep belief networks (DBNs), convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and graph convolutional neural networks (GCNNs).

5.2.1. DFNN

Deep feedforward neural networks (DFNNs) are composed of an input layer, mul-
tiple hidden layers, and an output layer, wherein a node in a layer is connected to all
nodes in the next layer and thus there are no loops in the network. They are simple
and easy to implement, and are capable of capturing the complicated relationships of
nodes between layers. DFNNs are commonly used in EEG and ECG cognitive recogni-
tion [98,157,176,177]. A DFNN-based method in [98] was used to extract EEG features
from 1D input signals. Sun [176] developed a DFNN-based multitask learning method
for EEG identification. Yang et al. [177] presented an EEG emotion recognition method
based on DFNN. Pinto et al. [157] proposed a DFNN-based method for ECG identification
and authentication.

5.2.2. DBN

Deep belief networks (DBNs) are generative neural networks that are constructed
by stacking RBMs, where each RBM block is aimed at learning the relationship between
the input data and its output data. Compared with DFNN-based methods, DBNs are
less popular in cognitive recognition [65,178]. Zheng et al. [65] proposed using a DBN-
based method for EEG-based emotion recognition, which takes entropy features as input.
Jindal et al. [178] developed a PPG-based identification method through a DBN. DBN-
based cognitive recognition methods are mainly adopted in modeling 1D input signals
or features.

5.2.3. CNN

The key component in convolution neural networks (CNNs) is the convolution ker-
nel/filter. Through sharing kernel weights, the size of the weights/parameters can be
significantly reduced without losing network performance. Unlike DFNN and DBN, which
are limited in their number of layers, it is easy to deploy more layers in a CNN network and
achieve better performance. In addition, benefiting from the usage of convolution kernels,
CNN networks can be used to effectively extract spatial relationship patterns/features
from the input signals. CNNs have been used in various cognitive signal recognition
such as EEG [17,98,179,180], ECG [88,181–183], PPG [184], SCG [80,89], and EDA [43,77].
The CNN-based methods proposed in [26,179,180,185] take as input 2D timeseries EEG
signals to model spatial–temporal information. Wang et al. [98] developed EEG-based CNN
networks by taking as input 2D univariate features and 2D connectivity matrices to model
spatial information and connectivity information, respectively. In a hybrid method [17],
a CNN network was utilized as a feature extractor to learn spatial information from the
3D wavelet scalogram series. Among CNN-based ECG recognition methods, da Silva
Luz et al. [76] and Byeon et al. [88] utilized CNN networks to model temporal–spectral
information for heart biometrics (1D timeseries heartbeat signal and 2D heartbeat spec-
trogram) and 2D CWT scalogram, respectively. The methods in [182,186] utilized CNN
networks to model spatial-temporal information from 1D QRS timeseries ECG and 2D
ECG data, respectively. Zhang et al. [181] developed a CNN network to extract spectral
information from 1D DWT/AC features, while Sepahvand et al. [183] proposed an evo-
lutionary CNN to model spatial–spectral information from 2D spectral connectivity of
ECG signals. Everson et al. [184] proposed using a CNN network to preliminarily extract
spatial information from 2D PPG signals. Maiorana et al. [80] and Hsu et al. [89] presented
CNN networks for SCG-based recognition to learn temporal–spectral information from 2D
STFT coefficients and 2D CWT coefficients, respectively. A CNN network was utilized for
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EDA-based recognition based on 1D handcrafted features [43], while Piciucco et al. [77]
proposed a CNN-based recognition method by modeling temporal–spectral information
from 2D STFT coefficients of EDA signals.

5.2.4. RNN

Recurrent neural networks (RNNs) have been proposed to better handle time-series
signals or sequential information, in comparison with DFNN, DBN, and CNN, which are fo-
cused on modeling relationships from a single-point input. The key concept behind RNNs
is using state variables to model the relationship between past information and the current
signals. One of the most successful RNN architectures is long short-term memory (LSTM),
which contains three types of gates: input gates, forget gates, and output gates. These gates
are used to preserve long-term information and forget short-term information. RNNs are
mainly utilized to model the temporal relationship of cognitive signals [77,184,187–189].
Xing et al. [187] proposed an LSTM-based method for emotion recognition using multi-
channel EEG signals. Zhang et al. [188] proposed a spatial-temporal RNN method for
emotion recognition by modeling the spatial and temporal dependencies of the input EEG
signals. Hefron et al. [16] presented an LSTM-based method to improve cognitive work-
load estimation by considering the temporal information between 1D statistical features.
Zhang et al. [17] combined an RNN with a CNN to model spatial–spectral-temporal infor-
mation from 3D wavelet scalogram series of EEG signals. Salloum et al. [189] evaluated
different RNN networks for ECG-based identification and authentication by exploiting
spatial-temporal information for 2D timeseries ECG signals. Everson et al. [184] presented a
PPG-based method using two LSTM layers to model the temporal relationships of PPG fea-
tures. Furthermore, an LSTM-based network [77] was used to capture temporal-=spectral
information from 2D STFT coefficients of EDA signals.

5.2.5. GCNN

Graph convolutional neural networks (GCNNs) are an extension of CNNs and are
designed to learn structural features from graphs. The graph is used to represent the input
data in terms of nodes and edges. The nodes are aimed at encoding feature information,
and the edges are encoded by an adjacency matrix to present the connections between
nodes. Similar to the convolution in CNNs, special convolution filters are designed in
GCNNs to learn features from neighboring nodes. Unlike conventional CNNs, which are
designed for regularly structured data, GCNNs are proposed for irregular data where the
number of nodes usually varies and the nodes are usually unordered. Wang et al. [98]
proposed a GCNN-based EEG identification method to automatically capture deep intrinsic
structural representations from EEG graphs. Experimental results show that the features
extracted by the proposed GCNN are more robust than univariate features. Song et al. [190]
presented a dynamical GCNN method for EEG emotion recognition by learning the intrinsic
relationship between EEG channels. Zhong et al. [191] proposed a GCNN-based method
for EEG emotion recognition, in which the GCNN is used to model the biological topology
among different brain regions.

Table 6. Summary of deep learning-based representation learning and recognition in
cognitive biometrics.

Signals Input Models Encoded Information Studies

EEG 1D CSP features DFNN Spatial [176]
EEG 1D connectivity features DFNN Connectivity [98]
EEG 1D entropy features DFNN with subnetwork nodes Spatial [177]
EEG 1D entropy features DBN Spatial [65]
EEG 2D timeseries CNN Spatial–temporal [26,40,179,180,185,192]
EEG 2D timeseries Conv.Enc. (adversarial learning) Spatial–temporal [171]
EEG 2D univariate features CNN Spatial [98]
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Table 6. Cont.

Signals Input Models Encoded Information Studies

EEG 2D connectivity matrices CNN Connectivity [98]
EEG SAE latent representations LSTM Temporal [187]
EEG 2D entropy features RNN Spatial–temporal [188]
EEG 1D statistical features LSTM Temporal [16]
EEG 3D wavelet scalogram series 3D-CNN+RNN Spatial–spectral–temporal [17]
EEG graph representations GCNN Spatial–spectral/temporal [98,190,191]
ECG 1D DCT-wavelet features DFNN Spectral [157]
ECG 1D DWT/AC features 1D-CNN Spectral [181]
ECG 1D timeseries + 2D spectrogram 1D+2D-CNN temporal–spectral [76]
ECG 1D QRS timeseries CNN Spatial–temporal [186]
ECG 2D embedding CNN Spatial–temporal [182]
ECG 2D spectral connectivity Evolutionary CNN Spatial–spectral [183]
ECG 2D CWT scalogram Ensemble CNNs Temporal–spectral [88]
ECG 1D R peak timeseries LSTM, RNN Temporal [189]
PPG 1D statistical features DBN Temporal [178]
PPG 2D timeseries CNN+LSTM Spatial–temporal [184]
SCG 2D STFT coefficients CNN Temporal–spectral [80]
SCG 2D CWT coefficients CNN Temporal–spectral [89]
EDA 1D handcrafted features 1D-CNN - [43]
EDA 2D STFT coefficients CNN, CNN+LSTM Temporal–spectral [77]

5.3. Discussions

Compared to conventional recognition methods, DL-based methods offer advantages
in the following three aspects. First, they can learn automatically from cognitive train-
ing data and rely less on expertise and knowledge about cognitive signals. Second, they
can effectively model abstract representations/features for different tasks from massive
cognitive training data. And finally, similar network architectures can be easily modified
and used for different cognitive signals. The disadvantages of DL mainly lie in its depen-
dence on a large training set, the difficulty in interpreting results, and high computational
cost. The performance of DL-based recognition can be limited by an insufficient amount
of training data, which is often a problem in cognitive biosignal datasets. Fortunately,
existing results have shown that this problem can be solved by dataset augmentation using
generative neural network models, especially GANs. In real applications, generalization is
another issue, because DL-based methods tend to over-fit the training data and may not be
able to generalize for new data collected in a different session or setup. Therefore, having
diverse and sufficient training data is important.

More specifically, DFNN-based methods mainly focus on modeling 1D biosignals or
features, as the size of parameters of DFNN is limited due to the full connection mechanism.
Similar to DFNN-based methods, DBN-based cognitive recognition methods are mainly
adopted for modeling 1D input signals or features. CNNs have proven flexible in cognitive
biometrics recognition. First, they can be used in various cognitive signals, such as EEG,
ECG, PPG, SCG, and EDA. Second, they can take diverse types of data as input, such as
1D/2D timeseries input, 2D univariate/bivariate features, and 3D input data. By combining
with RNN or LSTM layers, CNN networks can be flexibly adapted to model multiple types
of information simultaneously. LSTMs are mainly used to model the temporal relationships
of time-series cognitive signals, especially 1D cognitive signals or features. Compared with
the aforementioned DL-based methods, GCNN-based methods exploit the characteristics of
the EEG signal graph. The experimental results obtained in [98,190,191] show that GCNNs
can efficiently model the intrinsic relationships between different brain regions.
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6. Open Research Directions
6.1. Deep Learning and Cognitive Biometrics

From the discussions in Sections 4 and 5, it is observable that deep learning algorithms
present the future trend of cognitive biometric recognition. We summarize the following
research directions regarding deep learning for representation learning and recognition in
cognitive biometrics.

• Dynamic representation learning and recognition. The existing feature extraction and
classification methods are suitable for static mode, which assumes that the represen-
tations of the signals obtained in the test phase are subject to the same distribution
as representations in the training phase. However, in practical applications, this as-
sumption does not always hold because the cognitive biosignals can vary with the
mental states of the user in the short term and be affected by aging in the long term.
This will invalidate static features and hinder recognition performance. Dynamic rep-
resentation learning and recognition which continuously incorporate new information
from testing samples is a good way to maintain the stable performance of cognitive
biometric recognition systems.

• Interpretations of the learned representations. Representations learned through deep
learning models are generally complex since they incorporate hyper-domain abstrac-
tions of different levels in a hierarchical structure. In the image classification domain,
algorithms such as layer-wise relevance propagation and weight visualization tech-
niques are proposed to bring information about the fairness and interpretability of
the models. This information is critical for researchers to gain useful insights into
the model and understanding of the results and findings. Unfortunately, it is still
an unsolved problem to interpret representations that are obtained by deep learning
algorithms from cognitive biometric data. For example, emotions can be recognized
by graph neural networks; however, it is unclear how to interpret the results and
learned representations. The interpretability behind deep learning algorithms needs
to be further studied so that the representations can be linked to existing domain
knowledge. We argue that providing explanations of the discovered patterns from
a neurobiological perspective is generally more important than just showing the
classification/prediction accuracy.

• Multi-modality fusion through deep learning. Different biosignals may contain com-
plementary information useful for a recognition task. In existing studies of multi-
modal cognitive biometric systems, the fusion of different modalities is mainly per-
formed at a decision level, where a majority voting strategy is used to determine a final
decision based on decisions from individual modalities, or at the feature-level, where
features extracted from individual modalities are concatenated into one vector for
classification. Deep learning models offer a more flexible way to fuse information from
different biosignals. Developing deep learning models, frameworks, and protocols to
handle different biosignals at the same time is a new research area.

• Transfer learning in different applications and signals. The biosignals in cognitive
biometrics have many common characteristics, so the deep neural network architec-
tures being proposed are quite similar. As a result, one network model can be easily
modified and used for a different signal or in a different application. It is a promising
direction to design a unified deep learning model that can automatically fit various
input cognitive signals. More importantly, deep learning points out a new research
direction: transfer learning of cognitive biometrics, which concerns the storing and
transferring of useful representations obtained during one recognition task to other
tasks, and knowledge transfer from one signal to other signals. There are several stud-
ies that transfer deep learning models trained on the EEG-based identification task to
authentication tasks by fine tuning the model for each subject. However, the range of
possible applications of transfer learning is much greater than that.

• Federated learning for cognitive biometrics. The core idea of federated learning is to
train machine learning models on separate datasets that are distributed across different
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devices or parties, which can preserve local data privacy to a certain extent [193].
Training deep learning models for cognitive biometrics usually requires massive data
and computing resources. The transition from centralized training to distributed
on-site learning will protect the privacy of each user while reducing the computing
resources required by each device. Combining deep learning models with federated
learning frameworks is a new direction in the field of cognitive biometrics.

• Deepfake algorithms: a booster or threat for cognitive biometrics? Deepfake algo-
rithms refer to machine learning methods that are used to generate and manipulate
fake human data, especially methods based on generative neural networks. On the
one hand, existing research has demonstrated the potential of generative neural net-
works (such as GANs and AEs) in data augmentation, which is conducive to the
training of DL-based recognition models, thereby improving the performance of cog-
nitive biometrics. This is particularly important for cognitive biometrics due to the
difficulty in collecting the biosignals. On the other hand, it is still an open research
question whether the fake biosignals synthesized or generated by deepfake algorithms
from other people’s data or publicly available datasets can spoof cognitive biomet-
ric systems. This could be a real concern, since the security of biometrics based on
face and voice has been severely challenged by synthetic data generated through
deepfake [194].

6.2. Security, Permanence, and Fusion of Cognitive Biometrics

Possible attacks on cognitive biometric systems include replay and spoofing attacks,
jamming attacks, machine learning adversarial attacks, malware attacks, data injection
attacks, and misleading stimuli attacks for systems involving sensory stimulation. Table 7
summarizes these attacks and where they occur in the recognition process. The security
analysis of cognitive biometrics against these attacks is at the beginning stage, and it is
worth continuing this line of research to propose countermeasures. In addition, designing
privacy-preserving cancellable templates for cognitive biometrics is also an emerging topic.

Table 7. Attacks on cognitive biometric systems.

Attacks Definitions Stage

Replay attack Reuse victim’s biometric template collected previously to impersonate the victim Acquisition
Spoofing attack A presentation attack that uses fake data to impersonate the victim Acquisition
Jamming attack Override the legitimate signals emitted from electrodes with false data Communication
Misleading stimuli attack Present malicious sensory stimuli to users to elicit specific responses Acquisition
Adversarial attack Manipulate machine learning systems by crafted inputs to disrupt their normal functioning Recognition
Signal injection attack Inject false data into the biometric system to alter its behavior and output Recognition
Malware attack Use hardware/software/firmware to gain access to devices to perform malicious actions System

Moreover, the permanence of cognitive biometrics is still an open research question.
There are some preliminary findings regarding the permanence of biometrics based on
EEG and ERP signals [24,27,53], but such studies are limited by the data availability. It is a
major challenge to collect various cognitive biometric data from the same human subjects
in different sessions across months and even years. Open data sharing platforms such as
the PhysioNet offer potential in allowing large-scale evaluation of cognitive biometrics and
permanence analysis.

Finally, the fusion of multiple cognitive biometrics is a promising direction. Multi-
modality fusion improves recognition accuracy and robustness, and also provides a po-
tential countermeasure for presentation attacks. Furthermore, since cognitive biometrics
present an inherent liveness detection function, it is useful to design proper protocols and
frameworks to integrate cognitive biometrics in traditional biometric systems as a liveness
detection module.
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7. Conclusions

Cognitive biometrics is a new branch of biometric technology and there is a great
need to review the latest developments in this field. In this article, we presented a com-
prehensive review of cognitive biometrics, covering all the major biosignal modalities and
applications. A taxonomy was designed to structure the corresponding knowledge and
guide the survey from signal acquisition and pre-processing to representation learning and
pattern recognition. First, we defined the scope of cognitive biometrics and summarized
the biosignals considering their origin, sensing technologies, sensing locations, physical
signals, and elicitation/acquisition protocols. The review breaks the barriers between
different fields and reveals the relationship between different biosignals. Second, due to
the inherent cognitive and emotional information carried by cognitive biometric data, our
discussion on cognitive biometrics was not limited to authentication and identification,
but also included a broader range of applications in human–computer interaction, adaptive
control, and decision and health aid. We summarized the functions of cognitive biometrics
module in these application scenarios and linked them to the corresponding recognition
tasks. The extension of the above two aspects allowed us to restructure the knowledge
regarding representation extraction/learning and recognition in cognitive biometric recog-
nition across domains, biosignals, and applications. A systematic review of representation
extraction/learning and recognition methods was then carried out. We provided a unified
view of the methodological advances across various biosignals and applications, facilitating
interdisciplinary research and knowledge transfer across fields. Particularly, we investi-
gated recent works on generative models and various deep learning models, and discussed
how they are used in cognitive biometric recognition. Finally, we discussed future research
directions in cognitive biometrics in two aspects: the deep learning-related directions and
other issues regarding the security, fusion, and permanence of cognitive biometrics.

Author Contributions: Conceptualization, M.W. and J.H.; methodology, M.W., X.Y., Y.Z. and J.H.;
investigation, M.W., X.Y. and Y.Z.; resources, M.W.; writing—original draft preparation, M.W., X.Y.
and Y.Z.; writing—review and editing, M.W., X.Y., Y.Z. and J.H.; visualization, M.W.; supervision,
J.H.; project administration, J.H.; funding acquisition, J.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Australian Research Council through the discovery
grant DP200103207.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Campisi, P.; La Rocca, D. Brain waves for automatic biometric-based user recognition. IEEE Trans. Inf. Forensics Secur. 2014,

9, 782–800. [CrossRef]
2. Rathore, A.S.; Li, Z.; Zhu, W.; Jin, Z.; Xu, W. A Survey on Heart Biometrics. ACM Comput. Surv. (CSUR) 2020, 53, 1–38. [CrossRef]
3. Chuang, J.; Nguyen, H.; Wang, C.; Johnson, B. I think, therefore I am: Usability and security of authentication using brainwaves.

In Proceedings of the International Conference on Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013;
pp. 1–16.

4. Ruiz-Blondet, M.V.; Jin, Z.; Laszlo, S. CEREBRE: A novel method for very high accuracy event-related potential biometric
identification. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1618–1629. [CrossRef]

5. Hadid, A.; Evans, N.; Marcel, S.; Fierrez, J. Biometrics systems under spoofing attack: An evaluation methodology and lessons
learned. IEEE Signal Process. Mag. 2015, 32, 20–30. [CrossRef]

6. Marasco, E.; Ross, A. A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput. Surv. (CSUR) 2014,
47, 1–36. [CrossRef]

7. Gui, Q.; Ruiz-Blondet, M.V.; Laszlo, S.; Jin, Z. A survey on brain biometrics. ACM Comput. Surv. (CSUR) 2019, 51, 1–38. [CrossRef]
8. Bidgoly, A.J.; Bidgoly, H.J.; Arezoumand, Z. A survey on methods and challenges in EEG based authentication. Comput. Secur.

2020, 93, 101788. [CrossRef]

http://doi.org/10.1109/TIFS.2014.2308640
http://dx.doi.org/10.1145/3410158
http://dx.doi.org/10.1109/TIFS.2016.2543524
http://dx.doi.org/10.1109/MSP.2015.2437652
http://dx.doi.org/10.1145/2617756
http://dx.doi.org/10.1145/3230632
http://dx.doi.org/10.1016/j.cose.2020.101788


Sensors 2022, 22, 5111 28 of 34

9. Del Pozo-Banos, M.; Alonso, J.B.; Ticay-Rivas, J.R.; Travieso, C.M. Electroencephalogram subject identification: A review. Expert
Syst. Appl. 2014, 41, 6537–6554. [CrossRef]

10. Blasco, J.; Chen, T.M.; Tapiador, J.; Peris-Lopez, P. A survey of wearable biometric recognition systems. ACM Comput. Surv.
(CSUR) 2016, 49, 1–35. [CrossRef]

11. Maiorana, E. A survey on biometric recognition using wearable devices. Pattern Recognit. Lett. 2022, 156, 29–37. [CrossRef]
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