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Abstract: With the recent increase in intelligent CCTVs for visual surveillance, a new image degra-
dation that integrates resolution conversion and synthetic rain models is required. For example, in
heavy rain, face images captured by CCTV from a distance have significant deterioration in both
visibility and resolution. Unlike traditional image degradation models (IDM), such as rain removal
and super resolution, this study addresses a new IDM referred to as a scale-aware heavy rain model
and proposes a method for restoring high-resolution face images (HR-FIs) from low-resolution heavy
rain face images (LRHR-FI). To this end, a two-stage network is presented. The first stage generates
low-resolution face images (LR-FIs), from which heavy rain has been removed from the LRHR-FIs
to improve visibility. To realize this, an interpretable IDM-based network is constructed to predict
physical parameters, such as rain streaks, transmission maps, and atmospheric light. In addition, the
image reconstruction loss is evaluated to enhance the estimates of the physical parameters. For the
second stage, which aims to reconstruct the HR-FIs from the LR-FIs outputted in the first stage, facial
component-guided adversarial learning (FCGAL) is applied to boost facial structure expressions. To
focus on informative facial features and reinforce the authenticity of facial components, such as the
eyes and nose, a face parsing-guided generator and facial local discriminators are designed for FC-
GAL. The experimental results verify that the proposed approach based on a physical-based network
design and FCGAL can remove heavy rain and increase the resolution and visibility simultaneously.
Moreover, the proposed heavy rain face image restoration outperforms state-of-the-art models of
heavy rain removal, image-to-image translation, and super resolution.

Keywords: intelligent CCTV; image restoration; rain removal; generative adversarial network

1. Introduction

Captured images sometimes have unwanted degradation caused by noise, blurring,
downsampling, rain streaks, etc. To restore a high-quality image from such a degraded
image, understanding how the image degradation process is mathematically formulated is
necessary. Image restoration refers to the reversal of image degradation models (IDMs) [1].
Traditional image restoration involves the following IDM:(

H
⊗

K
)
↓ s + n = J, (1)

where H and J are the high-quality original image and the degraded measured image,
respectively, K is the motion filter,

⊗
is the convolution operator, ↓ s is the downsampling

operator with a scale factor of s, and n is the noise. Equation (1) is the IDM for a super
resolution (SR) with a Gaussian filter K, but it can also be used for denoising and deblurring.
If the motion kernel is set with a delta function, and the downsampling operation is omitted,
Equation (1) becomes the IDM for denoising. If only the downsampling operation is
removed, then Equation (1) represents the IDM for deblurring [2].
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1.1. Necessity of a New Scale-Aware Heavy Rain Model

Recently, intelligent CCTVs have been actively developed for visual surveillance
purposes, such as pedestrian detection, object counting, and abnormal behavior detection.
Because CCTVs are installed outdoors, they are placed in adverse weather conditions
such as heavy rain, dense fog, and heavy snow, which interfere with the acquisition of
high-quality images [3–6]. Figure 1 shows an example of low-resolution heavy rain face
images (LRHR-FI) with severe degradation in visibility and resolution, which were taken at
a distance from the cameras. Recognizing facial images is difficult because of heavy rains.
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Figure 1. Example of LRHR-FIs.

In addition to the traditional IDMs in Equation (1), the rain streak and heavy rain
models are introduced for rain removal. Their mathematical IDMs are represented by
I = J + ∑m

i Si [7] and I = T
⊙
(J + ∑m

i=1 Si) + (1− T)
⊙

A [8], respectively. Here, T is
the transmission introduced by the scattering process of tiny water particles, A is the
atmospheric light, Si is the rain layer containing rain streaks, 1 is a matrix of ones,

⊙
is the

element-wise multiplication, and I and J are the degraded rain image and original image,
respectively. Compared to the rain streak model, the heavy rain model reflects the veiling
effect, which makes the scene look misty and reduces the visibility. The veiling effect is the
result of rain-streak accumulation in the sight.

However, the rain synthesis models and classical IDMs introduced thus far are now
inappropriate for super-resolving LRHR-FIs, as shown in Figure 1. Therefore, a new IDM
is required to predict the SR face image (SR-FI) from the captured LRHR-FI. To the best of
our knowledge, this study is the first to introduce a new IDM, referred to as a scale-aware
heavy rain model, and propose a novel approach for solving the inverse problem of the
following IDM:

I = T
⊙

((H
⊗

K) ↓ s + ∑m
i=1 Si) + (1− T)

⊙
A, (2)

where I and H are the LRHR-FI and the original high-resolution face image (HR-FI),
respectively. Depending on the context, the HR refers to heavy rain or high resolution.
In Equation (2), note that the scale-aware heavy rain model includes downsampling and
blurring operations, i.e., (H

⊗
K) ↓ s . This differs from the existing heavy rain model [8].

Therefore, the scale-aware heavy rain model integrates low-resolution conversion and a
synthetic heavy rain model.

1.2. Proposed Approach

The inverse problem in Equation (2), is challenging. This is because Equation (2) has
high-dimensional physical parameters T, S, and A, to be estimated, and the reverse of
convolution and downsampling must be performed. In addition, the captured LRHR-FIs
exhibit severe deterioration in visibility and resolution. Thus, the inverse problem is highly
ill-posed. However, Equation (2) can be decomposed into two terms as follows:

I = T
⊙

( J + ∑m
i=1 Si) + (1− T)

⊙
A, (3)
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J = (H
⊗

K) ↓ s, (4)

These equations indicate that the reverse of Equation (2) represents the integration
of heavy rain removal and SR. Therefore, this study proposes a unified framework for
super-resolving LRHR-FIs. Figure 2 shows the proposed unified framework for joint heavy
rain removal and SR. To address the inverse problems in Equations (3) and (4), an inter-
pretable IDM-based network and facial component-guided adversarial learning (FCGAL)
are employed. For heavy rain removal, precisely predicting the physical parameters T, S,
and A are important in Equation (3). To reflect this, an interpretable IDM-based network
is designed for physics-based rain removal. In addition to the mean squared error (MSE),
image reconstruction loss, which can measure the difference between the captured LRHR-FI
and predicted LRHR-FI, is used as a regularization term to enhance the estimates of the
physical parameters. FCGAL aims to boost facial structure expressions. The details of
facial components, such as the eyes, lips, and nose, are crucially important for face SR. To
increase the discriminative power of facial features and reinforce the authenticity of facial
components, a face parsing-guided generator and local discriminators are added to the
conventional generative adversarial network (GAN). The proposed unified network learns
in an end-to-end manner for the reverse of the scale-aware heavy rain model.
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1.3. Contributions

• To the best of our knowledge, this study is the first to introduce a new IDM, referred
to as the scale-aware heavy rain model. With the rapid increase in intelligent CCTVs,
face images can be captured with severe degradation in resolution and visibility,
complicating face recognition. To address this issue, the proposed scale-aware heavy
rain model that integrates low-resolution conversion and a synthetic rain model is
required for accurate face image restoration.

• This study proposes a unified framework for joint heavy rain removal and SR by
employing an interpretable IDM-based network and FCGAL. For the inverse of the
scale-aware heavy rain model, an interpretable IDM-based network is designed for
physics-based heavy rain removal. In addition, for improved facial structure expres-
sions, FCGAL is proposed for enabling the facial attention mechanism and learn local
discriminators for facial authenticity examination.

• This study provides new training and test datasets for super-resolving LRHR-FIs
with low resolutions and visibility. To generate synthetic LRHR-FIs, CelebA-HQ,
which includes clean facial images, is used. The source code for generating LRHR-
FIs, according to Equation (2), is available to the public for research purposes. This
dataset can be used as a reference dataset, and the evaluation scores can be used for
performance comparison.
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2. Related Works

This study addresses the inverse problem of the new scale-aware heavy rain model for
super-resolving LRHR-FIs and proposes a unified framework for joint heavy rain removal
and SR based on the interpretable IDM-based network design and FCGAL. Therefore, this
section reviews related work on rain removal and SR.

2.1. Rain Removal

Single-image rain removal methods [9–19] can be categorized into model-based and
data-driven methods. Model-based approaches employ optimization frameworks consist-
ing of a data fidelity term and a prior term. The data fidelity term measures the accuracy of
rain synthesis models such as additive [9] and nonlinear composite models [8]. The prior
term models handcrafted priors regarding rain shape and direction.

Ĵ = argmin
J
‖I− S− J‖2

2 + Ω(S) + Y(J), (5)

where the first term represents the data fidelity term. In Equation (5), it is assumed that an
additive rain streak model is used. For heavy rain removal, the rain streak model should
be replaced with a heavy rain model. The second and third terms are prior terms. The
core of solving Equation (5) is prior modeling. To date, various types of models have
been designed for improved description. Sparse coding [6,9,10], Gaussian mixture models
(GMM) [11], and directional prior modelling [12] are the most popular approaches for prior
modeling before the development of deep learning methods.

Data-driven approaches use a large amount of observed data and automatically extract
rich hierarchical features through a layer-by-layer transformation. Data-driven approaches
are deep learning techniques. Unlike the prior models mentioned above, deep learning
can provide abundant features without requiring iterations for optimization; that is, it can
directly predict the de-rained images through the pretrained network.

Ĵ = fθ(I), (6)

Here, fθ indicates a network with a learnable parameter θ for rain removal. fθ takes a
rain image I as the input and outputs a derained image Ĵ.

Since the introduction of the detailed network [13], various architectures such as
density-aware [14], joint rain detection and removal [7,15], scale-aware [16], progressive
networks [17], and attention models [18,19] have been developed. However, these deep
learning models target rain streaks and heavy rain images. Therefore, these are expected
to be unsuitable for the scale-aware heavy rain model focused on in this study. That is,
low-resolution and visibility problems cannot be addressed jointly.

2.2. Super Resolution

SR technology started with a classical approach based on adaptive filtering and in-
terpolation [20] and has transitioned to machine learning approaches based on sparse
representation [21], principal component analysis [22], and image priors [23–25]. Similar to
rain removal methods, SR approaches can be divided into model-based and data-driven
approaches.

Ĥ = argmin
H
‖
(

H
⊗

K
)
↓ s − J‖2

2 + Y(H), (7)

Here, the first term is the data fidelity term used to model the IDM for SR and the
second is the prior term used to characterize HR images, for example, sparsity [21], gradient
shape [23], and patch redundancy [25].

Recently, deep learning has become a mainstream approach. Similar to deep learning-
based rain removal, layer-by-layer transformation is performed to extract rich features and
reconstruct SR images.

^
H = fθ(J), (8)
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In this equation, the SR network fθ takes the LR image J and outputs the SR image
^
H. This means that an upsampling layer is required in the network to match the input
and output image sizes. Bicubic and transposed convolution layers are primarily used for
upsampling.

Deep learning-based SR methods can be classified as MSE-oriented and perceptual-
driven [26]. MSE-oriented approaches focus on minimizing pixel-wise distances between
the SR and HR images. Such an optimization objective induces deep learning to pro-
duce SR images, which may be a statistical average of the possible HR solutions. Con-
sequently, blurry images with a high peak signal-to-noise ratio (PSNR) can be gener-
ated [26]. VDSR [27] and RCAN [28] are representative MSE-oriented SR models. In
contrast, perceptual-driven approaches aim to recover photo-realistic images within the
GAN framework. In this framework, a new perceptual loss function is used to measure the
distance between the pretrained features of the SR and HR images [26]. Popular models
include SRGAN [26] and ESRGAN [29]. However, perceptual-driven SR models tend to
produce structural distortions, along with fine textures. To address this issue, the SPSR [30]
model with gradient guidance is proposed.

For face SR, side information [31–33] such as facial landmarks and masks have been
exploited to improve facial details. Spatial transformation networks (STN) [34] can be
considered to be agnostic for face poses and deformation. More recently, blind face restora-
tion [35] has been actively studied to handle complex and unknown degradation. However,
these face SR methods are not designed for super-resolving LRHR-FIs. To remove rain
streaks and increase the resolution and visibility, a unified framework for jointly learning
heavy rain removal and SR is required. In addition, employing local discriminators and
face parsing-guided generators that can extract more informative features in the facial areas
and reinforce the authenticity of the facial components is better.

3. Proposed Heavy Rain Face Image Restoration

This study is interested in a unified deep learning framework for the inverse of a new
scale-aware heavy rain model that integrates low-resolution conversion (e.g., downsam-
pling) and a rain synthesis model. The inverse process can be considered as a joint heavy
rain removal and SR. Although the rain removal and SR models discussed in the previous
section are state-of-the-art (SOTA), they are unsuitable for joint heavy rain removal and
SR. Heavy rain removal models only consider rain streaks and accumulation; thus, HR
conversion is unachievable. Similarly, because SR models are concerned only with HR
image reconstruction, visibility cannot be addressed because of heavy rain. To this end, a
new unified deep learning framework for joint heavy rain removal and SR is proposed.

Figure 3 shows the architecture of the proposed network for heavy rain face image
restoration that incorporates interpretable IDM-based heavy rain removal and FCGAL
for SR. As shown in the input LRHR-FI, the face image exhibits severe degradation in
visibility and resolution. Thus, face recognition is difficult, and the inverse problem of the
proposed scale-aware heavy rain model is challenging. The proposed network comprises
three modules: IDM-based heavy rain removal, face parsing, and facial component-guided
GAN (FCG-GAN). The IDM-based heavy rain removal module is used for de-rained LR
image reconstruction by removing rain streaks and accumulation. The face parsing module
aims to find facial regions and provide outputs that guides facial attention modeling. To
this end, its output map is incorporated into the generator of the proposed FCG-GAN. In
addition, in FCG-GAN, local facial discriminators are designed to reinforce the authenticity
of facial components, such as the eyes and nose. Ultimately, the FCN-GAN aims to boost
facial structure expression for better SR image reconstruction. The details of the three
modules are provided below. The notations are summarized in Table 1 before the details of
the proposed network are introduced.
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Figure 3. Proposed deep learning network for heavy rain face image restoration: First, rain streaks
and rain accumulation are removed approximately by the interpretable IDM-based heavy rain
removal module, and then a face parsing module is applied to find informative facial features. Finally,
FCG-GAN module is used to generate SR-FIs and to boost the facial structure expression based on
local facial discriminators.

Table 1. Notation.

Notation Definition

I Low-resolution heavy rain face images (LRHR-FI)
J Low-resolution face images (LR-FI)
H High-resolution face images (HR-FI)
F Parsed low-resolution face image (Parsed LR-FI)
S Rain layer
T Transmission map
A Atmospheric light map

3.1. Synthetic Image Generation

Although introduced in Section 1.3, to reiterate, the proposed scale-aware heavy rain
model has the following mathematical form:

I = T
⊙

((H
⊗

K) ↓ s + ∑m
i=1 Si) + (1− T)

⊙
A, (9)

where I and H are the LRHR-FI and HR-FI, respectively; T, A, and S are the transmission
map, atmospheric light, and rain layer, respectively; 1 is a matrix of ones;

⊙
is the element-

wise multiplication; K is the Gaussian filter,
⊗

is the convolution operator; and ↓ s is the
downsampling operator with scale factor s.

The proposed scale-aware heavy rain model consists of two steps: resolution conver-
sion and heavy rain generation, as illustrated in Figure 4. For LRHR-FI (I) generation, the
original HR-FIs (H) are prepared. In this study, the commonly used CelebA-HQ [36] dataset
is selected for HR-FIs. According to Equation (9), HR-FI (H) is first convolved with a Gaus-
sian filter and downsampled with the scale factor s to generate LR-FI, J = (H

⊗
K) ↓ s .

Next, the rain layer (S), including rain streaks, is added to the LR-FI and then blended
with the atmospheric light A at the ratio of the transmission map T. Specifically, bicubic
interpolation is used to implement (H

⊗
K) ↓ s and Si is synthesized by generating the
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Gaussian noise and applying motion filters. The atmospheric light map A is filled with the
same bright pixel values, and T is derived from the depth map predicted with the haze
model, in which the scene radiance is exponentially diminished with depth [3,4]. A random
number generator is used to determine the noise level, direction, length of the motion filter,
and pixel value of the atmospheric light. More details are provided in [7] and [8].
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Figure 4. Synthetic LRHR-FI generation based on the proposed scale-aware heavy rain model: Input
HR-FI is converted into LRHR-FI through resolution conversion and heavy rain generation.

Figure 5 shows an example of the synthesized FI according to the proposed scale-
aware heavy rain model. In Figure 5, the first and second images are the original HR-FI
(H) and its counterpart, LR-FI (J), respectively. The image sizes of the HR-FI and LR-FI are
128× 128 and 32× 32, respectively. Bicubic interpolation is used to generate the LR-FI from
the given HR-FI. Because the size of the LR-FI is too small, the LR-FI is resized to the same
size as that of the original HR-FI for visualization. The third image is a rain streak image
synthesized using J + ∑m

i=1 Si, where m is set to one, which means that one rain streak is
added. Compared with LR-FI, the rain streak image contains rain patterns. The fourth is the
LRHR-FI (I) generated using T

⊙
J + (1− T)

⊙
A, where visibility is significantly reduced

because of the blending operation that simulates the veiling effect. The LRHR-FI exhibits
a significant degradation in both visibility and resolution. Therefore, reconstructing the
HR-FI is challenging from the given LRHR-FI. The last three images are the rain layer (S),
atmospheric light (A), and transmission (T). For reference, depth estimation is meaningful
for natural scenes; however, for face images, the depth is assumed to be almost the same.
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3.2. Inverse Problem of the Proposed Scale-Aware Heavy Rain Model

This study intends to solve a new inverse problem for the proposed scale-aware heavy
rain model, as shown in Equation (9), that is, reconstructing the HR-FI from the given
LRHR-FI.

^
H = fθ(I), (10)

where fθ indicates the proposed network with learnable parameter θ. fθ takes LRHR-FI

(I) as the input and outputs the SR-FI (
^
H). To effectively super-resolve the LRHR-FI, the

proposed network is decomposed into three modules, as follows:

fθ =
{

fθh , fθ f , fθs

}
, (11)

where fθh , fθ f , and fθs denote the three modules: interpretable IDM-based heavy rain
removal, face parsing, and FCN-GAN, respectively.
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3.3. Interpretable IDM-Based Heavy Rain Removal Module

In Figure 3, the IDM-based heavy rain removal module aims to remove rain streaks
and accumulation, thereby generating de-rained LR-FIs with improved visibility.

Ĵ = fθh(I), (12)

where fθh is the heavy rain removal module that takes the LRHR-FI (I) as the input and
outputs the de-rained LR-FI (Ĵ). Note that the resolution of the de-rained LR-FI is low. To
construct the heavy rain removal module, this study adopted a physics-based approach
to interpret the module and understand the IDM. Although the physical parameters are
repeatedly updated based on an optimization algorithm (i.e., half-quadratic splitting [37]),
the heavy rain removal module can be viewed as a simple and interpretable network
because it includes the IDM for heavy rain.

In Figure 3, the proposed IDM-based heavy rain removal module consists of one
encoder and four decoders. The encoder extracts visual features from the LRHR-FI (I).
During encoding, a high-dimensional image is mapped to low-dimensional feature vectors.
Pretrained models such as VGG [38], ResNet [39], and DenseNet [40] have become the basis
of encoders. In this study, DenseNet is chosen as the encoder and decoders. The details
of the architecture are provided in [40]. Three of the four decoders are used to predict the
physical parameters of the rain layer (S), transmission map (T), and atmospheric light (A),
and the fourth encoder estimates the derived LR-FIs (Ĵ).

^
S = fθDS

(
fθE(I)

)
, (13)

^
T = fθDT

(
fθE(I)

)
, (14)

^
A = fθDA

(
fθE(I)

)
, (15)

Ĵ = fθDJ

(
fθE(I)

)
, (16)

where fθE is the learnable function for the encoder, and fθDS , fθDT , fθDA , and fθDJ are the
learnable functions for the four decoders. The loss functions for the S, T, and A are the
L2-norm. Different norms can be applied depending on the characteristics of the physical
parameters. However, in this study, only L2-norm, which is frequently adopted for image
reconstruction, was applied. To train the fθE , fθDS , fθDT , fθDA , and fθDJ , the following loss
function is minimized:

LR,T = LR + ω1Lvgg, (17)

LR = fMSE(Ĵ, J) + fMSE(
^
I, I), (18)

^
I =

^
T
⊙

(J + ∑m
i=1

^
Si) + (1−

^
T)
⊙ ^

A, (19)

Lvgg = vgg(Ĵ, J) + vgg(
^
I, I) = ∑3

i=1 gi(Ĵ)− gi(J)
2
2 + ∑3

i=1 gi(
^
I)− gi(I)

2
2, (20)

The total loss LR,T comprises LR and Lvgg. In Equation (18), fMSE indicates the function
used to calculate the MSE. The first term of LR measures the reconstruction error between
the de-rained LR-FI and the original LR-FI, and the second term is the regularization
term referred to as the image reconstruction loss that measures the pixel distance between
the original LRHR-FI and restored LRHR-FI using Equation (19). The predicted physical

parameters
^
T,

^
A, and

^
Si are used for LRHR-FI reconstruction. By adding the second term,

the estimates of physical parameters can be enhanced. Lvgg is the total perceptual loss and
vgg calculates the perceptual loss to determine the dissimilarity between the high-level
features of two input images. In this study, a pretrained VGG model extracts high-level
features. In Equation (20), gi represents the operation that extracts high-level features from
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the pretrained VGG model at the ith layer. ReLU1_1, ReLU2_2, and ReLU3_3 are selected
as layers. ω1 is the weight value used to balance the two terms and is empirically set to 0.1.

3.4. Face Parsing Module

Unlike natural images, FIs are highly structured. That is, each facial component has
a statistical pixel intensity distribution, and roughly localizing the facial components is
possible. Even for LRHR-FIs with severe degradation, facial components, such as the eyes,
nose, and lips, have similar priors. Therefore, face parsing is required to divide input
face images into semantic regions to boost the discriminative power of facial features and
enhance facial structure expressions.

In the proposed architecture, U-net [41] is chosen as the face parsing module, as shown
in Figure 3.

^
F = fθ f

(
I, Ĵ
)
, (21)

Here, fθ f indicates the learnable function of the face-parsing module. In Equation
(21), the proposed face parsing module takes two input images: the input LRHR-FI (I) and
restored LR-FI (Ĵ). These two input images are still of low resolution. In the network, as
shown in Figure 3, a concatenation layer is used to stack the LRHR-FI and the restored
LR-FI. The output of the face-parsing module is the parsed FI. MSE is used as the loss
function to learn the face parsing module.

LF = fMSE(F,
^
F), (22)

Here, LF is the loss used to evaluate the dissimilarity between the original parsed FI

(F) and the estimated parsed FI (
^
F). Figure 6 shows an example of a pair of original HR-FI

and its parsed HR-FI. For reference, the CelebA-HQ dataset [36] provides original HR-FIs
and their parsed maps.
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3.5. FCG-GAN Module

For HR-FI reconstruction, a new FCG-GAN module is designed. In Figure 3, the
proposed FCG-GAN follows the SRGAN framework, which is one of the basis models
for SR. Although recently introduced SR frameworks [30] can be considered, they are too
heavy and complex. If the SRGAN is replaced with an advanced SR model, the perfor-
mance of FCG-GAN improves naturally. The proposed FCG-GAN exhibits differences
compared to SRGAN. First, the proposed FCG-GAN employs the parsed LR-FI to increase
the discriminative power of facial features and equips the attention mechanism. Spatial
attention models have been recently actively considered. The spatial attention model refers
to calculating weights for spatial regions in the feature map. Some regions on the feature
map can have more informative and discriminative features. Thus, the spatial attention
model may be viewed as locating the region-of-interests (ROIs). To reflect this, in this study,
a face parsing module is designed. In FCG-GAN, the parsed LR-FI enables the generator
to focus on facial regions and assign different importances to them during training. To
this end, a simple approach based on the concatenation layer is used to fuse the parsed
LR-FI and feature map output from the generator. A simple concatenation layer in the
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feature extraction part can teach the generator, of which, areas in the feature map have
more informative and discriminative features. More complicated attentions [42] may be
considered; however, the concatenation layer is sufficient for a satisfactory performance. In
the generator, the concatenation layer is inserted before the first pixel shuffler layer.

^
H = Gθ(Ĵ,

^
F, I), (23)

Here, Gθ indicates the generator of FCG-GAN. Unlike SRGAN, the proposed generator

requires three images: de-rained LR-FI (Ĵ), parsed LR-FI (
^
F), and input LRHR-FI (I).

Second, the proposed FCG-GAN builds local discriminators. In contrast to the conven-
tional GAN models, in this study, local facial discriminators are designed. In other words,
additional discriminators for facial components such as the eyes, lips, and nose are used.
These local discriminators can detect whether the generated facial components are real or
fake. Shown in Figure 3, the global discriminator determines whether the SR-FI is real,
whereas the local discriminators determine the authenticity of the facial components of the
SR-FI. The details of the facial components are crucial for facial SR. Local discriminators
can reinforce the authenticity of facial components, thereby leading to an improvement in
facial structure expressions.

Dθ = {DGθ
(

^
H), DL1θ

(cre(
^
H)), DL2θ

(crn(
^
H)), DL3θ

(crl(
^
H))}, (24)

where DGθ
and DLθ

denote global and local discriminators, respectively. In this study,
three local discriminators are used for eye, nose, and lip authenticities. In Equation (24), cr
denotes the patch cropping for the eye, nose, and lip regions. For simplicity, the average
bounding box positions of the eye, nose, and lip regions are used for patch cropping.

3.6. Network Learning

Before training the network, each of the heavy rain removal and face parsing modules
is first pretrained. This helps the network super-resolve the LRHR-FI because these modules
provide the initial restored LR-FI and parsed LR-FI. Subsequently, the following loss
function is minimized to learn the network:

LG,T = LS + γpLP + LG, (25)

LS = fMSE(H,
^
H), (26)

LP = vgg(H,
^
H), (27)

LG = γ1(1− Dθ(Gθ(I, Ĵ,
^
F))) + γ2(1− DL1θ

(cre(Gθ(I, Ĵ,
^
F)))) + γ3(1− DL2θ

(crn(Gθ(I, Ĵ,
^
F)))) + γ4(1− DL3θ

(crl(Gθ(I, Ĵ,
^
F))), (28)

LD = 1− Dθ(H) + Dθ(
^
H), (29)

LD,e = 1− DL1θ
(cre(H)) + DL1θ

(cre(
^
H)), (30)

LD,n = 1− DL2θ
(crn(H)) + DL2θ

(crn(
^
H)), (31)

LD,l = 1− DL3θ
(crl(H)) + DL3θ

(crl(
^
H)), (32)

where LS is the data fidelity term used to measure the dissimilarity between the original

HR-Fis H and restored SR-Fis
^
H, Lp is the perceptual loss, and LG and LD, are related to ad-

versarial loss. Conventional adversarial loss [43] is defined only by the global discriminator
Dθ and generator Gθ , whereas the proposed FCG-GAN adds three loss functions, DL1θ

,
DL2θ

, and DL3θ
, to reinforce the authenticity of facial components, as shown in Equations
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(28) and (30)–(32). To train the generator and four discriminators alternatively, LG, T is first
minimized with respect to the parameters of the generator. Subsequently, LD, LD,e, LD,n,
and LD,l are minimized with respect to the parameters of each discriminator. That is, the
generator and discriminators are updated alternatively in an adversarial relationship with
each other. Empirically, γp and γ1 are set to 10−3 and γ2, γ3, and γ4 are set to 10−4. For
reference, during network training, heavy rain removal and face parsing modules use only
the MSE for their loss functions.

3.7. Implementation Details

The CelebA-HQ [36] dataset, which contains celebrity HR-FIs, is used for HR-FI
restoration. A total of 18,000, 1800, and 100 datasets are used as training, validation, and
test datasets, respectively, to train and test the network. The image size of the HR-FIs in the
CelebA-HQ dataset is 128 × 128 pixels. To effectively train the network, the heavy rain and
face parsing modules are pretrained with the training dataset, as mentioned in the previous
section. The batch size is 64 and the number of epochs is 200. The Adam [44] optimizer
is used with a weight decay 10−4, and the learning rate is set to 10−3. The scale factor of
s in Equation (5) is set to four, and a bicubic interpolation is used to generate LR-FIs. In
addition, m is set to one such that one rain streak is added. For network training, the Adam
optimizer is also applied with the same parameter settings, except that the epoch is 80 and
batch size is 16. The proposed network is implemented using the PyTorch framework. Our
source codes and datasets will be available from https://github.com/cvmllab (accessed on
15 July 2022).

4. Experimental Results

This section evaluates the proposed method using a few baseline methods for our
heavy rain face image dataset. First, the SRGAN model is compared with the proposed
heavy rain face image restoration. This comparison shows the effectiveness of the proposed
unified framework in improving visibility and resolution simultaneously. In addition, an
ablation study verifies that facial structure expressions can be improved step-by-step by
adding face parsing and FCG-GAN. Second, SOTA methods such as heavy rain removal [8],
image-to-image translation [43], SRGAN [26], face SR [31], and ESRGAN [29] are compared.
This evaluation confirms that the proposed unified framework is more suitable than the
SOTA method for joint heavy rain removal and SR. The proposed method is shown to
outperform SOTA methods.

4.1. Ablation Study

Figure 7 shows the results for the heavy rain face image restoration. The first and
second columns show the input LRHR-FIs and corresponding HR-FIs, respectively. Ac-
cording to the proposed scale-aware heavy rain model, LRHR-FIs were generated from the
original HR-FIs. As shown in the first column, LRHR-FIs were significantly degraded in
terms of both visibility and resolution. In addition, rain streaks were added. Thus, solving
the inverse problem of the scale-aware heavy rain model is challenging.

https://github.com/cvmllab
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FPM + SRGAN), proposed method (HRRM + FPM + FCG-GAN), heavy rain removal [8], pix2pix [43],
and face SR [31] (left to right).

An ablation study is required to verify the effectiveness of the three proposed modules:
the heavy rain removal module (HRRM), face parsing module (FPM), and FCG-GAN. As
mentioned in Section 3.5, the SRGAN framework was adopted for the SR module in the
proposed network. Therefore, the proposed FCG-GAN can be considered an advanced
SRGAN. The third column of Figure 7 provides the SR-FIs restored using SRGAN [26].
The fourth and fifth columns show the SR-FIs reconstructed using the proposed methods:
HRRM + FPM + SRGAN and HRRM + FPM + FCG-GAN. The difference between the two
proposed methods is the application of the local discriminators.

First, by comparing the SR-FIs in the third and fourth columns, the use of HRRM and
FPM is known to significantly improve face resolution. In particular, facial components
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such as the eyes, nose, and lips were more clearly restored using the proposed method
(HRRM + FPM + SRGAN). The parsed LR-FIs enable the generator to focus on facial regions
and provide them with different levels of importance. The parsed LF-FIs serve as a guide
to teach the generator, whose features are more informative, thereby increasing the discrim-
inative power of facial features and improving the facial structure expression. Moreover,
when only the SRGAN is applied, the facial components are blurred and distorted, as
shown in third column. Because SRGAN was originally designed for SR, it is unsuitable
for super-resolving LRHR-FIs. That is, the HRRM was excluded in the SRGAN.

Second, the additional use of local discriminators can further enhance facial structure
expressions. The fifth column shows the SR-FIs reconstructed using the proposed method
(HRRM + FPM + FCG-GAN). Compared with the SR-FIs in the fourth column, the shapes
of the facial components are relatively more refined and closer to the ground truth HR-FIs,
as shown in the red boxes. Note that the sharpness around the eyes and nose is further
enhanced. This indicates that the addition of local discriminators reinforces the authenticity
of facial components and improves facial structure expression.

4.2. Visual Quality Evaluation

The proposed method (HRRM+FPM+FCG-GAN) is compared with SOTA methods
such as SRGAN [26], heavy rain removal [8], pix2pix [43], face SR [31], and ESRGAN [29]
for visual quality comparison. The SRGAN does not contain the HRRM; thus, the visual
quality of the reconstructed images is poor, as shown in the third column. In particular,
facial components such as the eyes and lips are blurred.

The sixth and seventh columns show the SR-FIs reconstructed using the heavy rain
removal and pix2pix methods, respectively. In these columns, severe distortions appeared
around the facial components. In the pix2pix method [43], neither the IDM for heavy rain
nor the SR model was reflected. Thus, the CGAN used in pix2pix fails to generate a face
image intensity distribution. The heavy rain removal method [8] was originally designed
for rain removal, requiring the consideration of a physics-based network. This implies that
the model architecture is unsuitable for SR. Consequently, the SRGAN performed better
than the heavy rain removal method. For reference, to directly apply the pix2pix and heavy
rain removal methods to the heavy rain face image restoration, the size of the LRHR-FIs
was changed to the same size as the original HR-FIs.

The last column shows the SR-FIs reconstructed using the face SR method. In this
column, the resolution improved more than that of the SRGAN, owing to the use of parsed
LR-FIs. In this study, to implement the face SR method [31], the parsed LR-FI and LRHR-FI
were fed to the input layer of the SRGAN. For the pair comparison, the same SRGAN
model was used in the face SR method. That is, the difference between the SRGAN and
face SR method is whether a parsed LR-FI is used.

However, the face SR method is inferior to the proposed method (HRRM+FPM+FCG-
GAN). In particular, a better sharpness was achieved using the proposed method. For
example, the first row confirms that the proposed method produces a clearer pair of
eyes and nose than the facial SR method. In addition, the shape of the eyes and nose,
or face outline, was closer to the original HR-FIs. This indicates that the use of local
discriminators is effective in improving facial structure expressions. In the proposed FCG-
GAN, local discriminators reinforce the authenticity of facial components, thereby inducing
the generator to produce more realistic images. Consequently, the proposed method can
restore SR-FIs with sharper and more accurate shapes than the face SR method.

Figure 8 shows a comparison of the proposed method with the ESRGAN method.
Although ESRGAN is a SOTA method for SR, the visual quality is evidently poor because
of geometric distortion around facial components. Overall, it was blurry. This is because
the model architecture is designed for SR, and thus, solving the inverse problem of the
scale-aware heavy rain model is limited.



Sensors 2022, 22, 5359 14 of 17Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 
Figure 8. Results: ESRGAN [29] (top row) and proposed method (bottom row). 

4.3. Quantitative Evaluation 
For performance evaluation, the peak signal-to-noise ratio (PSNR) and structural 

similarity (SSIM) [45] were tested. The PSNR measures the sum of the pixel-wise differ-
ences between two images in a log space to reflect the human visual system, and the SSIM 
scores the structural similarity between two images based on the luminance, standard de-
viation, and contrast functions. A higher value indicates a higher quality for both PSNR 
and SSIM. Although other no-reference quality metrics are available [46], this study aims 
to reconstruct SR-FIs with resolutions and visibilities as similar to the original HR-FIs as 
possible. Therefore, such no-reference quality metrics may be inaccurate, and thus, inap-
propriate for this study. 

Table 2 lists the results of the PSNR and SSIM evaluations for the test dataset. As 
expected, the proposed method (HRRM + FPM + FCG-GAN) demonstrated the best per-
formance among all methods and surpassed the SOTA methods. This indicates that the 
proposed FCGAL is effective in improving facial structure expressions. That is, FPM 
serves as a guide to teach FCG-GAN, whose features are more informative, thereby in-
creasing the discriminative power of facial features and improving facial structure expres-
sion. In addition, local discriminators can reinforce the authenticity of facial components, 
which induces the generator to produce more realistic and clearer SR-FIs. Unlike conven-
tional SOTA methods, the proposed method integrates the heavy rain and resolution con-
version models to address joint heavy rain removal and SR. Therefore, the proposed phys-
ics-based network is more suitable for super-resolving LRHR-FIs than the SOTA methods. 

Table 2. Performance evaluation. 

Metrics 
Methods 

PSNR SSIM 

Heavy rain Removal [8] 20.8678 0.5640 

Pix2Pix [43] 21.8714 0.6052 

SRGAN [26] 22.4878 0.6852 

Face SR [31] 22.7130 0.6988 

ESRGAN [29] 23.0400 0.6977 

Proposed Method 
(HRRM + FPM + SRGAN) 

22.7340 0.6981 

Proposed Method 
(HRRM + FPM + FCG-GAN) 

23.2075 0.7120 

From the results, the proposed method conclusively outperforms the SOTA methods. 
Conventional pix2pix, heavy rain removal, and SR methods are unsuitable for joint heavy 

Figure 8. Results: ESRGAN [29] (top row) and proposed method (bottom row).

4.3. Quantitative Evaluation

For performance evaluation, the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [45] were tested. The PSNR measures the sum of the pixel-wise differences
between two images in a log space to reflect the human visual system, and the SSIM scores
the structural similarity between two images based on the luminance, standard deviation,
and contrast functions. A higher value indicates a higher quality for both PSNR and
SSIM. Although other no-reference quality metrics are available [46], this study aims
to reconstruct SR-FIs with resolutions and visibilities as similar to the original HR-FIs
as possible. Therefore, such no-reference quality metrics may be inaccurate, and thus,
inappropriate for this study.

Table 2 lists the results of the PSNR and SSIM evaluations for the test dataset. As
expected, the proposed method (HRRM + FPM + FCG-GAN) demonstrated the best
performance among all methods and surpassed the SOTA methods. This indicates that the
proposed FCGAL is effective in improving facial structure expressions. That is, FPM serves
as a guide to teach FCG-GAN, whose features are more informative, thereby increasing
the discriminative power of facial features and improving facial structure expression. In
addition, local discriminators can reinforce the authenticity of facial components, which
induces the generator to produce more realistic and clearer SR-FIs. Unlike conventional
SOTA methods, the proposed method integrates the heavy rain and resolution conversion
models to address joint heavy rain removal and SR. Therefore, the proposed physics-based
network is more suitable for super-resolving LRHR-FIs than the SOTA methods.

Table 2. Performance evaluation.

Methods
Metrics

PSNR SSIM

Heavy rain Removal [8] 20.8678 0.5640
Pix2Pix [43] 21.8714 0.6052
SRGAN [26] 22.4878 0.6852
Face SR [31] 22.7130 0.6988

ESRGAN [29] 23.0400 0.6977
Proposed Method

(HRRM + FPM + SRGAN) 22.7340 0.6981

Proposed Method
(HRRM + FPM + FCG-GAN) 23.2075 0.7120

From the results, the proposed method conclusively outperforms the SOTA methods.
Conventional pix2pix, heavy rain removal, and SR methods are unsuitable for joint heavy
rain removal and SR. By contrast, the proposed network incorporates heavy rain and
resolution conversion models to solve the inverse problem of the scale-aware heavy rain
model. For heavy rain removal, an interpretable IDM-based network was designed for
physical parameter estimation, and the proposed FCGAL was applied based on a face
parsing-guided generator and local discriminators to handle facial features and reinforce



Sensors 2022, 22, 5359 15 of 17

the authenticity of facial components. Based on this approach, heavy rain can be removed,
and the image resolution can be increased, whereas the conventional SOTA methods yield
blurred SR-FIs. Geometric distortion occurs depending on the method used. Moreover,
the shape of the facial components is incorrect. This is because their architectures were
originally designed for a single task, such as either heavy rain removal or SR.

4.4. Discussion

The proposed method was only applied to synthetic LRHR-FIs. Shooting real LRHR-
FIs is forbidden because of personal information. In addition, everyone in our country
is wearing masks because of COVID-19. Therefore, collecting real LRHR-FIs is difficult.
Moreover, real LRHR-FIs can have different appearances from the synthesized images
using the proposed scale-aware heavy rain model. Thus, more complex IDM is required.
For example, the model parameters for downsampling and Gaussian blurring are not
fixed or viable. A more complex blind heavy rain face image restoration approach [35] is
required for super-resolving real LRHR-FIs. In addition, lighting conditions (e.g., low-light
conditions and flash lighting) and face images taken with umbrellas need to be considered.
In future work, we plan to upgrade the proposed network for blind heavy rain face image
restoration such that the proposed method can be more applicable to real-world scenarios.

5. Conclusions

This paper presents a learning method for restoring heavy rain face images with
severely low visibility and resolution. Unlike conventional SR and heavy rain removal,
a scale-aware heavy rain model that integrates IDMs for heavy rain and low-resolution
conversion is introduced. To effectively solve the inverse problem of the proposed scale-
aware heavy rain model, the proposed network was constructed based on three modules:
HRRM, FPM, and FCG-GAN. The HRRM is used for heavy rain removal and consists of
one encoder and four decoders to extract visual features and predict physical parameters.
The HRRM can be viewed as a simple interpretable IDM-based network. The FPM takes
LR-FIs and LRHR-FIs as an input and generates parsed LR-FIs to identify facial areas.
The output map of the FPM is inserted into the FCG-GAN to teach which features are
informative for face SR. This increases the discriminative power of facial features and
leads to an improvement in image resolution. In addition, the use of local discriminators
can reinforce the authenticity of facial components, thereby improving facial structure
expressions. The proposed network can remove heavy rain and simultaneously increase
resolution and visibility. The results confirmed that the proposed model surpasses the
SOTA methods and is more suitable for joint heavy rain removal and SR than conventional
methods such as image-to-image translation, heavy rain removal, and SR models.
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