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Nowadays, portable and wireless wearable sensors have been commonly incorporated
into the signal acquisition modules of healthcare monitoring systems. These multi-modal
wearable sensors are able to simultaneously acquire multi-channel physiological signals
from the human body, which may support the functions of point-of-care pathology screen-
ing and accurate diagnostic decision making in healthcare monitoring systems [1]. Practical
applications call for advanced signal processing and computational intelligence techniques
that may explore the intrinsic features of biological signals and provide useful diagnos-
tic information.

The motivation of this Special Issue is to collect the recent development of biological
signal processing and analysis methods, and their applications in healthcare monitoring and
computer-aided diagnosis. The biological signal processing and analysis techniques contain
the design of signal preprocessing tools for portable wearable sensors, artifact cancellation
methods for signal quality improvement, nonlinear analysis for the representation of signal
complexity or dynamics, feature extraction using time-frequency analysis or statistical
models, pattern classifications, and computer-aided diagnosis based on deep learning
neural networks or other computational algorithms, along with well-devised healthcare
monitoring systems for clinical applications.

Wearable or implantable sensors can record different biological signals generated
by complex physiological processes. The combination of sensor arrays is a promising
solution for the design of effective healthcare monitoring systems. In this Special Issue,
we strive to highlight the state-of-the-art signal processing technologies that are suited
for multi-modal physiological data integration and fusion to generate comprehensive
and clinically actionable information. The body–seat interface temperature measurement
system developed by Liu et al. [2] demonstrates the integration of temperature and infrared
sensor data for a long-term healthcare monitoring application.

This Special Issue covers the topics of biomedical signal feature extractions using the
temporal waveform analysis, frequency analysis, time-frequency analysis, and nonlinear
analysis. Biological signals commonly exhibit different spatiotemporal morphology styles
in their waveforms. For example, electrocardiogram (ECG) signals present quasi-periodic
QRS peaks, which can be detected for RR interval estimation and heart rate variability
analysis. Time-domain waveform processing procedures may include temporal signal
segmentation, signal decomposition and reconstruction, envelop extraction, and so forth.
The rhythm and periodicity properties of biomedical signals can be extracted and measured
in the frequency domain using the fast Fourier transform (FFT), discrete Fourier transform,
Hilbert transform, and wavelet transform techniques [3]. The short-time Fourier transform,
wavelet transform, and time-frequency analysis based on matching pursuit decomposition
can provide more details about the time-varying frequency distributions for signal approxi-
mation in order to study the time-varying frequency properties of nonstationary signals [4].
The work of Zong and Wu [5] is an interesting biomedical signal frequency analysis study
that investigates the relationship between wideband and narrowband simulation noise with
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various center frequencies in the dynamic process of auditory perception with lower-level
transient memory of acoustic features.

Recently, nonlinear analysis methods, such as fractal dimension analysis and sig-
nal complexity analysis, have been used for the multiscale dynamics representation of
physiological signals and the interpretation of nonstationary biological process. Fractal
dimension parameters are often used to quantify the self-similarity of biological signals
at different scales. Signal complexity can be represented as the level of randomness or
fluctuations in the time domain. Entropy models are the appropriate statistical techniques
to study the nonlinear dynamics of nonstationary biomedical signals with different model
parameters [6]. This Special Issue is expected to address the new progress of the entropy
measures such as approximate entropy, sample entropy, fuzzy entropy, and permutation
entropy for the analysis of biomedical signal dynamics or complexity.

Computational machine learning methods such as supervised learning, unsupervised
learning, semi-supervised learning, reinforcement learning, and ensemble learning algo-
rithms have been frequently employed in healthcare monitoring applications and medical
diagnosis decision-making systems. Powered by the emerging cloud-computing technolo-
gies and hardware infrastructures, deep learning paradigms have been extensively applied
in biomedical research projects and engineering applications [7]. The state-of-the-art deep
learning neural networks have the advantages of generating localization details of the re-
gion of interest and mapping the spatial features at different levels in the multiple network
layers using encoding and decoding structures. The most prevailing deep learning archi-
tectures include convolutional neural networks, fully convolutional networks, generative
adversarial networks, and recurrent neural networks. In this Special Issue, we strive to
highlight the recent development of deep learning neural networks in the applications
of physiological data fusion, medical image segmentation [8], lesion detection, texture
analysis, and image registration.
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