
Citation: Ochoa, E.; Gracias, N.;

Istenič, K.; Bosch, J.; Cieślak, P.;

García, R. Collision Detection and

Avoidance for Underwater Vehicles

Using Omnidirectional Vision.

Sensors 2022, 22, 5354. https://

doi.org/10.3390/s22145354

Academic Editor: Thor I. Fossen

Received: 31 May 2022

Accepted: 13 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Collision Detection and Avoidance for Underwater Vehicles
Using Omnidirectional Vision †

Eduardo Ochoa * , Nuno Gracias , Klemen Istenič , Josep Bosch , Patryk Cieślak and Rafael García

Computer Vision and Robotics Research Institute (VICOROB), University of Girona, 17003 Girona, Spain;
nuno.gracias@gmail.com (N.G.); klemen.istenic@gmail.com (K.I.); jep250@gmail.com (J.B.);
patryk.cieslak@udg.edu (P.C.); rafael.garcia@udg.edu (R.G.)
* Correspondence: eduardo.ochoa@udg.edu
† This paper is an extended version of our paper published in Ochoa, E.; Gracias, N.; Istenič, K.; Garcia, R.;

Bosch, J.; Cieślak, P. Allowing untrained scientists to safely pilot ROVs: Early collision detection and avoidance
using omnidirectional vision. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi,
MS, USA, 5–30 October 2020.

Abstract: Exploration of marine habitats is one of the key pillars of underwater science, which
often involves collecting images at close range. As acquiring imagery close to the seabed involves
multiple hazards, the safety of underwater vehicles, such as remotely operated vehicles (ROVs) and
autonomous underwater vehicles (AUVs), is often compromised. Common applications for obstacle
avoidance in underwater environments are often conducted with acoustic sensors, which cannot be
used reliably at very short distances, thus requiring a high level of attention from the operator to
avoid damaging the robot. Therefore, developing capabilities such as advanced assisted mapping,
spatial awareness and safety, and user immersion in confined environments is an important research
area for human-operated underwater robotics. In this paper, we present a novel approach that
provides an ROV with capabilities for navigation in complex environments. By leveraging the ability
of omnidirectional multi-camera systems to provide a comprehensive view of the environment, we
create a 360° real-time point cloud of nearby objects or structures within a visual SLAM framework.
We also develop a strategy to assess the risk of obstacles in the vicinity. We show that the system can
use the risk information to generate warnings that the robot can use to perform evasive maneuvers
when approaching dangerous obstacles in real-world scenarios. This system is a first step towards a
comprehensive pilot assistance system that will enable inexperienced pilots to operate vehicles in
complex and cluttered environments.

Keywords: visual SLAM; omnidirectional multi-camera systems; collision risk assessment; risk map;
ROVs; AUVs

1. Introduction

The study of marine habitats is of utmost importance for the underwater scientific com-
munity. For many decades, marine habitats have been explored in search of hydrothermal
vents or for seabed characterization in the deployment of offshore oil and gas infrastruc-
tures. However, since many of these applications involve environments that are inaccessible
and/or dangerous for direct human intervention, the development of underwater robots
such as remotely operated vehicles (ROV) and autonomous underwater vehicles (AUV)
plays an important role.

The applications and use of underwater robots have been recently growing and they
are becoming an integral part of current marine operations, with high-accuracy navigation,
planning, and mapping in these systems playing a vital role. Therefore, it is not a surprise
that recent research is directed towards achieving better hardware and software capabilities.
Several underwater applications require a combination of sensors, such as surface Global
Positioning Systems (GPS), inertial navigation system (INS), Doppler velocity logger (DVL),

Sensors 2022, 22, 5354. https://doi.org/10.3390/s22145354 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145354
https://doi.org/10.3390/s22145354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3044-8909
https://orcid.org/0000-0002-4675-9595
https://orcid.org/0000-0003-1911-1483
https://orcid.org/0000-0001-8281-7206
https://orcid.org/0000-0002-8599-1012
https://orcid.org/0000-0002-1681-6229
https://doi.org/10.3390/s22145354
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145354?type=check_update&version=1


Sensors 2022, 22, 5354 2 of 30

multibeam echosounder (MBES), or laser scanners, which can obtain results that vary
in precision and performance. However, certain limitations that these types of sensors
have in water and the high costs of fiber optics INS, as well as the growing capabilities
of visual sensors, have led the community to start developing new algorithms based on
simultaneous localization and mapping (SLAM) systems along with cameras as the main
exteroceptive sensor when the robot operates close to the seabed.

Furthermore, in the last few years, omnidirectional cameras have received increasing
interest from the computer vision community in tasks such as augmented reality, motion es-
timation, and SLAM. Advantages of omnidirectional 360° multi-camera system (MCS), such
as their wide field of view (FOV), their high-resolution and high-speed image acquisition,
and their lower costs have opened the door to new technological applications. The wide
FOV is very convenient for visual simultaneous localization and mapping (vSLAM) and
mapping tasks, especially in the case of ROV, as they allow the pilot to operate the robot
directly through images captured by the omnidirectional cameras. This new capability will
extend the pilot’s spatial awareness and reduce the common orientation problems during
missions, particularly in confined or cluttered environments where pilots need to be highly
aware of the environment to ensure the safety of the robot.

Omnidirectional camera systems enable a comprehensive 3D reconstruction of the
surroundings, which can support spatial and proximity awareness in all directions. As such,
the envisioned system described in this paper is intended to generate warnings when an
ROV pilot reaches a position of high collision risk and to override human inputs sent to the
vehicle control. This can be seen as a first step towards a comprehensive driver assistance
system that would enable inexperienced pilots such as scientists to operate vehicles in
complex environments. This concept is shown in Figure 1.

Figure 1. Envisioned ROV piloting system, where early collision detection work of this paper is a
central part.

2. Related Work

The following sections provide a short overview of closely related literature in the areas
of visual SLAM, omnidirectional cameras systems, and underwater collision avoidance.



Sensors 2022, 22, 5354 3 of 30

2.1. Visual SLAM

The detection and avoidance of obstacles in a given environment is linked, inherently,
to the process of estimating the position of a robot with respect to each object around it.
At any time, a fully autonomous system needs a local representation of the surroundings to
analyze potential risks. Such a system can be divided into two processes: the localization
and mapping of the robot and its environment, and a collision detection and avoidance
process. The first process has been researched over a few decades and is generally known as
SLAM. Many algorithms have been proposed to achieve this task, which vary in methods,
and the sensors used to acquire data. When cameras are employed as the only exteroceptive
sensors, it is referred to as vSLAM. Over the past few years, there has been a trend in using
visible radiation as the only external perception modality, and the vSLAM problem has
been extensively studied [1–5]. This trend is partly due to the ability of optical cameras
to obtain range and appearance information about the environment, and the low cost of
the equipment. One of the pioneering solutions was proposed by Davison [6]. The pro-
posed filter-based vSLAM algorithm, named MonoSLAM, was demonstrated using a single
monocular camera to extract features from the environment and estimate the position by us-
ing an extended Kalman filter (EKF). Since then, a variety of solutions using different sensor
configurations have been proposed including monocular [6–10], stereo [11–13], omnidirec-
tional [14–16], and combinations of cameras with other sensors. Additionally, the depth
of solutions can be categorized by the method’s approach into feature-based [6,7], direct
approaches [13,14,17], and keyframe approaches [8,11,12,18]. In the past decade, vSLAM
approaches such as ORB-SLAM [8,11,12] have been incrementally improved to work with
several sensor configurations (e.g., monocular, stereo, RGB-D cameras, and visual–inertial
system configurations) and to be able to robustly estimate the position of a robot.

2.2. Omnidirectional and Multi-Camera Systems

More recently, the SLAM community has benefited greatly from the development
and increased accessibility of large FOV cameras and multi-camera systems. This type
of system configuration can cover a wider field of view, leading to better pose-tracking
robustness due to the observation of more reliable features. Unfortunately, the number
of full SLAM contributions using multiple cameras has been very limited, as opposed
to monocular and stereo configurations. Kaess and Dellaert [19] made use of an eight-
camera rig in a general, non-stereo setting, to reconstruct the full 360° view of a mobile
robot in an indoor office environment. On the other hand, Zou and Tan [20] studied the
vSLAM problem in dynamic environments with multiple cameras. Their Collaborative
SLAM (CoSLAM) implementation runs in real time (38 ms per frame) using inter-camera
tracking and mapping. It also uses methods to distinguish static background points from
dynamically moving foreground objects. Multi-camera PTAM (MCPTAM) [21,22] is a
different approach where the authors changed the perspective camera model to the generic
polynomial model. The system can be used with cameras with minimal or non-overlapping
FOV. Urban et al. [18] presented a multi-camera vSLAM system, MultiCol-SLAM, which
made use of the generic camera model and was developed as an extension of the state-
of-the-art algorithm ORB-SLAM [8]. The implementation was released as an open-source
code [23] and introduced the concept of multi-keyframes (MKF) and multi-camera loop
closure, among other performance improvements.

2.3. Collision Avoidance

As applications in complex and unstructured environments are growing, autonomous
systems are being required to carry out missions safely and efficiently. To accomplish this,
the system needs to be able to correctly sense, detect, and make decisions in case of an
impending collision. Collision avoidance has been addressed and researched over the
last decades, but it is still a trending topic in robotics applications, e.g., unmanned aerial
vehicles (UAV), AUV, and advanced driver assistance system (ADAS). The first stage of
the collision avoidance problem, that is, sensing the surrounding environment, has usually



Sensors 2022, 22, 5354 4 of 30

been carried out using different types of proprioceptive and exteroceptive sensors mounted
in autonomous vehicles (AV). The use or combination of GPS, LIDAR, cameras, ultrasonic
sensors, and other sensors can be found in the literature. The second stage, which involves
detecting collisions with static or dynamic objects, relates to the approach used to model
the system and its environment. A distinction between collision detection systems should
be made depending on their goal. On one hand, research on approaches to detect whether
a collision has happened or not, and how to model it, can be found in [24–29]. On the other
hand, a collision-avoidance system focuses its interest on the prediction of when and where
a collision might happen.

Predicting when a collision might happen closely relates to path planning schemes,
and research has been carried out in this field [30–34]. However, unlike path planning
approaches, collision avoidance usually refers to the ability of the vehicle to recognize dan-
gers and act simultaneously. Generally, Collision avoidance systems (CAS) are navigation
systems with only a local understanding of the surroundings. This makes them reactive
systems based on instantaneous information rather than global motion planner systems.
One of the first real-time approaches to achieve such reactive behavior was the potential
field method (PFM) proposed by Khatib [35]. This method generates virtual repulsive
forces from obstacles to repel the robot away from them. However, this method assumes a
known and predefined world model of the obstacles. Later techniques, such as the vector
field histogram (VFH) [36] and the dynamic window approach (DWA) [37], formulate
the collision avoidance problem in unknown environments, therefore allowing for a more
reactive behavior. A pioneering implementation of this type of system in real time was
presented by Borenstein et al. [38], based on the paradigm of virtual force field (VFF), where
certainty grids were used for obstacle representation, and navigation was achieved through
the use of potential fields. More recent research, such as [39,40], employ sensors, such
as laser scanners and cameras, to model the robot’s surroundings and navigate through
unknown environments.

Vision-based obstacle avoidance has been extensively used due to the high data
rates that cameras provide and their relatively low cost. Flacco et al. [41] used an optical
depth sensor, such as the Microsoft Kinect, to acquire depth data and compute distances
between the robot and the obstacles. The distances are used to generate repulsive forces to
control the behavior of the robot. A vision-based collision avoidance system for UAVs was
proposed by [42], using a dynamic potential field to repel the vehicle away from hazards.
Perez et al. [43] made use of a stereoscopic system to compute a disparity map from images
provided by the stereo camera and located zones free of obstacles to guide a multi-copter
onto collision-free trajectories.

Apart from the ability to sense, locate, and react to obstacles, intelligent vehicles
should be able to detect dangerous situations and react accordingly. While the research
studies, described above, propose techniques and models to plan a collision-free trajectory,
they do not assess how dangerous an obstacle may be and whether or not it is necessary
to act upon its presence. This component of CAS is commonly known as risk assessment.
Risk represents the likelihood and severity of the damage that a vehicle may suffer on
the path ahead of it, and it can be assessed by different methods, the most common ones
being trajectory prediction, distance estimation, probabilistic methods, and using risk
surrogates [44,45].

Risk surrogates, such as the time to collision (TTC) and time to react (TTR), are popular
indicators of how critical a potential collision may be. Ammoun et al. [46] presented an
approach for collision risk estimation between vehicles by assessing the risk with respect to
the TTC and three other risk indicators. In their approach, the vehicles used positional in-
formation provided by GPS receivers and communication devices to predict the trajectories
of other surrounding vehicles and identify possible collisions. An image-based approach
to assess the collision risk with TTC was proposed by Pundlik et al. [47]. Their system
used the local scale change of the images and the motion of the obstacles to predict the
object’s trajectory relative to the camera. In [48], a real-time low-cost system was proposed



Sensors 2022, 22, 5354 5 of 30

for ADAS using monocular video. The system estimates the future automotive risk of a
driving situation by using object tracking based on a particle filter over an intermediate
time horizon. Probabilistic-based approaches for risk assessment can be found in [49–51].
Moreover, with the rise of artificial intelligence (AI) and deep neural networks (DNN),
approaches using deep predictive models for collision risk assessment are being currently
researched [52,53].

2.4. Collision Avoidance in Underwater Robotics

Having a fully autonomous system is a primary goal in all areas of robotics, including
underwater applications. To date, research carried out with underwater vehicles has fo-
cused on path-planning algorithms [54–59] and collision avoidance systems [60–64] using
different types of sensors, such as multi-beam echo-sounders, laser scanners, and pro-
filing sonars. Hernández et al. [55] proposed a system that merged the information of
multiple sensors to create a system able to map, plan, and direct missions autonomously.
The map created by the system was used to recompute collision-free paths in real time,
according to the obstacles perceived. In later work, they extended their approach to create
photo-realistic textured 3D models [56]. In [62], a collision avoidance method, based on
the collision risk assessment and an improved velocity-obstacle method, was presented to
allow unmanned underwater vehicles to perform accurate evasive decisions in dynamic en-
vironments. Palomeras et al. [58] proposed a probabilistic methodology to explore complex
environments, with no information known a priori. The method uses a scanning sensor
and a repetitive algorithm based on selecting generating several candidate viewpoints
from the vehicle’s current position, pruning them down according to a series of criteria,
and evaluating the utility of each candidate viewpoint. After determining the viewpoint
with the greatest utility, an obstacle-free path to the viewpoint is generated and navigation
to this point is carried out, where a new scan is taken.

Although effective systems have been proposed to avoid obstacles and reach a goal,
and some research has been carried out using cameras for underwater applications [65–67],
few ongoing studies of vSLAM and multi-camera systems applied to ROV or AUV robots
have been developed. In [68], a reactive navigation system was used to guide the explo-
ration of an AUV along obstacle-free trajectories. The acquired images are used to detect
and segment regions of water apart from those with obstacles, which then are used to
compute collision-free routes. Wirth et al. [69] presented the integration of two stereo visual
odometry algorithms into an AUV to estimate the linear movement and rotation and be
able to navigate close to the seabed. Some other algorithms, such as [70,71], make use of
image information and deep neural networks to provide AUVs with avoidance schemes.
Manderson et al. [71] proposed a real-time navigation system that exploits visual feedback
to make close-range navigation possible. The convolutional neural network used in the
algorithm can predict unscaled and relative path changes, which are transformed into
absolute paths, thus allowing the vehicle to navigate close to structures and avoid dangers.
Our paper departs from the existing literature by exploring the capabilities of MCS. We
describe a method which uses an omnidirectional camera along with an SLAM system
to create dense map representations of the AUV surroundings. The localization of the
robot is computed with an open-source vSLAM system as the backend (MultiCol-SLAM).
This localization information, along with an assessment of the risk, is passed to a collision
avoidance control system, to execute a reactive evasive maneuver in case of danger.

3. Contributions

Nowadays, the most advanced AUVs are guided, commonly, by systems that use
sensors such as echo-sounders, GPS, LIDAR, laser scanners, or a fusion of many of these,
to perform path planning and collision avoidance when navigating in unknown envi-
ronments. However, there is little ongoing research on collision avoidance using optical
sensing in underwater environments. Those that exist are mainly based on a monocular



Sensors 2022, 22, 5354 6 of 30

or stereo system [69–71] which do not take advantage of the capabilities that a MCS can
provide to an AUV. The main contributions of the present work are the following:

1. We developed a new camera-based omnidirectional collision avoidance system that
exploits the capabilities of multi-camera setups to perform a 360° real-time 3D recon-
struction of the region surrounding an ROV/AUV, which allows the robot to assess
the risk presented by local objects and act accordingly. A system such as this can
carry out survey missions in a more autonomous way while ensuring the safety of
the robot.

2. A framework based on an open-source omnidirectional vSLAM package that can re-
construct a map of the surveyed environment, and assess in real-time how dangerous
the surrounding objects are. To our knowledge, this is the first time an omnidirectional
system has been applied to underwater environments.

3. A set of warning signals that can assist operators during exploratory missions. These
outputs provide an intuitive way of knowing where obstacles are and they allow the
operator to perform evasive maneuvers. This also allows less-trained pilots to operate
the vehicles safely, thus reducing operational costs.

This work represents an extended version of preliminary work presented in [72],
where the main idea was presented as a proof-of-concept, without validation on a real
robotic platform.

4. Approach
4.1. Framework

Our proposed system performs a 360° 3D reconstruction of the surroundings to reliably
assess the risk of collision with any nearby objects. In case of potential danger, it provides
warning signals, which can be easily interpreted by a pilot, or by the control system of an
autonomous vehicle, to perform evasive maneuvers.

The proposed framework uses omnidirectional images from an MCS as input to a
vSLAM system. The SLAM system estimates the motion of the robot in order to pass this
information to the collision detection thread. This thread uses the estimated pose and MKFs
(i.e., a set of selected key images that stores the camera images and the corresponding
pose) to compute a denser point cloud of the local map, which is assessed to estimate the
collision risk of each 3D point in the map. Our system is capable of providing two outputs
calculated from the estimated risk values:

1. An estimate of the repulsion force which would cause the robot to move away from a
potential collision;

2. An omnidirectional risk map.

While the repulsion force is well suited as a control input for both AUVs or ROVs,
the omnidirectional 2D equirectangular risk map is intended to provide ROV pilots with
visual tools to easily understand and perceive the zones where potential collisions could
happen. Figure 2 shows the described system.

4.1.1. Multi-Camera Tracking System

The SLAM system used in our solution was based on MultiCol-SLAM [18], which
consists of three main threads: tracking, local mapping, and loop closing, which operate
in parallel at all times. Since collision detection is only relevant in the present, it requires
a local map that accurately describes the structure around the robot’s current position;
therefore, the noisy and sparse map created during the SLAM process is not suitable.
To overcome this, vSLAM is used as precise visual odometry that provides a reliable
estimate of relative position, which is used later by the collision detection thread to assess
the risk of surrounding obstacles.



Sensors 2022, 22, 5354 7 of 30

N-Frames

MULTICOL-SLAM

Tracking thread

Feature extraction
and matching

Track local points

MKF insertion

Mapping thread
Loop closing 

detection thread

Pose estimation and MKF data

COLLISION AVOIDANCE

Feature detection and
matching in MKF pairs

Scale estimation

Triangulation of points

TTC and minimum
distance to points

computation

Risk weight
computation

Dense map creationCollision risk estimation

MULTI-CAMERA SYSTEM

Repulsive force

Equirectangular risk
map

Figure 2. Collision detection thread work flow.

4.1.2. Tracking and Mapping

The tracking thread processes each new frame coming from the MCS. The tracking is
performed by extracting features from every image of the MCS and using them to identify
matches across MKFs. The current pose is estimated by using the relative orientation
between the last two frames. If the tracking does not provide a sufficient number of
matches, a re-localization step must be performed. The tracking thread also decides if it is
time to add a new MKF to the map. This decision is implemented if one of the following
conditions are met:

1. More than 0.5 s (half of the acquisition period of time) have passed since the last
MKF insertion.

2. A certain number of poses must be successfully tracked since the last re-localization.
This number is set to the current frame rate, as in [18].

3. At least 50 points are tracked in the current pose.
4. If the visual change is big enough (i.e., less than 90% of the current map points are

assigned to the reference MKF).

If the tracking thread decides to insert a new MKF, the local mapping thread extends
the map by creating new points and deleting all redundant map points and MKFs. The dele-
tion of map points is performed if they are visible in fewer than three MKFs, and an MKF
is deleted if any pair of MKFs shares more than 90% of the same map points. Furthermore,
the mapping thread also maintains the consistency of the global map by performing a
global bundle adjustment optimization step.

4.2. Collision Avoidance

The collision detection thread is the central contribution of this work and runs con-
currently with the SLAM system. The tasks being performed during execution time are
depicted in Figure 2. The process begins as soon as the SLAM system’s tracking thread
can reliably estimate the relative pose between two sequential MKFs. The collision thread
first creates a local dense map describing the robot’s environment using the dense map



Sensors 2022, 22, 5354 8 of 30

reconstruction process described in Section 4.2.1. The risk of collision is subsequently
assessed by taking into account the trajectory and speed of the AUV.

Since the processes of extracting the local 3D information and risk assessment are
based on pairs of MKFs, it is required that there are no drastic changes in either speed
or direction of the vehicle that could significantly alter the usability of the estimated risk.
Given that the SLAM system ensures a dynamic selection of MKFs, the time difference
between the two images is always small enough and proportional to the movement of the
vehicle so this can be considered a reasonable assumption.

4.2.1. Dense Map Reconstruction

The main goal of the dense map reconstruction process is to use the previously
estimated relative pose between two sequential MKFs to obtain a dense representation
of the vehicle’s surroundings. The dense map can therefore be computed by using the
poses of both MKFs to calculate their relative transformation matrix before performing
triangulation and reconstructing the scene. This process consists of the following steps:

1. Image preprocessing: Due to the lack of texture in underwater scenarios, the use of
filtering techniques helps to extract more features from the scene.

2. Feature detection and matching: Feature points can be extracted using any feature
extractor and subsequent matching is performed by exploiting epipolar constraints
obtained from the relative transformation matrix.

3. Scale estimation: A scale correction procedure is applied to the initial 3D reconstruc-
tion before the 3D information is used for risk assessment. This process is necessary
as MultiCol-SLAM can occasionally produce pose estimations with inaccurate scale
estimates due to the inherent scale ambiguity of SfM-based techniques. The scale
is corrected by taking measurements from the AUV odometry. By comparing the
real displacement performed by the robot and the displacement given by the SLAM
system from time t− 1 to t, a scale correction factor can be calculated and multiplied
by the transformation matrices. This ensures that the 3D information is obtained in
metric units.

4. Triangulation: The 3D point cloud is obtained by computing the projection matrices
of both frames and by performing a triangulation in which the outliers are rejected
based on the re-projection error.

4.3. Risk Estimation

The risk of each point in the dense map is defined as the probability that the point will
collide with the vehicle, given the speed and trajectory of the vehicle. In other words, it
assesses how potentially harmful a point can be to the robot. This assessment is performed
by using the TTC risk surrogate, which indicates the time required by any point to reach
the robot’s current position.

Furthermore, to correctly assess the risk of any point with respect to the current posi-
tion, we have to consider that the estimated pose (which comes from SLAM) is referenced
to the camera location. Thus, the assessed risk of a point represents the probability of
collision with the camera. Therefore, to determine the real value of the risk, we defined a
set of surrounding points located at critical points of the AUV, and the risk is calculated by
evaluating each of these critical locations. These points are assigned taking into account
the geometry of the AUV, and the number of total points and their positions are set at the
points where a collision is expected to occur first.

As previously mentioned, the risk estimation is performed by acquiring a time measure
that describes how far a certain obstacle is from the robot. The TTC value is obtained by
considering the equations of a point in 3D to a line [73] (Figure 3), where the line represents
the current heading trajectory of our AUV. Let our heading trajectory line be represented
by two robot’s point positions in space rt−1

1 and rt
1 lying on it, so this vector is given by



Sensors 2022, 22, 5354 9 of 30

v =

x1 + (x2 − x1)t
y1 + (y2 − y1)t
z1 + (z2 − z1)t

 (1)

where (x1, y1, z1) and (x2, y2, z2) correspond to the 3D coordinates of the points rt−1
1 and rt

1,
respectively.

Thus, time t corresponds to the time required for the robot to reach the projection of a
3D point, xn, onto this line (Figure 3). Furthermore, the squared distance between a point
in the line with parameter t and xn can be found as

d2 = [(x1 − x0) + (x2 − x1)t]2 + [(y1 − y0) + (y2 − y1)t]2 + [(z1 − z0) + (z2 − z1)t]2 (2)

Subsequently, the time t that minimizes the distance between the point xn and the line
can be found by derivation of Equation (2). Therefore, t is defined as

t = −
(rt−1

1 − xn) · (rt
1 − rt−1

1 )∥∥∥rt
1 − rt−1

1

∥∥∥2 (3)

Figure 3. Distance d from a point xn in 3D space to a line.

Finally, the minimum distance, d, of a point xn to the line can be found by substituting
Equation (3) in Equation (2).

d =

∥∥∥(rt
1 − rt−1

1 )× (rt−1
1 − xn)

∥∥∥∥∥∥rt
1 − rt−1

1

∥∥∥2 (4)

The value of the distance is also taken into account in the risk computation, as points
further away from our heading trajectory must be assigned a lower risk than those closer
to it.

As mentioned, time t (Equation (3)) and the minimum distance d (Equation (4)) are
required to assess the risk of any xn point in the local map. However, as these equations
are defined for a specific point ri of the AUV structure, we extended this computation for
all points defined to form a security cage around the robot. Figure 4 shows how these
measurements are taken into account for a representative number of points ri on the body
of the robot. Thus, when the AUV makes a displacement from t− 1 to t, the measures d
and t are redefined as

ri txn = −
(rt−1

i − xn) · (rt
i − rt−1

i )∥∥∥rt
i − rt−1

i

∥∥∥2 (5)

ri dxn =

∥∥∥(rt
i − rt−1

i )× (rt−1
i − xn)

∥∥∥∥∥∥rt
i − rt−1

i

∥∥∥2 (6)



Sensors 2022, 22, 5354 10 of 30

In order to take into account the velocity of the vehicle, all these measurements are
additionally normalized by the time elapsed between the two MKFs. For each point in the
scene, ri TTCxn and ri dxo

n are therefore considered to be

ri TTCxn = (ri txn − 1) · ∆t (7)

ri dxn−norm =
ri dxn

‖ri dxn‖
· ∆t (8)

Since the total time is calculated starting from the previous position rt−1
i , a simple

subtraction of a unit time step (t = 1) is required to set the system into the current frame.
Equations (7) and (8) therefore express the normalized values of TTC and the minimum
distance in seconds.

Figure 4. Computation of the distance ri dxn measurements for a specific point x0. The scheme shows
a movement of the robot from a previous time t− 1 (transparent frame) to a current time t (opaque
frame), and the parameters d and t are now calculated for multiple selected points on the robot’s
body (r1,r2,r3).

Finally, from our previous work [72], the risk is calculated using a series of Gaussian
functions with zero mean and peak values centered on the movement trajectory. The stan-
dard deviations, σ, of these functions are defined as linear functions of TTC times and a free
parameter k. The higher the value of k, the higher the risk assessment becomes, increasing
caution for objects further away as the risk cone opens further around the current direction
of motion. As a result, objects that are not directly on the trajectory line (i.e., side objects)
are perceived with a higher risk. Figure 5 shows the effects that changing the parameters
k or TTC have on the risk function. The risk for each 3D point xn with respect to a given
point ri on the robot’s chassis is defined as

ri ρ(xn) =
k
σ

e−
(ri dxn )2

2σ2 ; where σ = k · (ri TTCxn ) (9)

Finally, the risk value is chosen as the one with the highest value among those calcu-
lated for all selected points on the robot chassis:

ρ(xn) = max(ri ρ(xn)) (10)



Sensors 2022, 22, 5354 11 of 30

Figure 5. Graphical visualization of the effects of the risk function parameters. Panels (a,b) show the
effects of changing the k parameter in the risk function, resulting in a wider window of caution as k
increases. The lower images (c,d) show the same configuration, but with the effects of changing the
TTC parameter (increasing speed), resulting in (temporally) more distant objects being perceived as
dangerous than in the corresponding images (a) or (b).

4.4. Avoidance Scheme
4.4.1. Resultant Repulsive Force

Once the risk of each 3D point is computed, the final task of the system is to use
this information to send warning signals and compute the repulsion force that is required
to move the robot away from a potential collision. These signals are used to perform
avoidance maneuvers away from zones where the danger of collisions is high, as well
as to alert ROV pilots. Given that the number and density of detected 3D points in the
environment can vary significantly, a sphere of 3D points sj is created surrounding the
robot position, as illustrated in Figure 6a. This ensures a consistent estimation of a repulsive
force independent from the number and density of 3D points. Furthermore, for all the
detected points xn in the local map, a repulsion force vector is computed coming from each
point in the opposite direction of the viewing ray. This direction is calculated with respect
to the corresponding point where the risk has the maximum value ri,max(ρxn )

:

−→
fxn =

ri,max(ρxn )
− xn∥∥∥ri,max(ρxn )
− xn

∥∥∥ (11)

The computed repulsive vectors
−→
fxn and the corresponding vector to each sphere point

sj are used to compute the final repulsive force required to act on the system.



Sensors 2022, 22, 5354 12 of 30

(a) (b)

Figure 6. Force computation for each obstacle 3D point. (a) The ROV is surrounded by a sphere of
points (green points) in order to have a constant number of areas in each computation. (b) Every
detected point in the local map (black points) is then associated with a region point in the sphere by
computing their dot product and taking the vector that is closest to the direction of ~fxn .

As presented in Algorithm 1, the computation of the resultant repulsive force is
performed in three steps. First, each repulsive force

−→
fxn of all 3D points is compared to

all the vectors, coming from the same point on the robot, towards the sphere points −→sj .
The comparison is made by computing the cosine of the angle between both vectors as

cos(α)xn ,sj =

−→
fxn ·
−→s j∥∥∥−→fxn

∥∥∥∥∥−→s j
∥∥ (12)

where n represents each of the triangulated 3D points and j a sphere point.
After computing the value of Equation (12) for all 3D points, we associate each

−→
fxn

with the vector −→sj where cos(α) has the maximum value. This association allows us to
relate 3D points to a certain area of the sphere. Then, its corresponding risk values are
added to this area in the sphere. The final risk value of each sphere point sj comes from the
sum of the risks of all contributing 3D points, given by

ρsj = ∑ risk o f each xn associated (13)

Taking into consideration that the contribution of 3D points to all areas on the sphere
is not uniformly distributed, the risk values of the sphere points should be normalized.
A threshold value setting the minimum number of contributing 3D points is also used to per-
form risk normalization. This avoids the case where outliers may be the only contribution
to the risk of a specific sphere point. The normalization is defined as

ρsj =
ρsj

M
(14)

where ρsj corresponds to the mean value of the risk for a point sj in the sphere. The param-
eter M corresponds to the total number of points xn that contribute to a point in the sphere
sj or to a threshold value, which is set to a value of five points in the case that not many
points xn contribute to this area.

Finally, repulsive forces for each sphere point sj are computed by multiplying its
normalized vector by their corresponding risk values and, subsequently, combined into



Sensors 2022, 22, 5354 13 of 30

a single repulsive force by summing all individual forces. This is performed by using
Equations (15) and (16). The described algorithm above is also briefly depicted in Figure 7.

−→
Fsj =

∥∥−→sj
∥∥ · ρsj (15)

−→
F = ∑

−→
Fsj (16)

Algorithm 1 Resultant repulsive force computation

Input:
~fxn : repulsive force vectors
ρ(xn): assessed risk values
sj: 3D points defined on a surrounding sphere around the robot

Output:
F̄: Resultant repulsive force

1: Load the discretized sphere of points sj
2: for each point sj in the sphere do
3: Mj ← 0 {counter for the number of contributing points}
4: ρsj ← 0
5: end for
6: for each 3D point xn do
7: for each point sj do
8: Compute the cos(α)xn ,sj between the vector of each point of the point cloud xn

with the vector of each point in the surrounding sphere sj
9: end for

10: Find the maximum value of cos(α)xn ,sj , which represents the vector on the sphere
that is closer to the vector xn

11: ρsj ,max(cosα) ← Add the corresponding riskxn to the risk of the found point sj of the
sphere

12: Mj,max(cosα) ← Mj + 1
13: end for
14: for each point sj in the sphere do
15: if Mj not 0 then
16: Normalize the risk value of the point ρsj by the total number of contributing points

Mj
17: else
18: Normalize the risk value of the point ρsj by a set threshold Mminimum
19: end if
20:

−→
Fsj ←

∥∥−→sj
∥∥ · ρsj

21: end for
22: ~F ← ∑ ~Fsj



Sensors 2022, 22, 5354 14 of 30

Figure 7. Flowchart of the process described in Algorithm 1.

4.4.2. Equirectangular Risk Map Visualization

The system also generates a 2D representation of the risk in the scene. This is per-
formed by re-projecting 3D points onto a spherical 360° panorama, represented by the
equirectangular form [74]. The equirectangular representation of the entire viewing sphere
is a 2D image in which the horizontal axis represents azimuth angles from 0° to 360° and
the vertical axis represents altitude angles from −90° to +90° [65].

To create a complete risk map the following steps were carried out:

1. Projecting 3D points to the image: Each 3D point with coordinates Q = (X, Y, Z) is
first converted to spherical representation:

R =
√

X2 + Y2 + Z2 (17)

θ = atan2(Y, X), 0 ≤ θ ≤ 2π (18)

φ = acos(
Z
R
), 0 ≤ φ ≤ π (19)

where (R, θ, φ) denote the spherical coordinates of point Q, i.e., the radial distance,
polar angle, and azimuthal angle. The final image coordinates (u, v) of point Q are
computed through Equation (20).

u =
θ + π

2π
∗W and v =

φ

π
∗ H (20)



Sensors 2022, 22, 5354 15 of 30

where W and H are the desired width and height of the equirectangular image.
2. Smoothing: Since the direct projection of points from the dense 3D map leads to an

unclear representation with spurious calculated risks in some areas, an additional step
of interpolation of the missing results is required. Smoothing is carried out on a unit
sphere to avoid the problems of performing it directly on the equirectangular images.
Points with known risk values are projected onto this sphere. Then, the risk for each
pixel of the equirectangular image is calculated by projecting them onto the same
sphere. Finally, the average risk of the N nearest points with known risk, weighted
by their distance from the projected pixel, is calculated. To limit the spread of risk
to areas without known information, the interpolation is limited to pixels within a
certain distance from the nearest point with known risk.

5. Results

The system capabilities were assessed in two phases of experiments. The first phase,
or offline testing, used a set of images captured by an ROV during an exploratory mission.
In the second phase, the system was assessed using a simulated environment on the Stone-
fish simulator [75] and also by integrating the system into a real AUV, the GIRONA1000,
and performing tests in a controlled environment. This latter phase is the online testing.
All the results are described and discussed below.

5.1. Offline Test
5.1.1. Dataset

The offline phase tested the main capabilities of the system with a dataset consisting
of images of a survey over a WWII shipwreck sunk close to the shore of Palamós, Spain,
named Boreas. The data were obtained with the SPARUS II AUV of the University of
Girona. The robot was equipped with an omnidirectional camera composed of five GoPro
Hero 4 Black edition cameras [74]. This MCS is capable of recording video at 30 fps with
a resolution of 27 Mpixels at up to 200 m depth. Additionally, to acquire extremely close-
range imagery, the robot was guided by divers to safely steer it through narrow passages.
This configuration is shown in Figure 8.

Figure 8. Setup for collecting the Boreas dataset. (a) MCS mounted on Sparus II AUV. (b) Omnidirec-
tional camera system composed of five GoPro Hero 4 cameras.

During offline tests, we simplified the problem by modeling the robot and the MCS as
a single point in space, located at the origin of the MCS system. Thus, the chassis of Sparus
II was not considered in the risk calculation. Using the simplified system, we can test our
framework to extend it to complex configurations later.



Sensors 2022, 22, 5354 16 of 30

5.1.2. Effects of Parameter k on Risk Computation

The effects of varying the free parameter k, at constant velocity, on the risk calculation
were evaluated and can be visualized in Figure 9. Two types of representations are visual-
ized in the figure. The first representation (left) shows the distribution of locally tracked
points around the robot with their associated risk value represented by a color scale value.
Points at larger distances (e.g., at the sides or further away) are given a lower weight when
risk is computed. The second representation (right) is the equirectangular map output of
the system, with the same colored risk representation.

The results show that increasing the value of k gives more weight to objects farther
away from the robot. Figure 9a,b depict this behavior. When k is changed from 1.2 to a
value of 2, objects that are on the sides of the heading direction (distances greater than
10 normalized units) are given corresponding risks between 0.4 and 0.5. However, the same
points were much less dangerous in the first scenario (Figure 9a), with risk values between
0.2 and 0.35. We can also observe that, in the equirectangular map representation of
Figure 9b, zones such as the railing of the boat are now considered a high-risk area (red
area). This demonstrates that k allows us to have control of the cautioning window and can
be adjusted to consider side objects.

(a)

(b)
Figure 9. Effects on the estimated risk when varying the parameter k. The plots on the left illustrate
the distributions of the detected 3D points, represented in a plot of dnorm versus TTCi and color-
coded by the associated risk value, while the images on the right are equirectangular views with
color-coded risk. (a) Parameter k = 1.2. (b) Parameter k = 2.



Sensors 2022, 22, 5354 17 of 30

5.1.3. Effects of Vehicle Speed

The speed of the robot is also a variable that we analyzed in our tests. Larger speed
values of the ROV mean a lower reaction time to obstacles, which translates into higher
risk values for objects at a given position. Figure 10 shows the risk values of locally tracked
points at the same position in time, but with different velocities. To test this, the value of k
is kept constant (at a value of 1.2) and the timestamp of successive MKFs were modified.
Figure 10a shows the effect of modeling the system with a velocity equal to four times the
value of Figure 9a, and Figure 10b represents a velocity of half the original value, i.e., values
of 1/4∆t and 2∆t, respectively.

The effect of changing the speed of the system is better illustrated in the distribution
diagrams in Figure 10 (left). When the velocity is increased to four times its original value,
the distribution of the tracked points shifts to the left and they cluster around distance
values from 0 to 10 units, which means that they are now perceived as highly dangerous
objects. Therefore, the equirectangular map representation now has red risk zones in
the heading direction. If, on the other hand, the speed is halved (Figure 10b), the same
distribution of points in the diagram is more widely spread. Since the system is now
moving slowly, the tracked local points are no longer perceived as dangerous because it
has more time to react; therefore, the risk values are lower.

(a)

(b)
Figure 10. Effects on the risk when the velocity changes and k = 1.2. (a) Velocity increased by a factor
of four. (b) Reducing the velocity by half.



Sensors 2022, 22, 5354 18 of 30

5.1.4. Resultant Repulsive Force Behavior

The resultant repulsive force was computed at each time step, and its behavior on
the system was analyzed. Figure 11 illustrates one trajectory performed by Sparus II in
the Boreas shipwreck, and multiple time steps are shown throughout its entire movement.
At any position, the behavior of the computed resultant force (orange vectors on the image)
always points outwards from zones where the biggest danger is perceived. Since the risk is
dependent on the heading direction, the force vector is also dependent on the direction of
movement and the risk associated with local obstacles. Therefore, objects perceived outside
of the cautioning window and at the back of the robot have only a small contribution to the
reactive behavior of the force.

Figure 11. Vehicle trajectory and repulsion forces (orange arrows) while navigating close to the Boreas
shipwreck. The top inset is a 3D reconstruction [67] viewed from the same approximate angle as
the point cloud. The black points represent previous computed point clouds through the trajectory,
and the last position shows the corresponding point cloud with the risk associated to each 3D point
(colored points). The bottom inset contains the omnidirectional camera view with the color-coded
risk overlay.

5.1.5. Ground Truth Comparison

The performance of the system, i.e., how well it predicts and reacts to collisions, was
evaluated by comparing the calculated equirectangular risk maps against precomputed
equirectangular depth images, which are used as ground truth. These maps were previously
calculated using structure from motion (SFM) and multi-view stereo algorithms.

The difference between the system output and the precomputed SFM risk map is used
as the performance measure. The resulting image is analyzed to identify the discrepancies
between our predictions and the ground truth. Values of this difference where our algorithm
risk prediction is high but where the ground truth is zero lead to a false positive (FP) result.
This is represented in Figure 12 as red zones in the difference image. On the other hand,
the blue zones on the image represent false negative (FN) areas where our risk estimation
was calculated as low but which in reality should have higher values.



Sensors 2022, 22, 5354 19 of 30

Figure 12. Color -coded difference between the calculated system risk map and the one from the
ground truth. Green values correspond to no differences, red values to false positive detections,
and blue values to false negatives. The other colored areas are regions where the difference between
our algorithm and the ground truth is close to each other and they are not considered for the analysis.

Figure 13 shows the variability of the performance of our system. The total values
of FP and FN were computed for each frame, and summed to obtain their resultant value
in the risk map. Then, the percentage was computed by dividing it by the whole image
area. It can be seen that the mean values of FP and FN are approximately 2% and 8%,
respectively, which indicates a low percentage of the image area. Some outliers can be
found where these values increase, but the range of the errors for both measures do not
exceed the value of 10% for most of the cases (at least for 75% of the data).

FP FN

0

2

4

6

8

10

12

14

16

P
e

r
c
e

n
ta

g
e

 (
%

)

Figure 13. Performance in terms of percentage of false positives and false negatives for the
Boreas dataset. The red + symbols represent the outliers found in both measures.

5.2. Real-Time Simulation Testing
5.2.1. Realistic Simulated Experiment in Stonefish

The first real-time validation of the developments was performed using our open-
source Stonefish C++ simulation library [75] combined with the ROS interface package,
called stonefish_ros. This software is specifically designed for the simulation of marine
robots. It delivers full support for rigid body dynamics of kinematic trees, geometry-based
hydrodynamics, buoyancy, and collision detection. It also simulates all types of under-
water sensors and actuators to seamlessly replace the real system with a simulated robot.
Moreover, its modern rendering pipeline delivers realistic underwater images with light
absorption and scattering models. The full software architecture of the Girona1000 AUV



Sensors 2022, 22, 5354 20 of 30

was used, following the hardware-in-the-loop (HIL) simulation paradigm. The simulation
scenario included a textured patch of underwater terrain and the robot itself. The robot was
equipped with an omnidirectional camera, composed of six pinhole cameras. Several tests
were performed using a representative number of points on the Girona1000 AUV chassis to
calculate the risk values for the surrounding 3D points.

5.2.2. System Performance in Simulation

Real-time performance was tested with the Stonefish simulator to recreate an ex-
ploratory mission in an underwater environment. To achieve this, an ROS package was
created. The ROS package manages the incoming set of images from the simulated omnidi-
rectional camera system and processes them to obtain the corresponding system output.
Finally, the repulsion force outputs are used by the control system to perform evasive
maneuvers when necessary.

In the initial offline tests, we modeled our robot as a point in space, and the risk calcu-
lations were performed in relation to this point. However, to meet real-world conditions
and to ensure the safety of the robot, we later modeled the robot body as a seven-point
structure that took into account the extreme points where the robot could collide with an
object while performing any movement, thus creating a safety cage for our robot. Figure 14
shows the different views of Girona1000 AUV with the designed safety cage, shown in
green. The risk of all 3D points in the local map was calculated against all seven cage points,
and the maximum risk among them is considered to calculate the corresponding repulsion
force of each 3D point of the local map.

Figure 14. Views of the safety cage (green), which was created using six points on the robot chassis
and the multi-camera housing (seven points in total) to calculate the collision risk.

When the entire Girona1000 structure is taken into account for calculating the risk of
all 3D points triangulated at a given time, several danger zones can occur simultaneously
while the robot is exploring the terrain. Figure 15 illustrates this situation. The figure shows
that when the robot approached one of the walls of the environment, two hazard zones
were obtained from the risk calculation process. These zones correspond to the lower part
of the Girona1000 chassis and the structure of the camera system, as seen in Figure 15b,
which is a magnified view of Figure 15a.

In addition, to ensure robot safety, the force calculated from the risk of each 3D point
is also sent to a control system that moves the robot out of danger zones. Whenever the
robot approaches a wall or an obstacle, the magnitude of this force starts to increase and
when it reaches a threshold value, it triggers an evasive maneuver coming from the control
system. Figure 16 shows the behavior of the system when Girona1000 is near an obstacle.
In Figure 16b, we can observe the configuration of the system at one time step before the
magnitude of the force becomes greater than the danger threshold. The force points away
from the zone, which is mainly yellow with some red points. However, since the direction



Sensors 2022, 22, 5354 21 of 30

of the course has not changed, one time step later, the red zone increases and the density
of red points make the repulsion force magnitude rise above the set threshold. At this
point, a signal is sent to the control system, which takes control of the movement of the
Girona1000. This is represented in Figure 16c by the fact that the safety cage turns red,
which means that even if the operator tries to tele-operate the Girona1000, the control
system will not accept these inputs until system safety is guaranteed. Finally, Figure 16d
shows the point in time when the control system stops maneuvering and the control of the
robot is returned to the pilot, indicated by the safety cage returning to its green color.

(a) World view (b) Zoomed in view

Figure 15. Case in which the risk calculation identifies several danger zones (red zones) for the robot.
The picture on the left shows the world view of the system at that particular time, while the right
image is a zoomed-in version of the points closest to the robot. The zones where the risk is low are
represented by blue areas in the images, and areas that turn gradually into a reddish color represent
higher risk areas. Two danger zones (shown in red) are detected while the robot is moving towards
the wall. The direction and magnitude of the repulsive force are represented by the red arrow.

Figure 16. Representation of the behavior of the system when the robot is near a danger zone.
(a) A capture of the exploration performed in the Stonefish simulator. Images (b–d) are a series of
consecutive frames that show how the system reacts to a possible danger. The zones where the risk is
low are represented by blue areas and areas that turn gradually into a reddish color represent higher
risk areas. Figure (c) shows the moment when the risk of collision with an obstacle is so large that a
control system takes control of the robot and moves it away from that zone.



Sensors 2022, 22, 5354 22 of 30

5.3. Real-Time AUV Deployment
Experimental Setup

The framework was tested for real-time validation on an AUV. The robot chosen was
the GIRONA 1000 AUV, which has the advantage that it can be reconfigured for different
tasks by changing its payload and the configuration of the thrusters. In addition, the robot
was reconfigured to carry an underwater omnidirectional multi-camera system (OMS)
based on a Point Grey’s Ladybug 3 camera [65]. The system consists of six individual
cameras, five of which (the side cameras) have their optical centers on the same plane and
the last camera points in the direction normal to the plane. To use the camera in underwater
environments, the camera was encapsulated inside a custom waterproof housing, made
ofpoly-methyl methacrylate (PMMA), which makes it submersible to a water depth of 60 m
(Figure 17). As a result, the factory calibration was no longer valid and a new calibration
procedure was required. The specific calibration procedure is described in [65].

Figure 17. System configuration for real-time deployment. (a) Girona 1000 AUV coupled with the
camera for testing. (b) Ladybug 3 multi-camera system inside our manufactured waterproof housing.

The tests and deployment of the robot were performed in a controlled environment,
our 16 × 8 m testing pool with a progressive depth of 5 m. On the other hand, to validate
the capabilities of the robot, the pool was provided with textured images to simulate an
underwater environment. Objects were distributed so that the robot can navigate through
them without colliding. The testing pool characteristics and the layout for the testing can
be visualized in Figure 18.

Figure 18. Testing pool setup. (a) Visualization of the testing pool characteristics. (b) Configuration
of the testing environment, which is provided with texture on the walls and objects located around
the bottom.



Sensors 2022, 22, 5354 23 of 30

5.4. Camera Housing Image Distortion Correction

One of the most important aspects to take into account is the presence of strong
refraction of the optical rays due to the interfaces between media, i.e., a ray of light coming
from the water changes its direction twice before reaching the sensor as it must pass through
water–PMMA and PMMA–air transitions. To accurately model the distortion due to this
effect, it becomes essential to model and simulate the intersection of each light ray with the
different media. The direction of the refracted ray can be computed through Snell’s law [76].
From previous work [65], we computed a set of 3D rays and their corresponding set of 3D
points on the outer surface of the custom housing. Having this data and knowing both the
intrinsic and extrinsic parameters of all the cameras, it is possible to use the ray-tracing
approach to project any 3D point underwater onto any of the cameras.

As a first step, to correct the distortion introduced by the refraction of light rays, we
compute the intersection of our 3D rays to a sphere of radius R from the center of the
camera system (Figure 19). From the equations of a ray in space and a sphere [77] we have

(D · D)L2 + 2D · (O− C)L + (O− C) · (O− C)− R2 = 0 (21)

where D is the ray’s direction, O is the origin of the ray, C is the center of the sphere, R
corresponds to the radius of the sphere, and L represents the length of the ray. If we solve
this equation for L, we can compute a 3D point on the sphere using the equation of a ray:

p = O + L ∗ D (22)

Equation (22) computes the 3D location of each pixel as if they were located on the
surface of a sphere with radius R. Then, since we know the camera calibration parameters,
the 3D points can be projected to a 2D image plane by

x = PXsphere (23)

where P = K[R|T] is composed of the intrinsic and extrinsic parameters.

R

AIR

PM
MA

WA
TE
R

Figure 19. Ray tracing schematic of a single ray being traced to a sphere of radius R to produce the
underwater image. The ray direction is changed twice when it passes through different media.

As described above, the projection of 3D points will produce a distorted image of the
scene, shown in the left representation of Figure 20. To correct the image, we locate the four
mid-points of the current distorted image and register them into a rectangle of new image



Sensors 2022, 22, 5354 24 of 30

size dimensions (e.g., half the original image width and height). To find a homography that
registers the distorted image into an undistorted image, we use a least squares procedure:

Hu = b⇒

a 0 c
0 a d
0 0 1

u
v
1

 =

u′

v′

1

 (24)

Then, the new intrinsic matrix of the camera is defined by applying the homography
to the original intrinsic parameters:

Ku = H ∗ K (25)

H

u1 =

u2

u3

u4

Figure 20. Image correction process. The distorted image (left) generated by projection of 3D points
is registered into a rectangular area containing a new undistorted image; this registration is obtained
by computing the homography matrix H.

Finally, these camera parameters are used to compute the new 2D locations of the 3D
points by using Equation (23). The process described above is required to remove distortion
from the omnidirectional images from all cameras. It should be noted that this process
can be computationally expensive and add latency to the image acquisition. Therefore, we
used the 2D points computed from the projection process to create look-up tables that map
the original location of a pixel into the corresponding location in the undistorted image.
In this way, the computational time to process the image is improved, and the acquisition
time falls in the range of 30 to 70 ms.

5.5. Evaluated Setups

The deployment of the system was tested with two different configurations of the test-
ing pool, to evaluate the response of our robot in specific scenarios. In the first configuration,
some texture was added to the walls of the pool and the AUV was piloted towards them.
The trials were performed at different speeds to observe the effect of speed on the calculated
risk of the 3D point cloud and its impact on the resultant force. A second setting consisted of
a set of obstacles placed in the pool to test how the system reacts when navigating through
narrow scenarios (an illustrative video of online tests can be found as Supplementary
Materials to this work, or at https://www.youtube.com/watch?v=kI_uTeURSq0 (accessed
on 12 June 2022)). Both results are described below.

5.5.1. Velocity Changes

The response of the system to changes in velocity was tested to verify the performance
of the risk computation and the effects of the resulting output force. The tests were
performed by moving the robot towards the textured walls of the controlled environment
from the same starting point and with different speed settings. The Girona 1000 was set to
maximum speeds of 0.5×, 1.5×, and 2× its nominal speed. Similarly to the offline tests, we
observed that the risk for points in the heading direction is higher when the robot’s velocity

https://www.youtube.com/watch?v=kI_uTeURSq0


Sensors 2022, 22, 5354 25 of 30

increases, so obstacles are perceived as more dangerous. On the other hand, the system
can detect this change and sends a warning signal (resultant repulsive force) to the robot’s
controller so that it can take evasive action at an early stage. This situation is illustrated in
Figure 21, where two speed setups are shown. The figure shows the time when the robot
was stopped by the controller due to the warning signal sent to the AUV. It can be seen
that as the speed increases, the Girona is stopped at an earlier distance, 0.5 m before, to the
place where it was stopped at nominal speed.

Figure 21. Performance of the robot as velocity changes. In the upper part of the figure, the behavior
of the system at the nominal speed of the Girona is depicted. The bottom pair of images show how the
system detects a larger dangerous area (red zone) when the speed is increased by a factor of 1.5 units.
This change makes the AUV stop a ∆d distance before compared to the nominal speed condition.

5.5.2. Navigation through Narrow Passages

To assess the reliability of the system in maintaining the safety of the robot, the pro-
posed framework was also tested in a third complex scenario where objects were placed
in the environment, and the AUV was controlled to navigate through narrow passages.
To emulate real-time conditions, the Girona 1000 was freed from speed constraints, meaning
that the operator could regulate the robot’s speed via commands from a controller. Several
trials were performed to determine the responses of the system. Figure 22 shows a frame
sequence in which the robot was navigated through these structures. The images illustrate
how at a starting point when the Girona is not yet inside the passage (Figure 22a), most of
the points have low-risk values (depicted as blue color zones). However, when the robot
enters the narrow space (Figure 22b–d), we can observe how points on the surface of the
cylinder have medium risk values (cyan and yellow zones), and the repulsive force also
starts increasing, telling the robot to be aware along its sides. To visualize the position
relationship of the Girona 1000 with respect to the obstacles, the objects have been overlaid
in the point cloud images which are displayed in the second row of Figure 22. In this trial,
the operator is still able to control the heading of the robot as the force has not reached
its threshold value, which would result in the system taking control to perform evasive



Sensors 2022, 22, 5354 26 of 30

movements. Therefore, the tests show how the system lets the AUV move in a complex
scenario while maintaining spatial awareness of the local surroundings.

Figure 22. Test scenario where the Girona 1000 AUV was controlled to pass through a narrow passage
created by the set obstacles. Images from (a–d) show a sequence of frames with their respective point
cloud representation, and the risk calculated for each obstacle. Frames (c,d) depict medium-danger
zones (yellow areas) where the AUV has become too close to the pipe, and the force is directed
outwards from that area.

6. Conclusions

We presented an omnidirectional multi-camera system for early collision detection
and avoidance for underwater vehicles, capable of outputting warning signals that can
be easily used by an operator or a control system to perform evasive maneuvers. Our
system uses the MKFs and pose estimates of an SLAM system (Multi-Col SLAM) to create
a denser 360° map representation of the local environment and assess the risk of obstacles
based on this representation. This assessment is later used to compute a resulting repulsive
force that is used to move the robot away from potential collisions, and an equirectangular
risk map representation. Since the risk is evaluated based on the trajectory of the robot,
the calculation of the repulsion force naturally takes into account conditions such as the
water flow or currents so that the control systems can react to hazards and ensure the safety
of the robot. On the other hand, the 2D omnidirectional risk map allows pilots to easily
understand and perceive the zones that could lead to potential collisions. Moreover, we
implemented such a framework in an AUV (Girona 1000) and performed real-time tests.
The results show that obstacles near the robot and along the current trajectory were assigned
higher risk values. Furthermore, these values are proportionally dependent on the speed
of the system and the cautioning risk cone. We show that the system can correctly detect
when surrounding obstacles become a threat to the robot and react to them. Dangerous
zones appear when the robot approaches an obstacle that is on its motion path. Finally,
we successfully demonstrated that the system can be used to navigate an AUV through
narrow passages by avoiding collisions. To our knowledge, no system with the presented



Sensors 2022, 22, 5354 27 of 30

capabilities has yet been implemented and tested for ROV/AUV applications, and this
work constitutes a first achievement in this direction.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1,
Collision_avoidance_ROV.

Author Contributions: Conceptualization, E.O., N.G. and K.I.; methodology, E.O., N.G. and K.I.;
software, E.O.; validation, E.O. and N.G.; investigation, E.O.; resources, P.C. and J.B.; writing—
original draft preparation, E.O., N.G. and K.I.; writing—review and editing, E.O., N.G., R.G. and K.I.;
visualization, E.O.; supervision, N.G. and R.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work was supported in part by the Secretaria d’Universitats i Recerca del
Departament d’economia i Coneixement de la Generalitat de catalunya under Grant 2021FI_B1_00154
for E. Ochoa; in part by Spanish project CTM2017-83075-R; by the European project EuroFleetsPlus
under grant H2020-INFRAIA-2018-2020-824077; and in part by Project PID2020-116736RV-IOO
(MINECO/FEDER, UE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017,

9, 16. [CrossRef]
2. Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M. Visual simultaneous localization and mapping: A survey. Artif.

Intell. Rev. 2015, 43, 55–81. [CrossRef]
3. Huletski, A.; Kartashov, D.; Krinkin, K. Evaluation of the modern visual SLAM methods. In Proceedings of the 2015 Artificial

Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW
FRUCT), St. Petersburg, Russia, 9–14 November 2015; IEEE: St. Petersburg, Russia, 2015; pp. 19–25. [CrossRef]

4. Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. An Overview to Visual Odometry and Visual SLAM: Applications to Mobile
Robotics. Intell. Ind. Syst. 2015, 1, 289–311. [CrossRef]

5. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and Structure from Motion in Dynamic Environments: A Survey. ACM
Comput. Surv. 2018, 51, 1–36. [CrossRef]

6. Davison, A.J. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the Ninth IEEE Inter-
national Conference on Computer Vision, Nice, France, 13–16 October 2003; IEEE: Nice, France, 2003; Volume 2, pp. 1403–1410.
[CrossRef]

7. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE and
ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; IEEE: Nara, Japan,
2007; pp. 1–10. [CrossRef]

8. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

9. Lim, H.; Lim, J.; Kim, H.J. Real-time 6-DOF monocular visual SLAM in a large-scale environment. In Proceedings of the 2014
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; IEEE: Hong Kong,
China, 2014; pp. 1532–1539. [CrossRef]

10. Pirker, K.; Ruther, M.; Bischof, H. CD SLAM—Continuous localization and mapping in a dynamic world. In Proceedings of the
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE:
San Francisco, CA, USA, 2011; pp. 3990–3997. [CrossRef]

11. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE
Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

12. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open—Source Library for Visual,
Visual—Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

13. Engel, J.; Stuckler, J.; Cremers, D. Large-scale direct SLAM with stereo cameras. In Proceedings of the 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE: Hamburg,
Germany, 2015; pp. 1935–1942. [CrossRef]

www.mdpi.com/xxx/s1
http://doi.org/10.1186/s41074-017-0027-2
http://dx.doi.org/10.1007/s10462-012-9365-8
http://dx.doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382963
http://dx.doi.org/10.1007/s40903-015-0032-7
http://dx.doi.org/10.1145/3177853
http://dx.doi.org/10.1109/ICCV.2003.1238654
http://dx.doi.org/10.1109/ISMAR.2007.4538852
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/ICRA.2014.6907055
http://dx.doi.org/10.1109/IROS.2011.6094588
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/IROS.2015.7353631


Sensors 2022, 22, 5354 28 of 30

14. Caruso, D.; Engel, J.; Cremers, D. Large-scale direct SLAM for omnidirectional cameras. In Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE:
Hamburg, Germany, 2015; pp. 141–148. [CrossRef]

15. Gamallo, C.; Mucientes, M.; Regueiro, C. Omnidirectional visual SLAM under severe occlusions. Robot. Auton. Syst. 2015,
65, 76–87. [CrossRef]

16. Liu, S.; Guo, P.; Feng, L.; Yang, A. Accurate and Robust Monocular SLAM with Omnidirectional Cameras. Sensors 2019, 19, 4494.
[CrossRef]

17. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and
Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [CrossRef]

18. Urban, S.; Hinz, S. MultiCol-SLAM—A Modular Real-Time Multi-Camera SLAM System. arXiv 2016, arXiv:1610.07336.
19. Kaess, M.; Dellaert, F. Probabilistic structure matching for visual SLAM with a multi-camera rig. Comput. Vis. Image Underst.

2010, 114, 286–296. [CrossRef]
20. Zou, D.; Tan, P. CoSLAM: Collaborative Visual SLAM in Dynamic Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2013,

35, 354–366. [CrossRef]
21. Harmat, A.; Sharf, I.; Trentini, M. Parallel Tracking and Mapping with Multiple Cameras on an Unmanned Aerial Vehicle. In

Intelligent Robotics and Applications; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B., Eds.; Series Title: Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 7506, pp. 421–432. [CrossRef]

22. Harmat, A.; Trentini, M.; Sharf, I. Multi-Camera Tracking and Mapping for Unmanned Aerial Vehicles in Unstructured
Environments. J. Intell. Robot. Syst. 2015, 78, 291–317. [CrossRef]

23. Github/Urbste/MultiCol-SLAM. Available online: https://github.com/urbste/MultiCol-SLAM (accessed on 2 July 2021).
24. Jiménez, P.; Thomas, F.; Torras, C. 3D collision detection: A survey. Comput. Graph. 2001, 25, 269–285. [CrossRef]
25. Kockara, S.; Halic, T.; Iqbal, K.; Bayrak, C.; Rowe, R. Collision detection: A survey. In Proceedings of the 2007 IEEE International

Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007; IEEE: Montreal, QC, Canada, 2007;
pp. 4046–4051. [CrossRef]

26. Haddadin, S.; De Luca, A.; Albu-Schaffer, A. Robot Collisions: A Survey on Detection, Isolation, and Identification. IEEE Trans.
Robot. 2017, 33, 1292–1312. [CrossRef]

27. Heo, Y.J.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W.K. Collision Detection for Industrial Collaborative Robots: A Deep
Learning Approach. IEEE Robot. Autom. Lett. 2019, 4, 740–746. [CrossRef]

28. Nie, Q.; Zhao, Y.; Xu, L.; Li, B. A Survey of Continuous Collision Detection. In Proceedings of the 2020 2nd International
Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; IEEE:
Guangzhou, China, 2020; pp. 252–257. [CrossRef]

29. Ebert, D.; Henrich, D. Safe human-robot-cooperation: Image-based collision detection for industrial robots. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and System, Macau, China, 3–8 November 2019; IEEE: Lausanne,
Switzerland, 2002; Volume 2. [CrossRef]

30. Takahashi, O.; Schilling, R. Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans. Robot. Autom. 1989,
5, 143–150. [CrossRef]

31. Bhattacharya, P.; Gavrilova, M. Roadmap-Based Path Planning—Using the Voronoi Diagram for a Clearance-Based Shortest Path.
IEEE Robot. Autom. Mag. 2008, 15, 58–66. [CrossRef]

32. Masehian, E.; Amin-Naseri, M.R. A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning.
J. Robot. Syst. 2004, 21, 275–300. [CrossRef]

33. Pandey, A. Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review. Int. Robot. Autom. J. 2017, 2, 00022.
34. Khan, M.T.R.; Muhammad Saad, M.; Ru, Y.; Seo, J.; Kim, D. Aspects of unmanned aerial vehicles path planning: Overview and

applications. Int. J. Commun. Syst. 2021, 34, e4827.
35. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Institute of Electrical and Electronics Engineers:
St. Louis, MO, USA, 1985; Volume 2, pp. 500–505. [CrossRef]

36. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

37. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

38. Borenstein, J.; Koren, Y. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 1989, 19, 1179–1187.
[CrossRef]

39. Cherubini, A.; Spindler, F.; Chaumette, F. Autonomous Visual Navigation and Laser-Based Moving Obstacle Avoidance. IEEE
Trans. Intell. Transp. Syst. 2014, 15, 2101–2110. [CrossRef]

40. Yu, Y.; Wu, Z.; Cao, Z.; Pang, L.; Ren, L.; Zhou, C. A laser-based multi-robot collision avoidance approach in unknown
environments. Int. J. Adv. Robot. Syst. 2018, 15, 172988141875910. [CrossRef]

http://dx.doi.org/10.1109/IROS.2015.7353366
http://dx.doi.org/10.1016/j.robot.2014.11.008
http://dx.doi.org/10.3390/s19204494
http://dx.doi.org/10.1109/TRO.2016.2623335
http://dx.doi.org/10.1016/j.cviu.2009.07.006
http://dx.doi.org/10.1109/TPAMI.2012.104
http://dx.doi.org/10.1007/978-3-642-33509-9_42
http://dx.doi.org/10.1007/s10846-014-0085-y
https://github.com/urbste/MultiCol-SLAM
http://dx.doi.org/10.1016/S0097-8493(00)00130-8
http://dx.doi.org/10.1109/ICSMC.2007.4414258
http://dx.doi.org/10.1109/TRO.2017.2723903
http://dx.doi.org/10.1109/LRA.2019.2893400
http://dx.doi.org/10.1109/ITCA52113.2020.00061
http://dx.doi.org/10.1109/IRDS.2002.1044021
http://dx.doi.org/10.1109/70.88035
http://dx.doi.org/10.1109/MRA.2008.921540
http://dx.doi.org/10.1002/rob.20014
http://dx.doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/21.44033
http://dx.doi.org/10.1109/TITS.2014.2308977
http://dx.doi.org/10.1177/1729881418759107


Sensors 2022, 22, 5354 29 of 30

41. Flacco, F.; Kroger, T.; De Luca, A.; Khatib, O. A depth space approach to human-robot collision avoidance. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation, Guangzhou, China, 11–14 December 2012; IEEE: Saint Paul,
MN, USA, 2012; pp. 338–345. [CrossRef]

42. Rehmatullah, F.; Kelly, J. Vision-Based Collision Avoidance for Personal Aerial Vehicles Using Dynamic Potential Fields. In
Proceedings of the 2015 12th Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; IEEE: Halifax, NS,
Canada, 2015; pp. 297–304. [CrossRef]

43. Perez, E.; Winger, A.; Tran, A.; Garcia-Paredes, C.; Run, N.; Keti, N.; Bhandari, S.; Raheja, A. Autonomous Collision Avoidance
System for a Multicopter using Stereoscopic Vision. In Proceedings of the 2018 International Conference on Unmanned Aircraft
Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Dallas, TX, USA, 2018; pp. 579–588. [CrossRef]

44. Lefèvre, S.; Vasquez, D.; Laugier, C. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J.
2014, 1, 1. [CrossRef]

45. Pham, H.; Smolka, S.A.; Stoller, S.D.; Phan, D.; Yang, J. A survey on unmanned aerial vehicle collision avoidance systems. arXiv
2015, arXiv:1508.07723.

46. Ammoun, S.; Nashashibi, F. Real time trajectory prediction for collision risk estimation between vehicles. In Proceedings of the
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 27–29
August 2009; IEEE: Cluj-Napoca, Romania, 2009; pp. 417–422. [CrossRef]

47. Pundlik, S.; Peli, E.; Luo, G. Time to Collision and Collision Risk Estimation from Local Scale and Motion. In Advances in Visual
Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Eds.;
Series Title: Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6938, pp. 728–737. [Cross-
Ref]

48. Phillips, D.J.; Aragon, J.C.; Roychowdhury, A.; Madigan, R.; Chintakindi, S.; Kochenderfer, M.J. Real-time Prediction of
Automotive Collision Risk from Monocular Video. arXiv 2019, arXiv:1902.01293.

49. Berthelot, A.; Tamke, A.; Dang, T.; Breuel, G. A novel approach for the probabilistic computation of Time-To-Collision. In
Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; IEEE: Alcal de Henares, Madrid,
Spain, 2012; pp. 1173–1178. [CrossRef]

50. Rummelhard, L.; Nègre, A.; Perrollaz, M.; Laugier, C. Probabilistic Grid-Based Collision Risk Prediction for Driving Application.
In Experimental Robotics; Hsieh, M.A., Khatib, O., Kumar, V., Eds.; Series Title: Springer Tracts in Advanced Robotics; Springer:
Cham, Switzerland, 2016; Volume 109, pp. 821–834. [CrossRef]

51. Li, G.; Yang, Y.; Zhang, T.; Qu, X.; Cao, D.; Cheng, B.; Li, K. Risk assessment based collision avoidance decision-making for
autonomous vehicles in multi-scenarios. Transp. Res. Part C Emerg. Technol. 2021, 122, 102820. [CrossRef]

52. Strickland, M.; Fainekos, G.; Amor, H.B. Deep Predictive Models for Collision Risk Assessment in Autonomous Driving. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
IEEE: Brisbane, Australia, 2018; pp. 4685–4692. [CrossRef]

53. Bansal, A.; Singh, J.; Verucchi, M.; Caccamo, M.; Sha, L. Risk Ranked Recall: Collision Safety Metric for Object Detection Systems
in Autonomous Vehicles. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva,
Montenegro, 7–10 June 2021; pp. 1–4. [CrossRef]

54. Hernández, J.D.; Vallicrosa, G.; Vidal, E.; Pairet, E.; Carreras, M.; Ridao, P. On-line 3D Path Planning for Close-proximity
Surveying with AUVs. IFAC-PapersOnLine 2015, 48, 50–55. [CrossRef]

55. Hernandez, J.D.; Vidal, E.; Vallicrosa, G.; Galceran, E.; Carreras, M. Online path planning for autonomous underwater vehicles in
unknown environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26–30 May 2015; IEEE: Seattle, WA, USA, 2015; pp. 1152–1157. [CrossRef]

56. Hernández, J.; Istenič, K.; Gracias, N.; Palomeras, N.; Campos, R.; Vidal, E.; García, R.; Carreras, M. Autonomous Underwater
Navigation and Optical Mapping in Unknown Natural Environments. Sensors 2016, 16, 1174. [CrossRef] [PubMed]

57. Grefstad, O.; Schjolberg, I. Navigation and collision avoidance of underwater vehicles using sonar data. In Proceedings of the
2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; IEEE: Porto, Portugal,
2018; pp. 1–6. [CrossRef]

58. Palomeras, N.; Hurtos, N.; Vidal, E.; Carreras, M. Autonomous Exploration of Complex Underwater Environments Using a
Probabilistic Next-Best-View Planner. IEEE Robot. Autom. Lett. 2019, 4, 1619–1625. [CrossRef]

59. Vidal, E.; Moll, M.; Palomeras, N.; Hernandez, J.D.; Carreras, M.; Kavraki, L.E. Online Multilayered Motion Planning with
Dynamic Constraints for Autonomous Underwater Vehicles. In Proceedings of the 2019 International Conference on Robotics
and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Montreal, QC, Canada, 2019; pp. 8936–8942. [CrossRef]

60. Petillot, Y.; Ruiz, I.; Lane, D. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking
sonar. IEEE J. Ocean. Eng. 2001, 26, 240–251. [CrossRef]

61. Tan, C.S.; Sutton, R.; Chudley, J. An integrated collision avoidance system for autonomous underwater vehicles. Int. J. Control
2007, 80, 1027–1049. [CrossRef]

62. Zhang, W.; Wei, S.; Teng, Y.; Zhang, J.; Wang, X.; Yan, Z. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based
on an Improved Velocity Obstacle Method. Sensors 2017, 17, 2742. [CrossRef] [PubMed]

63. Yan, Z.; Li, J.; Zhang, G.; Wu, Y. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in
Unknown Environments. Sensors 2018, 18, 438. [CrossRef]

http://dx.doi.org/10.1109/ICRA.2012.6225245
http://dx.doi.org/10.1109/CRV.2015.46
http://dx.doi.org/10.1109/ICUAS.2018.8453417
http://dx.doi.org/10.1186/s40648-014-0001-z
http://dx.doi.org/10.1109/ICCP.2009.5284727
http://dx.doi.org/10.1007/978-3-642-24028-7_67
http://dx.doi.org/10.1007/978-3-642-24028-7_67
http://dx.doi.org/10.1109/IVS.2012.6232221
http://dx.doi.org/10.1007/978-3-319-23778-7_54
http://dx.doi.org/10.1016/j.trc.2020.102820
http://dx.doi.org/10.1109/ICRA.2018.8461160
http://dx.doi.org/10.1109/MECO52532.2021.9460196
http://dx.doi.org/10.1016/j.ifacol.2015.06.009
http://dx.doi.org/10.1109/ICRA.2015.7139336
http://dx.doi.org/10.3390/s16081174
http://www.ncbi.nlm.nih.gov/pubmed/27472337
http://dx.doi.org/10.1109/AUV.2018.8729813
http://dx.doi.org/10.1109/LRA.2019.2896759
http://dx.doi.org/10.1109/ICRA.2019.8794009
http://dx.doi.org/10.1109/48.922790
http://dx.doi.org/10.1080/00207170701286702
http://dx.doi.org/10.3390/s17122742
http://www.ncbi.nlm.nih.gov/pubmed/29186878
http://dx.doi.org/10.3390/s18020438


Sensors 2022, 22, 5354 30 of 30

64. Wiig, M.S.; Pettersen, K.Y.; Krogstad, T.R. A 3D reactive collision avoidance algorithm for underactuated underwater vehicles.
J. Field Robot. 2020, 37, 1094–1122. [CrossRef]

65. Bosch, J.; Gracias, N.; Ridao, P.; Ribas, D. Omnidirectional Underwater Camera Design and Calibration. Sensors 2015,
15, 6033–6065. [CrossRef]

66. Bosch, J.; Gracias, N.; Ridao, P.; Istenič, K.; Ribas, D. Close-Range Tracking of Underwater Vehicles Using Light Beacons. Sensors
2016, 16, 429. [CrossRef] [PubMed]

67. Bosch, J.; Istenic, K.; Gracias, N.; Garcia, R.; Ridao, P. Omnidirectional Multicamera Video Stitching Using Depth Maps. IEEE J.
Ocean. Eng. 2020, 45, 1337–1352. [CrossRef]

68. Rodriguez-Teiles, F.G.; Perez-Alcocer, R.; Maldonado-Ramirez, A.; Torres-Mendez, L.A.; Dey, B.B.; Martinez-Garcia, E.A. Vision-
based reactive autonomous navigation with obstacle avoidance: Towards a non-invasive and cautious exploration of marine
habitat. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31
May–5 June 2014; IEEE: Hong Kong, China, 2014; pp. 3813–3818. [CrossRef]

69. Wirth, S.; Negre Carrasco, P.L.; Codina, G.O. Visual odometry for autonomous underwater vehicles. In Proceedings of the 2013
MTS/IEEE OCEANS—Bergen, Bergen, Norway, 10–14 June 2013; IEEE: Bergen, Norway, 2013; pp. 1–6. [CrossRef]

70. Gaya, J.O.; Goncalves, L.T.; Duarte, A.C.; Zanchetta, B.; Drews, P.; Botelho, S.S. Vision-Based Obstacle Avoidance Using
Deep Learning. In Proceedings of the 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium
(LARS/SBR), Recife, Brazil, 8–12 October 2016; IEEE: Recife, Brazil, 2016; pp. 7–12. [CrossRef]

71. Manderson, T.; Higuera, J.C.G.; Cheng, R.; Dudek, G. Vision-Based Autonomous Underwater Swimming in Dense Coral for
Combined Collision Avoidance and Target Selection. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Madrid, Spain, 2018; pp. 1885–1891. [CrossRef]

72. Ochoa, E.; Gracias, N.; Istenič, K.; Garcia, R.; Bosch, J.; Cieślak, P. Allowing untrained scientists to safely pilot ROVs: Early
collision detection and avoidance using omnidirectional vision. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf
Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–7. [CrossRef]

73. Weisstein, E.W. Point-Line Distance—3-Dimensional. Available online: https://mathworld.wolfram.com/Point-LineDistance3
-Dimensional.html (accessed on 30 June 2022).

74. Bosch, J.; Gracias, N.; Ridao, P.; Ribas, D.; Istenič, K.; Garcia, R.; Rossi, I.R. Immersive Touring for Marine Archaeology.
Application of a New Compact Omnidirectional Camera to Mapping the Gnalić shipwreck with an AUV. In ROBOT 2017: Third
Iberian Robotics Conference; Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C., Eds.; Series Title: Advances in Intelligent
Systems and Computing; Springer: Cham, Switzerland, 2018; Volume 693, pp. 183–195. [CrossRef]

75. Cieslak, P. Stonefish: An Advanced Open-Source Simulation Tool Designed for Marine Robotics, With a ROS Interface. In
Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; IEEE: Marseille, France, 2019; pp. 1–6. [CrossRef]

76. Ghatak, A. Optics, 2nd ed.; McGraw-Hill Higher Education: Boston, MA, USA, 2012.
77. Ray Tracing—Intersection. Available online: https://www.rose-hulman.edu/class/csse/csse451/examples/notes/present7.pdf

(accessed on 30 June 2022).

http://dx.doi.org/10.1002/rob.21948
http://dx.doi.org/10.3390/s150306033
http://dx.doi.org/10.3390/s16040429
http://www.ncbi.nlm.nih.gov/pubmed/27023547
http://dx.doi.org/10.1109/JOE.2019.2924276
http://dx.doi.org/10.1109/ICRA.2014.6907412
http://dx.doi.org/10.1109/OCEANS-Bergen.2013.6608094
http://dx.doi.org/10.1109/LARS-SBR.2016.9
http://dx.doi.org/10.1109/IROS.2018.8594410
http://dx.doi.org/10.1109/IEEECONF38699.2020.9389040
https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
http://dx.doi.org/10.1007/978-3-319-70833-1_16
http://dx.doi.org/10.1109/OCEANSE.2019.8867434
https://www.rose-hulman.edu/class/csse/csse451/examples/notes/present7.pdf

	Introduction
	Related Work
	Visual SLAM
	Omnidirectional and Multi-Camera Systems
	Collision Avoidance
	Collision Avoidance in Underwater Robotics

	Contributions
	Approach
	Framework
	Multi-Camera Tracking System
	Tracking and Mapping

	Collision Avoidance
	Dense Map Reconstruction

	Risk Estimation
	Avoidance Scheme
	Resultant Repulsive Force
	Equirectangular Risk Map Visualization


	Results
	Offline Test
	Dataset
	Effects of Parameter k on Risk Computation
	Effects of Vehicle Speed
	Resultant Repulsive Force Behavior
	Ground Truth Comparison

	Real-Time Simulation Testing
	Realistic Simulated Experiment in Stonefish
	System Performance in Simulation

	Real-Time AUV Deployment
	Camera Housing Image Distortion Correction
	Evaluated Setups
	Velocity Changes
	Navigation through Narrow Passages


	Conclusions
	References

