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Abstract: We present a solution for intelligent posture training based on accurate, real-time sitting
posture monitoring using the LifeChair IoT cushion and supervised machine learning from pressure
sensing and user body data. We demonstrate our system’s performance in sitting posture and seated
stretch recognition tasks with over 98.82% accuracy in recognizing 15 different sitting postures and
97.94% in recognizing six seated stretches. We also show that user BMI divergence significantly affects
posture recognition accuracy using machine learning. We validate our method’s performance in five
different real-world workplace environments and discuss training strategies for the machine learning
models. Finally, we propose the first smart posture data-driven stretch recommendation system in
alignment with physiotherapy standards.

Keywords: posture recognition; applied machine learning; IoT; pressure sensing; human well-being

1. Introduction

With recent advances in medical and health sciences and the accessibility of information
about healthy living, the awareness of the importance of well-being at work is rising.
However, the stresses and commitments associated with modern living can hinder efforts
towards achieving better health and well-being on a daily basis. In particular, the increase in
desk-bound work and the use of computers and hand-held devices such as smartphones and
tablets has exacerbated the problems of sedentary lifestyles and poor sitting posture [1]. A
systematic review based on accelerometry measurement of 11 large-scale population studies
found that adults spend approximately 10 h a day or approximately 65–80% of the day
performing sedentary behaviors [2]. Common sedentary behaviors that most people engage
in daily occur while working, commuting, and many leisure activities that require prolonged
sitting. Slouching in particular has been termed “the new smoking” [3]. Slouching while
sitting is a state where the person’s posture is imbalanced forward or to the sides in addition
to any combination of rounded shoulders, forward head posture, and angled neck or lumbar.
A vast body of research has shown that poor sitting posture and prolonged sitting lead
to a wide range of physical and mental health issues such as lower back pain, neck pain,
headaches, respiratory and cardiovascular issues, digestive issues, and an overall higher risk
of disease and death [4–7]. It also contributes to multiple mental health issues such as poor
mood, fatigue, low productivity, and depression [8,9]. Furthermore, the lockdown measures
introduced by many governments in response to the COVID-19 pandemic led to a surge
in working from home (WFH), which had a serious impact on the sedentary and sitting
habits of remote workers. While many workplaces are well-equipped with ergonomic chairs
and desks, many home settings are far from ideal for prolonged sitting and working from
home. Moretti et al. (2020) reported that this lack of ergonomic office furniture in working
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from home settings may be linked with poorer posture and the onset of musculoskeletal
disorders (MSDs) [10].

Addressing the problems of poor sitting posture and prolonged sitting more rigorously
is needed to alleviate the impact of their associated health risks on individuals and their
economic footprint from lost productivity and national health spending. In addition, to
encourage the adoption of an upright posture, occupational health awareness programs
often include incentives for workers to stand up, take small and frequent breaks, and per-
form regular stretching. Frequent postural transitions and regular stretching are important
aspects of good posture awareness. Recent studies have shown that incorporating stretch-
ing exercises in the training programs of office workers is effective in preventing MSDs
in the long term and reducing pain and discomfort [11,12]. Stretching at the workplace
has further been found to increase flexibility, prevent injuries due to muscle strain, and
improve personal perception of attractiveness and confidence [13]. Therefore, to ensure
the adoption of good sitting posture habits, it is important to actively correct poor sitting
posture, reduce the amount of time spent sitting down and the amount of time spent in
various types of slouching positions in particular, and integrate frequent breaks of activity
and proper stretching. Evidently, there are quite a number of factors to actively keep track
of, especially when performing other tasks that require focus, which is why we propose a
solution using the LifeChair, an Internet of Things (IoT) cushion for real-time posture and
activeness tracking.

Various systems have been previously proposed to monitor sitting posture in order
to encourage adopting an upright posture with both passive approaches (ergonomics,
materials, and fabrics) and active approaches (IoT and sensors). Passive solutions include
ergonomic chairs, cushions, elastic bands, and foot rests. Active solutions track sitting
posture and include smart cushions, wearable point trackers, and smartphone applications.
Recent advances in Artificial Intelligence (AI) and ubiquitous sensing have highlighted
the practicality and effectiveness of collecting and mining human-health-related data
in real-time for the assessment and improvement of human health and well-being [14].
Better sensing technologies and the large quantities of data they generate have facilitated
the application of machine learning to detect and monitor various problems related to
well-being such as poor sitting posture. Real-time sitting posture recognition and prolonged
sitting monitoring are challenging tasks that require accurate tracking of sitting posture
and seated behavior. Sitting is a dynamic task that comes with a wide range of inter-
individual variability in body characteristics and differences in working environments,
sitting habits, and various other user-specific parameters, which current active posture
tracking solutions have yet to address. Moreover, the lack of a standard source of sitting
posture and seated behavior data hinders progress in research to achieve active and accurate
sitting posture monitoring. Accurate posture tracking leads to effective feedback for active
posture correction and good sedentary habits’ promotion. The empowerment of human
well-being through posture tracking and correction has important benefits in many domains
including the workplace, personal fitness, driver assistance, and entertainment.

In this work, we propose an active posture training solution based on a combination of
machine learning and full-back pressure sensing using an IoT cushion called LifeChair for
both sitting posture and seated stretch recognition. Our main contributions are as follows:

• We designed an experimental setup for collecting real-world sitting posture and seated
stretch pose data from a diverse participant group using a novel pressure sensing
IoT cushion.

• We built sitting posture and seated stretch databases that comprise real-time user back
pressure sensor data using an active posture labeling method based on a biomechanics
posture model and on user body characteristics’ data (BMI).

• We applied and compared the performance of several machine learning classifiers in
a sitting posture recognition task and achieved an accuracy of 98.82% in detecting
15 different sitting postures, using an easily deployable machine learning algorithm,
outperforming previous efforts in human sitting posture recognition. We were able to
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correctly classify many more postures than in previous works that targeted on average
between five and seven sitting postures.

• We applied and compared the performance of several machine learning classifiers
in the seated stretching recognition tasks and achieved an accuracy of 97.94% in
detecting six common chair-bound stretches, which are physiotherapist recommended
and have not been investigated in related works. While previous works focused on
sitting posture recognition alone, we extend our method to include specific chair-
bound stretches.

• In the context of AI-powered device personalization, we show that user body mass
index (BMI) is an important parameter to consider in sitting posture recognition and
propose a novel strategy for a user-based optimization of the LifeChair system.

• We also demonstrate the portability and adaptability of our machine-learning-based
posture classification in five different environments and discuss deployment strategies
for handling new environments. This has not been investigated by previous works
that focus on a single use case of their proposed systems. We demonstrate the impact
of local sensor ablations on the performance of the machine learning models in sitting
posture recognition.

• We propose, to the best of our knowledge, the first posture data-driven stretch pose
recommendation system for personalized well-being guidance.

The rest of this paper is organized as follows: Section 2 reviews the related works
in sitting posture monitoring and machine-learning-based sitting posture recognition;
Section 3 details our proposed framework for intelligent posture training using machine
learning for sitting posture and stretch pose recognition based on a pressure sensing IoT
cushion; Section 4 presents the results and discussion of our machine-learning-based sitting
posture and stretch pose recognition in the context of the aforementioned contributions;
Section 5 concludes this paper with a summary and our future work.

2. Related Works

Posture monitoring and correction have received special attention in the last few years,
and many different types of posture monitoring devices have been proposed. Broadly, two
main types of posture monitoring devices can be found in the scientific literature and in
the industry: passive posture training devices and active posture training devices. Passive
posture training devices rely on ergonomics and materials to act as add-ons to chairs that
target a specific body part of the user to promote a healthy posture form. These include
ergonomic chairs, cushions, elastic bands, and foot rests, for example, MTG’s style, Better
Back, and Backpod [15–17], the Embody Chair by Herman Miller, and ReGeneration by
Knoll [18,19]. However, these types of passive posture training solutions have significant
shortcomings due to their lack of sensing capabilities and rigidity. They also do not guaran-
tee that users adopt a good posture, as they may still slouch while using them or sit for too
long, unaware of their poor posture.

Active solutions aim to address these issues by tracking sitting posture with active
components such as sensors and software. They include smart cushions, wearables, point
trackers, cameras, robots, and smartphone applications. However, the active solutions
available today share many shortcomings with the passive solutions and have limited
sensing capabilities, inaccurate posture detection mechanisms, and ineffective feedback
schemes. Other cushion-type solutions such as Darma, Cushionware, or e-Cushion have
been proposed to track sitting posture using a bottom-rest pressure sensing interface [20–22].
These solutions disregard many important aspects of posture training and focus on a basic
indication of the balance of pressure as the users sit on them. They can also be uncom-
fortable and unreliable as they dislocate easily from their optimal position as the user sits
on them throughout the day. Wearable posture solutions target body tilt and orientation
using accelerometers or gyroscopes. Examples include Upright Go, Waiston, or Lumo
Lift [23–25]. However, these solutions do not account for full-posture tracking and neglect
critical postures such as the forward head posture and rounded shoulders. They are also
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invasive and intrusive to the user, often requiring direct skin contact or appearance changes.
Moreover, these active systems face challenges related to data quality, which hinders their
scalable deployment and integration with modern approaches for posture modeling and
detection such as machine learning and edge computing. Previous studies in human activity
recognition (HAR) have explored the application of machine learning in human sitting
posture recognition. Various types of data have been considered for applying machine learn-
ing techniques to detect a user’s sitting posture, including camera recording data, depth
sensor data, accelerometer and gyroscope data, strain sensor data, and pressure sensing data.
Computer vision for human pose detection is a well-established sub-domain of HAR, and
many studies have proposed using depth image processing to capture a visual snapshot of
the user’s front and machine learning for classifying poses [26–28]. However, vision-based
methods for posture recognition are limited by field of view constraints, interference and
occlusion, sensitivity to lighting conditions, and motion artifacts, in addition to many issues
relating to privacy invasion and user trust, which hinder widespread deployment. Wireless
methods such as radio frequency identification (RFID) have also been used to detect passive
sitting postures, but remain as proof-of-concept solutions prone to inaccuracies in real-world
scenarios, in addition to raising important privacy challenges [29].

In broader HAR studies, Anguita et al. (2012) used support vector machines (SVM) for
activity recognition, with accelerometers from a mobile phone, and achieved an accuracy of
89% [30]. Wu et al. (2012) found that k-nearest neighbors (k-NN) achieved the best accuracies
in detecting different activities such as sitting, walking and jogging, among others, based on
iPod touch sensor data [31]. However, these studies target human poses that are significantly
divergent from each other such as standing, sitting, stooping, kneeling, and lying down and
do not address finer pose sub-classes within each pose such as different sitting postures.
Cerqueira et al. (2020) used inertial data from IMUs mounted on a garment to detect
six main static upper-body postures using various machine learning models including
quadratic SVM, kNN, and linear discriminant analysis (LDA) [32]. The postures targeted
in this work do not include sitting postures and only represent broad tilts in the upper
body or arm position. Earlier studies achieved fair accuracies in detecting sitting postures
ranging from 78% to 88% using principle component analysis (PCA), hidden Markov models,
and naive Bayes (NB) [33–35]. Table 1 summarizes the key recent works in sitting posture
recognition using user sensing and machine learning. These works share many limitations
such as proof-of-concept solutions not designed for real-world use and sensing interfaces
that do not account for full-posture tracking. Furthermore, the machine learning models
they apply for posture recognition are not suitable for real-time deployment due to their
computational intensiveness. Furthermore, the datasets they use for training the machine
learning classifiers are limited in size and user group diversity. They also target a limited
range of sitting postures that do not reflect the dynamicity of seated behavior.

Roh et al. (2018) used a low-cost load cell system made of four load cells mounted on
the bottom rest of a chair [36]. They explored using SVM, LDA, quadratic discriminant
analysis (QDA), NB, and random forest. They achieved an accuracy of 97.20% with SVM
with an RBF kernel on a weight sensor dataset obtained from guided experiments.

Zemp et al. (2016) trained several machine learning classifiers on data obtained from
20 pressure sensors mounted on a chair and on the arm rests in addition to accelerometers,
gyroscopes, and magnetometers attached to the rear of the backrest [37]. They trained
several machine learning classifiers including SVMs, multinomial regression (MNR), NN,
and random forest on manually labeled sensor data obtained from guided experiments to
detect seven sitting postures. Their best-performing algorithm was random forest boosted
by bagging and ensemble techniques, achieving an accuracy of 90.9%.

A study by Ma et al. (2017) used 12 textile pressure sensors mounted on the bottom rest
and backrest of a wheelchair and implemented J48 trees, SVM, multilayer perceptron (MLP),
NB, and k-NN to classify five wheelchair-specific sitting postures [38]. They achieved an
accuracy of 99.51% using J48 decision trees. However, they used more sensors than in our
study and detected only five wheelchair-specific postures.
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Hu et al. (2020) used six flex sensors mounted on a regular chair and artificial neural
networks (ANNs) implemented on a field programmable gate array (FPGA) to detect seven
basic sitting postures with an accuracy of 97.78% with a floating-point evaluation and
97.43% accuracy with the 9 bit fixed-point implementation [39].

Luna-Perejón et al. (2021) used force-sensitive resistors (FSRs) mounted on the bottom
rest of a chair and ANN to classify seven sitting postures with an accuracy of 81% [40].

Jeong et al. (2021) combined FSRs and distance sensors embedded in an office chair
to detect 11 sitting postures using k-NN and achieved an accuracy of 59%, 82%, and
92% using the pressure sensors only, distance sensors only, and mixed sensor systems,
respectively [41].

Farhani et al. (2022) used FSRs attached to the seat pan of a Formid dynamic chair
and RF, SVM, and GDTs to classify seven basic sitting postures with an accuracy of around
90% [42].

Stretch pose detection has received little attention in the literature especially using
methods such as machine learning. Li et al. (2021) applied a badge-reel stretch sensor to
detect spinal bending or stretching. However, this sensing interface is invasive and uses a
rigid and simple displacement change computation for spine stretching detection [43].

Previous studies have pointed to a potential effect of user BMI on recognition perfor-
mance when using pressure sensors to detect sitting posture [38,44]. However, none of these
studies fully investigated the importance of BMI in posture recognition, and they showed
conflicting results regarding its impact, as detailed in Section 4.2. We investigated the
impact of taking BMI into consideration in posture recognition and discuss its importance
in the LifeChair in Section 4.2.

Notably, our proposed system for posture monitoring outperforms the works dis-
cussed above and is based on a sensing interface that is not fixed—it is non-invasive,
portable, and lightweight and can be fit to various chairs for active posture recognition.
Our machine learning models are built around data obtained from a biomechanics-based
model that covers all areas of the user’s back, including the shoulders, lumbar regions,
center of the back, and bottom of the neck. This accounts for critical points of posture
monitoring such as vertical and horizontal pressure symmetry, shoulder contact, lumbar
contact, in addition to neck and head position, which have been neglected in related works
to varying degrees. Furthermore, the type of data collected by our system is also directly
relevant to many aspects of user well-being from posture to behavior and suitable for the
design of posture data-driven tools for improving posture habits such as personalized
stretch recommendation systems.

Table 1. Summary of the key related works in sitting posture recognition from sensing data using
machine learning.

Sensing Data Algorithm Sitting Postures Reference

Load Cells SVM, k-NN, LDA,
QDA, NB, RF 6 [36]

Pressure Sensors SVM, NN, RF, MNR 7 [37]

Pressure Sensors J48 trees, SVM, MLP, NB,
k-NN 5 [38]

FSRs ANN 7 [40]
Flex Sensors ANN 7 [39]

FSRs and Distance Sensors k-NN 11 [41]
FSRs RF, SVM, GDT 7 [42]

3. Materials and Methods

In this study, we implemented an IoT cushion called LifeChair to collect sitting posture
and seated stretch pose pressure sensing data and applied supervised machine learning
techniques to recognize human sitting postures and stretch poses for improving human
well-being. The LifeChair is a smart cushion for the backrest of the chair that uses a novel
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pressure sensing technology specifically developed for human posture detection as detailed
in Ishac and Suzuki (2018) and Bourahmoune and Amagasa (2019) (Figure 1) [45,46]. The
LifeChair aims to solve the sedentary problem by actively recognizing and correcting
the user’s posture to improve his/her health, mood, and productivity. While the design
and implementation of the LifeChair device were covered in the works of Ishac and
Suzuki (2018) and Bourahmoune and Amagasa (2019), this work expands on key aspects
of the posture training system of the LifeChair IoT cushion that relate to the application
of machine learning techniques for sitting posture recognition and seated stretch pose
recognition in addition to their application for personalized well-being improvement. In
this section, we detail the posture monitoring system, data collection protocol, active
labeling, and machine-learning-based methods for posture and stretch recognition. We
also detail the experimental settings for the portability study and our proposal for the
posture–stretch recommendation system.

Figure 1. The LifeChair posture training system: The LifeChair IoT cushion (left) and the LifeChair
smartphone app (center) in a workplace scenario (right).

3.1. Sensing Interface

The LifeChair uses specially developed e-textile pressure sensors for tracking the
user’s back pressure data [45]. The LifeChair sensors provide force-sensitive output and
generate pressure data in the range of 5 g to 10 kg. The 9 sensors are designed to cover the
shoulder and lumbar region to account for full-back posture tracking (Figure 2). To cap-
ture a wide range of data from users with varying body types and sizes, the size of the
sensors is based on the 5th percentile human adult U.S. female (lower limit) and 95th
percentile human adult U.S. male (upper limit) seated shoulder width, height, and hip
width. The LifeChair cushion model used in this work weighs less than 500 g and measures
52 cm (h) × 40 cm (w) × 2.2 cm (t). The weight and dimensions of the LifeChair cushion
make it a portable and flexible solution for posture monitoring in the workplace and at
home. The cushion is strapped to a standard office chair through either a single strap
or a double strap, depending on the type and shape of the back of the office chair. The
LifeChair cushion is also wireless and battery-powered with a 3.7 V lithium-ion battery
that provides one to two weeks’ operation time on a single charge. The LifeChair system
records in real-time the raw pressure sensor values at a frequency of 5 Hz in addition to the
timestamp, posture labels, and user-input data, which include body characteristics (height
and weight) and back-pain history data.

The LifeChair system uses bi-directional communication between the IoT cushion and
a dedicated smartphone application available for Android and iOS. As described in Ishac
and Suzuki (2018), the cushion sends the back pressure data in real-time to the smartphone
application via Bluetooth Low Energy (BLE 4.0) [45]. The cushion captures a one-time
calibration of the individual upright posture for each user through an application-guided
calibration routine and runs a balance check before validating the calibration snapshot. Af-
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ter successful calibration, the device begins to track sitting posture in real-time by matching
real-time back pressure sensor readings to sitting postures according to a threshold-based
posture template model [45]. This threshold-based method generates posture labels sys-
tematically and actively to train the supervised machine learning classifiers for the sitting
posture recognition task (Section 3.3). Figure 3 shows the workflow of our proposed method
and an overview of the LifeChair system control protocol comprising the sensing phase,
the recognition phase, and the feedback phase. The recognition phase combines both the
posture template method and machine learning to recognize postures. The LifeChair IoT
cushion uses haptic feedback as vibrotactile cues to encourage upright sitting posture,
reduce slouching, and alert the users with various reminders. The LifeChair IoT cushion
used in this study incorporates four vibration motors and eight different vibration patterns
(Figure 2). The haptic feedback patterns are pulsed at a 50% PWM frequency and produce
approximately a 3.0 G force of vibration. Each actuator is located towards the corner of
each quadrant of the LifeChair to align with the right shoulder, left shoulder, right lumbar,
and left lumbar regions of the user. The combination of motors activated notifies the user
of how to fix his/her posture. For example, if the upper motors are activated, then the user
needs to correct his/her lumbar posture. The combination of vibration patterns informs
the user how to fix his/her posture through using haptics in a comprehensible manner
without the need for a visual or auditory interface. The quality and effectiveness of the
posture correction feedback thus depend on an accurate tracking and recognition of the
sitting postures. The LifeChair app provides additional active visual feedback on the main
screen, showing a live pressure distribution heat map and the recognized sitting posture.

Figure 2. Front view of the LifeChair interface (left) and the LifeChair sensor layout (1 to 9) (right).

Figure 3. Workflow of our proposed system for machine learning-based sitting posture recognition
using the LifeChair system.

3.2. Sitting Posture and Stretch Pose Data

Posture data: To build the main sitting posture dataset, 18 healthy subjects (12 male
and 6 female) with an average height of 169.07 ± 7.03 (std) and a weight average of



Sensors 2022, 22, 5337 8 of 22

62.50 ± 10.71 (std) belonging to three different groups of BMI (high BMI, normal BMI, low
BMI) were instructed to sit in a standard office chair equipped with a LifeChair device
and perform a set of common predefined postures. The source of the dataset used in this
work is 80% bigger than in our previous work in Bourahmoune and Amagasa (2019) [46].
The chair used for this dataset is the Plus Office Chair Be KD-MA61SL YG, which we
denote as the “Standard Back” chair in the portability study. A front-facing camera and a
45-degree front-facing camera were also used to capture video footage of the experiments
for visual cross-reference (Figure 4). All experiment subjects were properly coached on
how to use the LifeChair, and a one-time calibration was performed for each subject
prior to the experiment. All subjects were familiarized with each posture prior to the
experiment and were asked to follow an automated slide-show of the postures with no
further feedback or instructions in order to capture inter-individual variability in sitting
posture. Two rounds were performed where each posture was held for 10 s and repeated
three times with an interval of 10 s of upright posture between each posture. The final
posture dataset thus consisted of user-input data, timestamps, raw sensor values, and the
posture labels (312,587 recordings). The posture labels were one of the following: Upright,
Slouching Forward, Extreme Slouching Forward, Leaning Back, Extreme Leaning Back,
Left Shoulder Slouch, Right Shoulder Slouch, Left Side Slouch, Right Side Slouch, Left
Lumbar Slouch, Right Lumbar Slouch, Rounded Shoulders, Forward Head Posture, Slight
Correction Needed, and No User (i.e., no contact with the LifeChair).

Figure 4. Overview of the experimental setup of sitting posture and stretch pose data collection.

Stretch pose data: As mentioned in Section 1, integrating frequent stretching while
sitting is an important aspect of developing healthy sedentary habits. We propose in this
study to incorporate seated stretches into the posture monitoring system by recommending
to the users a set of various physio-recommended seated stretches to perform in accordance
to their individual sedentary habits and posture trends. We hypothesized that it is possible
to capture and detect seated stretch poses in addition to the sitting postures detected by the
LifeChair system. We applied machine learning to recognize six different seated stretch
poses in order to recommend a stretch guidance routine to the user and check whether
the stretches are performed correctly using pressure mapping over time. Within the same
experimental setup of the sitting posture data collection, we collected the stretch pose
data of six common chair-bound stretches from 13 healthy subjects (8 male and 5 female)
with an average height of 169.87 ± 7.37 (std) and an average weight of 62.70 ± 9.50 (std).
We specifically targeted stretches that are mostly associated with desk-bound work and easy
to perform while sitting down to limit the barriers to performing stretching and introducing
activeness to the user’s daily routine. Similar to sitting posture data collection, the users
were instructed to perform six common stretches while sitting down on the chair, and each
stretch was held for 10 s and repeated three times with intervals of upright posture between
each stretch.
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3.3. Machine-Learning-Based Posture Recognition

In order to build an AI-based agent for sitting posture and stretch pose recognition, we
trained multiple supervised machine learning classifiers using the sitting posture dataset
and the stretch pose dataset. A core challenge in human activity recognition in general and
in sitting posture recognition in particular is the lack of relevant and sufficient annotated
training data [47]. In the case of sitting posture recognition, previous works employed a
manual labeling method of the sitting position as interpreted by the experimenters. In the
research of Roh et al. (2018), a systematic posture data annotation based on the left–right
balance and front–back balance of the user weight was implemented [36]. Although we
believe this effort is in the right direction, it is incomplete and falls short in accounting
for the critical descriptors of sitting posture such as shoulder positions, vertical symmetry,
and horizontal symmetry. In this study, we implemented the LifeChair’s innate posture
model as an active posture labeling method for training the machine learning classifiers
in the posture recognition task. The LifeChair posture model comprises threshold-based
posture templates that represent 15 different sitting postures that take into consideration
important posture aspects that were not addressed in previous studies (e.g., rounded
shoulders, forward head posture). Overall, using the threshold-based posture template
method, real-time pressure data values at each individual sensor were compared to the
calibration snapshot of each of these individual sensors, and the instantaneous squared
difference between these values was assessed against a pre-defined threshold value to
determine the current posture according to a state lookup table. This method is described
in detail in Ishac and Suzuki (2018) and Bourahmoune and Amagasa (2019), and we expand
on it below with how it is used for actively training the machine learning classifiers in the
posture recognition task [45,46].

Before tracking sitting posture for a given user, the system first calibrates the subject’s
upright posture through an app-guided calibration routine. The LifeChair app then scans
the calibration snapshot for approximate balance in pressure distribution from the center-
line and alerts the user if an imbalanced calibration is detected. The calibration sensor data
pressure readings are then stored as a reference frame to which real-time deviations in
pressure are compared. To teach the machine learning models the different sitting postures,
the posture labels are generated through the threshold-based posture model, which matches
real-time pressure sensor data to posture templates based on the deviation of the errors
from the calibration reference array. This posture model takes into account Vi(t = 0),
which denotes the sensor pressure values at the time of calibration for a given user at each
pressure sensor fi, where i is in reference to the sensor position in the LifeChair IoT cushion
shown in Figure 2, Vi(t), which denotes the instantaneous sensor pressure values at time t,
and E, which denotes the deviation errors as defined in Equation (3).

Vi(t = 0) = [ f1(0), ..., f9(0)] (1)

Vi(t) = [ f1(t), ..., f9(t)] (2)

E(t)i = (Vi(t)−Vi(0))2 > α (3)

where α in Equation (3) is a constant strictness threshold defined in previous work, which
controls the strictness of the error deviation from the calibration reference [45]. The par-
ticipant is assumed to be upright if the error deviation is smaller than α at each location.
If the error exceeds α, a posture is matched based on a state look-up table, as detailed
by [45]. This method can detect up to 15 different sitting postures or states, which are
then used to train the machine learning classifiers: Upright, Slouching Forward, Extreme
Slouching Forward, Leaning Back, Extreme Leaning Back, Left Shoulder Slouch, Right
Shoulder Slouch, Left Side Slouch, Right Side Slouch, Left Lumbar Slouch, Right Lumbar
Slouch, Rounded Shoulders, Forward Head Posture, Slight Correction Needed, and No
User (i.e., no contact with the LifeChair). Over time, the machine learning models trained
on this labeled dataset have the ability to capture finer trends in sensor data divergence for
posture and recognition than the threshold-based method alone.
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As mentioned in Section 2, user body characteristics’ information such as weight
and height data is of particular importance in sitting posture tracking and recognition.
The LifeChair system also records user body mass index (BMI), which is used as an
additional feature in training the machine learning models. The BMI combines information
on the user’s weight and height and is defined as the ratio of the weight (kg) to the height
squared (m2), as shown in Equation (4). We specifically used the BMI as an index of user
body characteristics’ data because (1) it captures enough indication about the user’s overall
weight, height, and shape and (2) it is a widely used measure of body shape and health
that users are familiar with. We thus investigated the impact of including the BMI as a
feature for training on the performance of the machine learning classifiers in the posture
recognition task.

BMI = weight/height2 (4)

For labeling the stretch pose data, the nature of the stretch pose must be taken into
account. Unlike sitting posture, which is a dynamic event, a stretch pose is a static event
that requires a conscious and dedicated effort from the user. Subjectivity in stretch inter-
pretation and variable physical predisposition to perform the stretches result in greater
inter-individual variability compared to the sitting posture recognition task. A stretch
template approach using a similar threshold-based method to the posture recognition task
in this case is not desirable. The stretch pose labels were thus obtained manually with video
cross-validation and were: both arms up (BAU), hanging arms down (HAD), left arm cross
(LAC), right arm cross (RAC), left leg up and across (LLU), and right leg up and across
(RLU). This lends further insight into the performance of the machine learning classifiers
when trained on data labeled using the posture model described above or with manually
labeled data. Figure 5 shows three examples of the stretches performed by the participants,
the right arm cross stretch, the both arms up stretch, and the right leg cross stretch.

Figure 5. Examples of stretches preformed by experiment participants. Right Arm Cross, Both Arms
Up, and Right Leg Cross.

Ideally, a good machine learning model for this problem should be: (1) highly accurate
and (2) computationally cheap and (3) efficiently deployable on smartphones/tablets in
real-time. First, achieving a high accuracy is especially important for the LifeChair system
because the device provides haptic feedback to the user based on the user’s detected posture.
Accurate recognition is key to establishing an effective posture correction scheme and smooth
user–device interaction. Second, the posture recognition task should be achieved with a
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computationally cheap algorithm because the LifeChair aims to track and recognize sitting
posture in real-time. The LifeChair app displays in real-time the user’s dynamic pressure
distribution on the main app screen alongside the current recognized posture. Finally, it
is critical to implement algorithms that guarantee efficient deployment to and integration
with various software destined for smartphones and tablets. As noted in Tomasev et al.
(2020) [14], despite the appeal of complex machine learning architectures, models with
minimum overall complexity are preferred in applications such as the one presented in
this work because of their accessibility and suitability for fast deployment. We investigated
in our work a variety of linear and non-linear supervised machine learning models that
fit these criteria and include: decision trees-classification and regression trees (DT-CART),
Random Forest (RF), k-nearest neighbors (k-NN), linear regression (LR), linear discriminant
analysis (LDA), naive Bayes (NB), and neural network-multilayer perceptron (MLP). The
models were implemented in Scikit-learn using the default hyperparameter settings, unless
otherwise specified [48]. For both the posture and the stretch recognition tasks, these models
were trained on the raw pressure sensor data, posture label, or stretch label, in addition
to the BMI where relevant. K-cross-validation was used for the statistical estimation and
comparison of the performance of the models. To investigate the importance of the BMI for
posture recognition, group-specific training on each user BMI group was performed [49].

3.4. Portability Study

To investigate the portability of our machine-learning-based posture recognition sys-
tem and its adaptability to different environments, we conducted a portability study where
we tested the various machine learning models on five datasets obtained from five different
chair types. The chair types investigated cover the most common variations in backed
chairs and were: the Small Back chair type, where the back area covers a smaller area of the
user’s back, namely the lumbar and center region with no coverage of the shoulder region;
the Standard Back chair type, which is the average ergonomic chair with coverage along
most of the shoulder region, central region, and lumbar region of the back; the Mid Back
chair type, which covers the central region only with no coverage of the shoulder region
and lumbar region; the High Back chair, which has additional coverage vertically in both
the shoulder region and the lumbar region, but is curved inwards at the edges; the Wide
Back chair, which has additional coverage horizontally in the shoulder region, the central
region, and the lumbar region, but is slightly curved at the edges. The different chairs used
are shown in Figure 6.

Figure 6. The five different shair types used in the portability study.

As the environment dictates the types of postures that can be adopted, we selected to
investigate the recognition of nine common postures using our method for each chair type,
and the postures selected were: Forward Head Posture, Leaning Back, No Left Side, No
Left Shoulder, No Right Side, No Right Shoulder, Rounded Shoulders, Slouching Forward,
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Upright. The Forward Head Posture and No Shoulders Posture in particular received little
investigation overall in previous works and in particular in settings involving variable
environments. In this experiment, ten participants were requested to perform the nine
different sitting postures on each chair type. A final portability dataset for every type was
compiled for training the different machine learning models to recognize the sitting posture
and comparing the performance of the machine learning models when group-trained on
every chair type dataset individually or when trained on a global dataset combining the
data from all chair types.

3.5. Posture–Pose Similarity Assessment

Frequent stretching is an important aspect of good posture habits. We propose to build
a stretch pose recommendation system that suggests stretch poses to be performed based
on each individual user’s sitting posture trends. In the LifeChair system, the raw sensor
data captured for stretch pose and sitting posture is of the same nature: a nine-dimensional
vector of raw pressure sensor values corresponding to the back pressure distribution of the
user. We propose to use the degree of dissimilarity between a stretch pose and a posture as a
basis for designing a stretch recommendation system optimized for each user. Since the
purpose of performing a given stretch pose is to offset the effect of the prolonged adoption
of a given notably different posture, a key idea proposed is to recommend performing a
stretch pose that is the least similar to the dominant posture of the user for a target time
period. We used the cosine similarity measure to assess the degree of similarity between
postures and stretch poses [50]. Specifically, the cosine similarity measures the similarity
between two non-zero vectors by calculating the cosine of the angle between them, as
shown in Equation (5), where p and s are the sitting posture vector and the stretch pose
vector, respectively. An example of its use in applied machine learning is the assessment
of the degree of similarity between text documents. This metric is a measurement of
orientation and not magnitude, and it can be viewed as a comparison between posture
and pose pressure distributions in a normalized space. A high cosine value implies that
the stretch pose’s pressure distribution is closely related to that of the sitting posture it is
compared to. A low cosine value implies that the stretch pose’s pressure distribution is
divergent from that of the sitting posture it is compared to. Based on the calculation of the
cosine similarity between every stretch with every posture, it is possible to recommend the
stretch pose that has the lowest cosine similarity with the most common posture recorded
for a relevant interval of time.

cos(p, s) =
ps

‖p‖‖s‖ =
∑n

i=1 pisi√
∑n

i=1 (pi)2
√

∑n
i=1 (si)2

(5)

4. Results and Discussion
4.1. Sitting Posture Recognition

We present the results of the sitting posture recognition task using multiple machine
learning classifiers. In Table 2, we show the performance of: k-nearest-neighbors (k-NN),
random forest (RF), naive Bayes (NB), decision trees (DT-CART), linear regression (LR),
Linear discriminant analysis (LDA), and neural network-multilayer perceptron (NN MLP)
on the augmented posture dataset described in Section 3.2. For each classifier, we report
two different results according to the input data used; “Sensor Only” indicates that the
input features consisted of the raw sensor values only, and “Sensor + BMI” indicates that
the input features consisted of the raw sensor values and user BMI. The scoring metric
used for comparison is the overall accuracy as defined in Equation (6). This metric takes
into account both the model’s precision and recall where Tp is the true positives, Tn is the
true negatives, Fp is the false positives, and Fn is the false negatives.

Accuracy =
(Tp + Tn)

(Tp + Tn + Fp + Fn)
(6)
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As in Bourhamoune and Amagasa (2019) [46], the Random forest classifier and the
decision tree classifier achieved the best accuracies in both cases when using sensor data only
and sensor data with the participant’s BMI. Random forest achieved the highest accuracy of
98.82% with the combination of sensor data and the BMI as the input and 97.09% with the
sensor data only (Table 2). This difference in classification accuracy when using the BMI as
an additional feature is significant (Wilcoxon signed rank test, p < 0.01) and shows that the
BMI can indeed be useful in capturing individual variability in posture adoption.

Table 2. Classification performance of the tested algorithms in the sitting posture recognition task.
* p < 0.01 Wilcoxon signed rank test.

Algorithm Sensors Only Sensors + BMI

RF 0.9709 0.9882 *
DT-CART 0.9619 0.9843

k-NN 0.9213 0.9229
NN (MLP) 0.8009 0.8838

LR 0.5367 0.5520
LDA 0.5316 0.5529
NB 0.4171 0.4830

Random forest is a widely used and popular machine learning algorithm with exten-
sive applications in both the scientific literature and in industry projects [51,52]. Figure 7
shows the validation curves for the random forest classifier when using sensor data only
and when using sensor data with the BMI. The maximum accuracy was reached early at a
depth of 30 trees, which is a reasonably low threshold for successful real-time use. This
result is important because of its suitability for implementation and deployment in mobile
and IoT environments.

Figure 7. Validation curve (accuracy) for random forest in the sitting posture recognition task when
using sensor data only (left) and when using sensor data and BMI (right).

Zemp et al. (2016) achieved an accuracy of 90.9% using random forest in classifying
seven postures [37]. Roh et al. (2018) achieved an accuracy of 97.20% in classifying six
postures using RBF-kernel SVM, which is notably too computationally intensive for real-
time deployment in IoT edge devices [36]. Zhu et al. (2003) achieved an accuracy of
86% using slide inverse regression in classifying ten postures [53]. Previous studies have
achieved fair accuracies ranging from 78% to 88% using PCA, hidden Markov models, and
naive Bayes [33–35]. Hu et al. (2020) used ANN and achieved an accuracy of 97.78% on a
significantly smaller dataset [39]. Luna-Perejón et al. (2021) used FSRs and ANN to achieve
an accuracy of 81% [40]. Jeong et al. (2021) used FSRs and distance sensors and k-NN
and achieved an accuracy of 59%, 82%, and 92% using the pressure sensors only, distance
sensors only, and mixed sensor systems, respectively [41]. Finally, Farhani et al. (2022) used
force-sensitive resistors (FSRs) and random forest and achieved an accuracy of 94% [42].
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Our results outperformed these works and the previous studies that attempted to
combine pressure sensing and machine learning for posture recognition. It is important
to point out that these studies are optimized for the datasets obtained in their respective
experiments, and a direct comparison of the algorithms’ performance in classifying sitting
posture is not the goal of this work. In our proposed system as well, the results were
optimized for the postures generated by the LifeChair’s active labeling method, and one of
our goals was to find the best classification models for the sitting posture recognition task
with the LifeChair IoT cushion. Ma et al. (2017) achieved an accuracy of 99.51% using J48
decision trees [38]; however, they used more sensors than in our study and detected only
five wheelchair-specific postures. The machine-learning-based LifeChair system detected
15 different different postures with a high accuracy using a common, fast, and robust
machine learning classifier. The improvement in classification accuracy achieved in this
study is most likely due to the combination of the spatial deployment of the sensors in the
LifeChair interface and the biomechanics-based data labeling and training of the machine
learning models.

This is important because poor interface design and poorly modeled human activity
data are significant challenges in HAR. In this study, these two challenges were effectively
addressed by implementing a sensing interface specifically designed to capture a wide
range of posture-related parameters such as full-back balance tracking and shoulder and
lumbar region contact monitoring with a validated biomechanics-based human posture
model. Furthermore, we were able to detect two key postures related to the head and
neck position that previous studies did not directly address. Users can maintain full-back
balance and full contact with the LifeChair device, but exhibit neck and shoulder poses
that are detrimental to their health in the long run. These postures are the forward head
posture (Slight) and rounded shoulders (No Shoulders), which are widely common today
due to the rise in extended interaction with hand-held devices.

To further investigate this impact of the spacial distribution of pressure sensing data
on the performance of the best-performing classifier for posture recognition, we report the
results of the sensor ablation study (Table 3). We conducted three types of sensor feature
ablations: nine individual ablations for each sensor, three horizontal ablations for sensor
groups distributed horizontally, and three vertical ablations for sensor groups distributed
vertically. For the individual ablations, the lowest accuracy was reported for sensor 7, sensor
3, sensor 6, sensor 5, and sensor 1, in that order, with 95.40% for sensor 7. This suggests that
the areas covered by these sensor affect the accurate recognition of the postures investigated
in this study, which is consistent with the intended spatial design to capture the extreme
sways in positions for each posture. Interestingly, the horizontal ablations had more impact
on the classification accuracy than the vertical ablations. The lowest accuracy reported across
all of the ablations was for the group of sensor 4, sensor 5, and sensor 6, with 88.05%, which
lies in the center of the sensing interface and captures data on the left and right sways in
position, in addition to the maintenance of contact in the center. In contrast, the vertical
ablations had less impact on the classification accuracy with accuracies ranging between
92.42% and 92.88%. These results point to the importance of the spatial distribution of the
pressure sensors for capturing salient information on the back pressure distribution when
used as an input for machine learning classifiers for posture recognition. Notably, across
all the different types of sensor ablations, despite the missing features, either individually,
horizontally, or vertically, the range of accuracies for posture recognition using the LifeChair
remained comparable to or higher than the similar works discussed in Section 2.
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Table 3. Classification performance of random forest classifier in the sitting posture recognition task
for different ablation settings.

Ablation Type Ablated Sensor/s Accuracy

Individual

1 0.9589
2 0.9659
3 0.9549
4 0.9622
5 0.9581
6 0.9575
7 0.9540
8 0.9600
9 0.9600

Horizontal
1, 2, 3 0.8983
4, 5, 6 0.8805
7, 8, 9 0.8982

Vertical
1, 4, 7 0.9042
2, 5, 8 0.9288
3, 6, 9 0.9042

4.2. BMI Divergence

Table 4 shows the classification accuracy of the best-performing machine learning
classifier for three different participant groups based on their BMI. The posture recognition
accuracy using random forest when performed separately for each group showed that the
accuracy for low-BMI users was significantly lower than that of normal-BMI users and
that of high-BMI users (Wilcoxon signed rank test, p < 0.01). In the study of Ma et al.
(2017), the BMI had no effect on the accuracy of the machine learning models in posture
detection, while Kim et al. (2018) noted a lower accuracy for smaller children in their child
posture study [38,44]. In the case of Ma et al. (2017), the absence of a BMI effect might be
due to the position of the sensors (bottom rest of a wheelchair) and the limited range of
motion associated with wheelchair-specific postures. Height is an important parameter to
consider in sitting posture. The majority of office chairs have height adjustment features to
control the elevation of the bottom rest from the ground; this is because user height has a
direct effect on the user’s weight distribution on the chair and, consequently, on the user’s
posture and level of comfort. Weight is an important parameter in our system because our
pressure sensors are force-based. Thus, one of the ways to improve performance in sitting
posture recognition tasks is to include the BMI as a feature in addition to the sensor data.
Another way to address this divergence in our system lies in the initial posture model itself.
In the system presented in this study, a potential source of this difference is the threshold
α in Equation (3), which took a uniform value for all three groups during the calibration
step for our data collection experiments. As α represents the strictness of the sensor error
deviation from the calibration reference, the low-BMI group might require a less strict value
than the normal-BMI group and the high-BMI group. Therefore, to improve the accuracy
for the low-BMI group and, thus, the overall accuracy of the system, we combined the
inclusion of the BMI as an input feature for training the machine learning classifiers and the
implementation of a lower α upon calibration for users with a BMI lower than 18.5 kg/m2.
This effectively allows for a user-based personalization and improvement of the system
centered around their body characteristics’ data.

Table 4. Accuracy divergence based on user BMI. * p < 0.01 Wilcoxon signed rank test.

User Group BMI(kg/m2) Accuracy

Low BMI BMI < 18.5 0.97001 *
Normal BMI 18.5 ≤BMI≤ 25.0 0.9898

High BMI BMI > 25.0 0.9846
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4.3. Portability and Adaptability

Table 5 shows a summary of the model accuracies for posture recognition in the porta-
bility study. For each chair type, two results are shown: the accuracy of the model when
group-trained on its respective dataset and the accuracy of the model when trained on the
global dataset that includes all chair types. One aim of this portability study is to explore the
adaptability of the machine-learning-based posture recognition in variable environments.
This is important because the portability and adaptability of machine-learning-based sitting
posture sensing systems are some of the main limitations of these solutions.

Table 5. Accuracy of the best-performing machine learning classifier (Random Forest) in the posture
recognition task in five different environments using two modes of training.

Environment Training Mode Accuracy

Small Back Global Training 0.7600
Group Training 0.9801

Standard Back Global Training 0.9200
Group Training 0.9772

Mid Back Global Training 0.5600
Group Training 0.9719

High Back Global Training 0.8600
Group Training 0.9782

Wide Back Global Training 0.7600
Group Training 0.9829

Across all chair types, the accuracy is higher when training the model on the individual
chair type’s group dataset as compared with training the model on the dataset of all chair
types combined. For the group training mode, the accuracies ranged between 97.19% and
98.29%, with the highest accuracy recorded for the Wide Back chair type. This is likely
due to the fact that the Wide Back chair type provides a full surface area for the LifeChair
IoT cushion with all sensor groups covered both horizontally and vertically. Due to the
spatial distribution of the pressure sensors embedded in the LifeChair cushion, the shape
and position of the backrest of the chair may have an impact on the performance of the
posture recognition models. However, this impact can be alleviated through multiple
strategies at the device settings’ level and on the model training level. On the device level,
environment-based calibration solves this problem by calibrating the reference pressure
distribution on a given chair for computing the threshold-based method used to train the
machine learning classifiers. On the model training level, a group training or global training
strategy of the machine learning models can be considered to improve the robustness of
the machine learning models when deployed.

For the global training mode, the accuracies ranged between 56% and 92% with the
Mid Back chair type recording the lowest recognition accuracy. This drop in accuracy for
the Mid Back chair type in the global training mode is consistent with our observations in
the horizontal sensor group ablations in Section 4.1, whereby the accuracy was shown to
be most sensitive to ablating the horizontal sensor groups. The group training for the Mid
Back chair type recorded a higher accuracy of 97.19%, suggesting that in cases where the
environment is unique (Mid Back chair type, i.e., double horizontal sensor group ablation),
training the model on a the specific environment dataset is more robust than using a
globally trained dataset.

As the global training recorded high accuracies for all chair types except the Mid
Back chair type for the reasons explained previously, we can adopt a deployment strategy
for new environments that starts with a globally trained model, then transitions into a
specific group-trained model for the new environment. This is useful for cases when new
environment data are scarce where a globally trained model can be used to produce fair to
high posture recognition accuracies until a sufficient amount of data is obtained for this new
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environment. The impact of this is two-fold: first, this allows for building an individualized
posture recognition model with better recognition accuracy for each environment; second,
this contributes to the robustness and generalizability of the global model.

4.4. Seated Stretch Recognition

Figure 8 shows the heat maps of the average pressure distribution for each of the six
stretches across all subjects. A low pressure reading is represented in the lighter greens, and
a high pressure reading is represented in the darker blues. For example, 8a, which represents
the heat map for the stretch pose “right arm cross” (RAC), shows a high pressure reading on
the upper left sensor. This captures accurately the pose performed by the participants where
they extended the right arm across the chest and pressed the left arm on the right elbow.
The pressure distribution heat maps show that the six stretches are visually distinguishable
from each other. On this basis, we trained the same machine learning classifiers used in
the posture recognition task to recognize these six stretches and report their performance
results in Table 6. Based on the results from the posture recognition and BMI divergence
experiments, the input used for the stretch recognition task consisted of the sensor data
and user BMI. Consistent with our results from the posture recognition task, random forest
performed the best in recognizing the six stretch poses with an accuracy of 97.94%.

Figure 8. Average pressure distribution heat maps of the six common chair-bound stretches: (a) Right
Arm Cross (RAC); (b) Left Arm Cross (LAC); (c) Both Arms Up (BAU); (d); Right Leg Up (RLU);
(e) Left Leg Up (LLU); (f) Hanging Arms Down (HAD).

Table 6. Classification performance of the tested algorithms in the stretch pose recognition task.

Algorithm Sensors + BMI

RF 0.9794
DT-CART 0.9658

k-NN 0.9143
NN (MLP) 0.8121

LR 0.5780
LDA 0.5526
NB 0.4936

Figure 9 shows the confusion matrix for the stretch pose recognition task. Each stretch
pose investigated was correctly classified with an accuracy between 96% and 99%. It can
be observed that the stretch pose where the participants had their right leg up and across
(RLU) was the most prone to misclassification. RLU was mostly misclassified as the stretch
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pose where subjects were leaning forward with their arms hanging down (HAD) or as the
stretch pose where subjects had their left leg up and across (LLU). A possible explanation
for this is related to the subjects’ sitting behavior around the lumbar region. As can be
seen on the heat maps in Figure 8, all subjects on average had a consistent reading on the
ninth sensor positioned behind their left lumbar region. A similar pattern was noticed in
a previous study that used the LifeChair system for the validation of its haptic feedback
correction [45]. In that study, the pressure distribution of the participants in a LifeChair
feasibility experiment with and without the vibration feedback showed that when using the
LifeChair without correction or vibration feedback, the innate posture distribution was on
average imbalanced with a high reading on the left lumbar region and a low reading on the
right shoulder region. This might be due to a higher representation of right-hand-dominant
participants who display a compensation for a lower pressure on the right shoulder with
a higher pressure on the left side of the back in general and the left lumbar region in
particular [54]. This discrepancy could be potentially illustrating a trend captured by the
machine learning recognition of the stretch poses that could not be picked up on by the
threshold-based method alone.

Figure 9. Normalized confusion matrix for the Random Forest classifier in the stretch pose recogni-
tion task.

4.5. Posture–Stretch Recommendation System

Figure 10 shows the cosine similarity matrix between the six seated stretches and nine
common sitting postures that are representative of the aforementioned 15 posture labels
with a focus on imbalances along the left and right axes and the forward and backward
axes. A high cosine value indicates that a stretch pose’s pressure distribution is closely
related to that of a sitting posture. By comparing the cosine similarity between each
stretch and each posture for all possible pairs, it is possible to establish a ranking system
that matches each sitting posture with its least-similar stretch pose. These results show
that, indeed, our posture–stretch recommendation method was successful in capturing
the correct stretch pose for each posture in alignment with physiotherapy standards. For
instance, for the “Upright” posture, the least similar stretch pose is “Hanging Arms Down”
(HAD); for the Slouching Forward posture, the least similar stretch pose is “Both Arms
Up”, followed equally by both “Right Arm Cross” (RAC) and “Left Arm Cross” (LAC); for
the posture “Extreme Slouching Forward”, which notably engages the lumbar region, the
least similar stretch is “Left Leg Up” (LLU) and “Right Leg Up” (RLU); for the postures
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“Leaning Back” and “Extreme Leaning Back”, the least similar stretch pose is “Hanging
Arms Down” (HAD); for the postures “No Right”, “No Left”, “No Right Shoulder”, and
“No Left Shoulder”, their least similar stretches are those with their opposite position to the
posture, respectively, i.e., for “No Right” and “No Right shoulder”, it is “Left Arm Cross”
(LAC), and for “No Left” and “No Left Shoulder”, it is “Right Arm Cross”.

Figure 10. Cosine similarity matrix between the pressure distribution of the sitting postures and the
stretch poses.

Thus, the proposed posture–stretch matching approach effectively captured an intu-
itive relationship between the six stretch poses and their matched postures. The cosine
similarity was able to acquire salient information about the divergence between the sitting
posture vector and the stretch pose vector for successful matching. This allows for the
introduction of a smart individualized stretch pose recommendation system based on
personal posture data that can be tuned to each individual user’s posture performance and
sitting habits.

5. Conclusions

We proposed a machine-learning-based sitting posture and stretch recognition method
using a pressure sensing IoT cushion. We developed an extensive experimental protocol
for sitting posture and seated stretch pressure data collection in divergent working envi-
ronments. We applied multiple machine learning models in a sitting posture recognition
task and in a seated stretch recognition task. We achieved 98.82% in recognizing 15 differ-
ent sitting postures using the random forest classifier, which is a common and accessible
machine learning model suitable for deployment in mobile and IoT environments. We
also achieved 97.94% in recognizing six popular seated stretches. We showed that user
body characteristics’ data (BMI) has a significant impact on the performance of the machine
learning model in recognizing sitting posture. These results allowed us to further explore
the importance of various local sensor groups for the performance of the machine learning
models, and we demonstrated that the horizontal spatial distribution is important for
accurate posture recognition using machine learning in our proposed framework. Fur-
thermore, we validated the portability and adaptability of our method in five different
chair environments and proposed training strategies for the machine learning models
depending on the deployment environment. Finally, we proposed the first posture–stretch
recommendation system and showed that our method was successful in capturing salient
links between each posture and stretch pose studied.



Sensors 2022, 22, 5337 20 of 22

In future work, we aim to implement our system in various real-world scenarios such
as driving, healthcare, and entertainment for improving human well-being. We aim to
expand on the portability study, particularly in cases where the contact area in the back of
the chair makes data collection more challenging. We also plan to explore the performance
of the machine-learning-based posture and stretch recognition using an IoT cushion that
covers a different sensing area, such as the bottom rest of the chair or a localized back region.
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