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Abstract: Starting from the concept of the Cloud Radio Access Network (C-RAN), continuing with
the virtual Radio Access Network (vRAN) and most recently with the Open RAN (O-RAN) initiative,
Radio Access Network (RAN) architectures have significantly evolved in the past decade. In the last
few years, the wireless industry has witnessed a strong trend towards disaggregated, virtualized and
open RANs, with numerous tests and deployments worldwide. One unique aspect that motivates
this paper is the availability of new opportunities that arise from using machine learning, more
specifically multi-agent team learning (MATL), to optimize the RAN in a closed-loop where the
complexity of disaggregation and virtualization makes well-known Self-Organized Networking
(SON) solutions inadequate. In our view, Multi-Agent Systems (MASs) with MATL can play an
essential role in the orchestration of O-RAN controllers, i.e., near-real-time and non-real-time RAN
Intelligent Controllers (RIC). In this article, we first provide an overview of the landscape in RAN
disaggregation, virtualization and O-RAN, then we present the state-of-the-art research in multi-agent
systems and team learning as well as their application to O-RAN. We present a case study for team
learning where agents are two distinct xApps: power allocation and radio resource allocation. We
demonstrate how team learning can enhance network performance when team learning is used
instead of individual learning agents. Finally, we identify challenges and open issues to provide a
roadmap for researchers in the area of MATL based O-RAN optimization.

Keywords: multi-agent systems; team learning; O-RAN; xApps

1. Introduction

The demand for mobile connectivity has been undeniably growing over the past
decades, including a parallel increase in the demand for better Quality of Service (QoS).
On top of that, 5G and the next generations of mobile networks will not only serve smart
phone users but also verticals such as self-driving cars, healthcare, manufacturing, gaming,
marketing, Internet of Things (IoT) and many more [1]. In almost all generations of
mobile networks, resource optimization has been a challenge, yet with 5G, despite new
spectrum allocations in the mmWave band, the spectrum is still scarce with respect to
increasing demand for wireless connectivity due to emerging new applications such as
virtual reality, remote surgery, and so on [2]. Moreover, starting from Long-Term Evolution
(LTE), the densification trend continues with 5G, at the cost of increased investments. It is
well-known that densification is essential due to the limited coverage of mmWave bands.
Hence, the increasing complexity of mobile networks is reaching the limits of model-based
optimization approaches and yielding to data-driven approaches, also known as AI-enabled
wireless networks [3]. In this context, the interest in self-optimizing networks that use
machine learning is growing [4]. In the meanwhile, an interesting nexus is emerging from
AI-enabled networks and RAN disaggregation, virtualization and open interfaces.

In 2010s, Cloud RAN (C-RAN) introduced a disaggregated architecture that allowed
grouping Baseband Units (BBUs) into a centralized BBU pool, with the potential of reducing
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deployment costs in the long term and improving network capacity. Other architectures
have continued from the path of C-RAN, such as virtualized RAN (vRAN) which adds the
concept of hardware functions being softwarized. RAN disaggregation and virtualization
offer many advantages over traditional RAN solutions, such as reduced network deploy-
ment time, improved energy efficiency and enhanced mobility support. Most recently, the
Open Radio Access Network (O-RAN) Alliance has brought together those prior efforts
around a new RAN architecture with open interfaces, aiming to replace some of the inter-
faces that have become proprietary over time due to vendor specific implementations of
standards. Open interfaces are considered to be important for equipment from multiple
vendors to be stacked together and for the selection of best-of-breed solutions.

The timing of O-RAN coincides with new advances in Software Defined Networking,
Network Function Virtualization, dynamic function splitting, high capacity data centers
and cloud and edge computing, all of which have set the stage for O-RAN [5]. Meanwhile,
the increased complexity and the flexible architecture of the O-RAN specifications call for
the use of machine learning techniques more than ever.

As of 2021, there are many implementations of open RAN around the globe. For
instance, in Japan, Rakuten has deployed distributed data centers hosting both Distributed
Unit (DU) and Central Unit (CU) functions. The Spanish operator Telefónica has invested
in the integration of its open RAN solution with its multi-access edge computing (MEC)
solution. In addition, some operators such as Dish, Sprint and T-Mobile in the US and
Etisalat in the Middle East are in the testing phase of open RAN. There are many other
emerging vendors, system integrators and operators who are experimenting with open
RAN, in addition to the above mentioned players in the market. It is worth noting that,
some of these implementations are not necessarily following O-RAN specifications defined
by O-RAN Alliance.

The multitude of layers, functions, splits, and the consequent complexity in O-RAN,
position machine learning techniques that involve multiple agents and team learning as
potential solutions. In recent years, MASs have been used to address complex problems in
robotics and other self-driving systems therefore they can be promising alternatives for the
self-driving (or self-optimizing) capability of O-RAN. In team learning, distributed agents
form teams that cooperate to reach a common goal. The utmost goal of this aggregation
is to maximize the team’s objective function. The network function softwarization capa-
bilities of O-RAN present an excellent opportunity to utilize teams of distributed agents
as cooperating xApps to improve main key performance indicators while sharing partial
or complete information on observations. To the best of our knowledge, this paper is the
first to elaborate on multi-agent team learning (MATL) and its use in O-RAN. Note that
providing a survey on MAS or description of O-RAN specifications is beyond the scope
of this paper. In the literature, there are several comprehensive surveys on MAS [6] and
O-RAN specifications [7–9].This paper focuses on the application of MATL in O-RAN. We
first begin with a background on recent advances in RAN architectures leading to O-RAN,
and then we continue with an introduction on MAS and team learning. We discuss a case
study where MATL is employed in O-RAN. More specifically, we study three schemes for
team learning where each team is comprised by two xApps for optimizing power allocation
and resource allocation. Finally, we provide a detailed discussion on the challenges of
MATL in O-RAN, and identify open issues in the field.

2. Background on Disaggregated, Virtualized RAN and O-RAN

Traditional RAN solutions offer an architecture where BBUs and RUs are co-located.
This brought limitations in terms of not being able to pool BBU resources. Therefore the
following generation of RAN architectures considered BBU resources that are pooled close
to the radios but not co-located, where geographical proximity is necessary due to latency
limitations. The pool of BBUs is called as Distributed Unit (DU), and the radios constitute
the Radio Unit (RU). Within O-RAN specifications, another level of processors is also
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defined, which is called as O-RAN Central Unit (O-CU) (In O-RAN specs, the radio unit is
called as O-RU, and the distributed computational unit is called as O-DU).

The most appealing reason behind RAN disaggregation was to reduce costs and bring
more versatility to the technological market. An earlier version of RAN disaggregation was
seen in C-RAN where some hardware functions are implemented as software functions,
and BBU functionality is collected at the centralized cloud. C-RAN offers improvements
in network capacity, handling cooperative processing, mobility, coverage, energy-efficient
network operation, and reduced deployment costs [10].

On the evolution path of RAN architectures, the most recent development comes with
O-RAN, in which interfaces between O-RU and O-DU and between O-DU and O-CU are
based on open specifications [11]. This paves the way to interoperability between vendor
products and the possibility to select the best set of products by Mobile Network Operators
(MNOs). In addition, O-RAN embraces intelligence in every layer of its architecture and
aims to leverage new machine learning-based technologies [12]. As seen in Figure 1, the
RAN Intelligent Controller (RIC) is composed of the non-Real Time RIC (non RT-RIC)
and the near-Real Time RIC (near RT-RIC), which have been considered fundamental
platforms to enable intelligence [13]. The primary objective of the non RT-RIC is to support
applications that operate in non-real-time or above the one second time frame. In the
non-RT RIC, we employ the rApps that aim at non-real-time parameter optimization, RAN
analytics and management, as well as model training for the lower layer of the RIC. On the
other hand, the near RT-RIC supports applications that are executed in near-real-time, such
as between 10ms and 1ms. The near-RT RIC has two interfaces with a centralized unit user
plane (O-CU-UP) and control plane (O-CU-CP) used for data transmission and signaling,
and configuration, respectively. In the case of near RT-RIC, xApps enable intelligence by
enforcing policies from the non RT-RIC and are capable but not restricted to executing
Radio Resource Management (RRM) tasks such as cell load prediction, anomaly detection,
traffic steering and data collection from E2 Nodes (O-DU, O-CU and O-RU). Access from
the near RT-RIC and non RT-RIC to xApps and rApps is provided through Application
Programming Interfaces (APIs) with software updates and data gathering purposes. The
introduction of xApps and rApps increase the interoperability and the openness of the
O-RAN architecture by allowing developers from third-party software providers to share,
publish and provide access to their applications. As a last remark, it can be seen in the
above-mentioned figure that the distributed unit (O-DU) is connected to O-CU, and through
O-RUs, it can provide services to UEs.

The Role of Intelligence in O-RAN

O-RAN defines certain guidelines to employ AI in its architecture. Offline and online
learning is expected to coexist with a modular design as best practice to follow. This will
enable service providers to decide the location of intelligence in the network functions
according to their best interests. As a recommendation, xApps and rApps are expected to
fall in certain control loops [14,15] according to the time budget needed for such applications
(see Figure 1). Furthermore, open-source solutions, such as Acumos AI, emerge as a
potential development platform for ML models. Several AI/ML use cases are already
identified by the O-RAN community, such as QoE (Quality of Experience) optimization,
traffic steering [16], user access control [17] and V2X handover management [12]. It is
important to highlight that although some ML applications are described in O-RAN reports,
the huge potential of applying MATL in O-RAN are not covered in any of the use cases.
On the other hand, MAS has been studied in the context of wireless networks in a few
studies. Most of these prior works consider multiple uncoordinated agents working within
the same environment, driven by the same reward or goal. However, when multiple
agents interact with the environment independently, they change the environment of each
other. Additionally, when agents have different goals, the problem cannot be simplified to
deploying independent agents. Therefore, using teams of agents in O-RAN emerges as a
promising approach.
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In Section 4 we present a case study where a team of two xApps exchange information
to enhance performance and avoid conflict among team members. Note that, the organi-
zation of xApps in teams will incur communication overhead. Before we elaborate more
on such opportunities and challenges, in the following section we provide background on
MAS and team learning.

Intelligent Real
 Time Network 

Functions

* AI-enabled 
service-policy
* RAN analytics

Intelligent Layers

* AI-enabled 
Optimization

* Feedback for 
UEs and Cells

O-RAN Control Loops

10ms-1s

Non RT-RIC

Near RT-RIC

O-CU-CP
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Figure 1. O-RAN interfaces, closed-loop latency requirements and intelligence at different layers
of O-RAN. O1 corresponds to the interface between the SMO and O-RAN managed elements. A1
interfaces the SMO and RAN. E2 interfaces the control and optimization of the O-CU and O-DU
nodes (E2 nodes) resources by the Near RT-RIC. F1 interfaces the O-DU and O-CU. E1 interface
interconnects O-CU-CP and O-CU-UP. The Open Fronthaul refers to the interface that connects the
O-RU with the O-DU. R1 interfaces rApps and the Non-RT RIC. Finally, xApps are capable to access
to E2 nodes’ realtime information and general purpose data in a central database using a service
bus implemented by a peer-to-peer low latency (∼0.02 ms) library named RIC Message Router
(RMR) [18].

3. Multi-Agent Systems and Team Learning

MAS is composed of a group of autonomous and intelligent agents that act in an
environment in order to accomplish a common goal or individual goals. In the following,
we introduce different types of MAS, team learning in MAS, and finally how MAS with
team learning can be employed in O-RAN architecture.

A recent survey on open virtualized networks [19], gives a comprehensive overview
of the state-of-the-art in modern RANs. In the next section, we summarize the efforts in the
intersection of AI and O-RAN.

3.1. Types of MAS

There can be several types of MAS, such as homogeneous/heterogeneous, communi-
cating/non-communicating and cooperative (collaborative)/competitive.

Homogeneous/Heterogeneous: The homogeneous multi-agent system consists of
agents with a similar internal structure, which means that all agents have the same local
goals, capabilities, actions, and inference models. In the homogeneous architecture, the
main difference among agents is based on the place where their actions are applied over
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the environment. By contrast, in the heterogeneous MAS, agents may have different goals,
capabilities, actions, and inference models. From the O-RAN perspective, homogeneous
agents would be instances of the same xApp instantiated for different slices, while different
xApps would be heterogeneous agents.

Communicating/non-communicating: A group of agents can be designed to commu-
nicate with each other or not. When there is no communication, agents act independently
without receiving any feedback from other agents. However, since they are working in the
same environment, indirect feedback on the actions of the other agents will be observed
by the individual agent. For the case of communicating agents, there is explicit feedback
among agents. This is more suitable for many O-RAN ML algorithms. Note that the way
agents communicate will impact the required bandwidth on the O-RAN interfaces. It is also
important to note that in a multi-vendor environment, some agents controlling different
vendor functions might not communicate with other.

Cooperative/Competitive: In an MAS, agents can be cooperative, competitive, or
mixed. In a cooperative setting, the agents need to take collaborative actions to achieve a
shared goal, or in other words, agents must jointly optimize a single reward signal. On the
other hand, in a competitive setting, each agent tries to maximize its received reward under
the worst-case assumption; meanwhile, the other agents always try to minimize the reward
of others. It is also possible to have groups with mixed behavior agents where some are
cooperative while others are competitive. In the O-RAN architecture, this kind of behavioral
differences may be needed for various use cases, where certain xApps might be cooperating
while others are competing due to the nature of shared resources. Although many machine
learning techniques have been considered for MAS, team learning could have particular
significance in the future since it can have applications in O-RAN by organizing xApps as
teams of teams in hierarchies. In the next section, we focus on MATL and its potential use
in O-RAN.

3.2. Multi-Agent Team Learning

As shown in Figure 2, in team learning, teams of distributed agents cooperate to
achieve a common goal. They usually share complete information on observations. More
specifically, team learning tries to maximize a team’s objective function comprised of its
agents’ contributions. Consequently, this learning approach could be useful in O-RAN
architecture where a team of xApps (scheduler, power adaptation, beamforming, etc.)
needs to find the best arrangement for their members to improve the overall network
performance. Such tasks could be comprised of several individual subtasks corresponding
to each team member. Hence, team learning shows itself as a promising approach for
the decentralized and granular architecture of O-RAN. Although the application of team
learning to O-RAN is new, team learning has been studied and applied for a wide range of
applications. For instance, team learning has been used to address complex problems; from
multi-robot teams (e.g., robot soccer), multi-player games (e.g., Dota, StarCraft), predator–
prey pursuit and capture problems, to search and rescue missions, as well as mitigating
traffic congestion.

For instance, Ref. [20] presents an interesting work related to team learning in urban
network traffic congestion. The authors proposed a Dynamic Traffic Assignment (DTA)
algorithm based on a collaborative, decentralized heterogeneous reinforcement learning
approach to mitigate the effects of the randomness of urban traffic scenarios. To this end,
two-agent teams are defined as advisers and deciders. The decider team task consist
of assigning traffic flows to a specific traffic network. Meanwhile, the adviser team is
responsible for supporting the deciders with additional information on the environment.

In particular, the adviser–decider type of team learning can be used in O-RAN consid-
ering the different time granularities of non-real-time RIC (non-RT RIC) and near-Real-Time
RIC (near-RT RIC). For instance, a team of agents at non-RT RIC can advise another team at
near-RT RIC on long-term policies. In the next section, we explore more on how MATL can
be useful for O-RAN.
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Finally, it is also important to highlight the differences between team learning and
distributed or federated learning. Federated learning indicates how the data are used
to train/update local models using the information from heterogeneous/homogeneous
agents [21] and does not cover the specific dynamics of agent interactions such as in a team.
Team learning is not constrained to a specific data model; agents learn by interacting with
the environment and they converge on a policy.

Wireless environment and applications

Team 1 Team 2

xApp 1 xApp 2 ... xApp 4 ...xApp 3

DQN based Team 1 control DQN based Team 2 control

Information exchange between Teams

Main network

Action Selection

Environment
State,next state,action,reward State,next state,action,reward

Action Selection

5
4

321

2

4

1

5

3
1 2 3

4 5

(a) Flat (b) Hierarchical (c) Coalition

Target network Target network Main network

Figure 2. Multi-agent team learning: The figure shows two teams comprised of more than one xApp
where each xApp is a DQN agent that interacts with the environment. Teams can form different
communication structures to share information: (a) flat, (b) hierarchical and (c) coalition. In our case
study, we consider the interactions of one team of agents.

3.3. Embedding Intelligence in O-RAN

Multi-agent team learning presents itself as an exciting technique where agents can
join forces to achieve a common goal. Modular disaggregation and feedback availability
throughout the O-RAN architecture intuitively leads us to the applicability and integration
of team learning in O-RAN. In order to integrate MATL into O-RAN and develop an
AI-enabled RIC, some steps need to be taken.

In the first step, model capabilities and its required resources, including the accessi-
bility of data (observation level), availability of processing power, interaction time, and
maximum tolerable latency (processing time and communication time), need to be exam-
ined. This evaluation can be executed by the service management and orchestration (SMO)
platform. The corresponding RAN counters from O-CUs and O-DUs are gathered in the
data collector, which is placed in the SMO. Based on the SMO platform type, various entities
can perform the data collection. For instance, if an open network automation platform
(ONAP) is employed to play the role of SMO, the virtual event streaming (VES), which is a
subsystem in the ONAP will take care of collecting data collection, analytics, and events
(DCAE). After collecting analytics, the SMO shares the collected data through a data bus
with non-RT RIC. Selecting a proper model and training the model is the next step, where
AI agents run and train a model at non-RT RIC, near-RIC, or even O-DU based on the NF
resource and latency requirements.
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Based on the model’s outcome, agents apply the corresponding actions. Depending
on the AI model, type of actions, and location in O-RAN architecture, various interfaces,
including A1, O1 and E2, can be used. A1 interface can be used for a policy-based data
format, ML/AI model management, and delivering information to the near-RT RIC to
apply RAN optimization. Similarly, the E2 interface is located between O-CU, O-DU, and
near-RT RIC. Additionally, the O1 interface is responsible for delivering management and
operational information of O-DU, O-CU, near-RT RIC and radio unit (O-RU), including
performance, configuration and fault management, to the SMO. It can also be used for the
configuration of O-DU, O-CU, near-RT RIC and O-RU with respect to the application.

When intelligence is implemented in O-RAN, using a team learning approach, it is
important to select a common goal and the sub-goals properly. In addition, the overhead
of sharing feedback needs to be considered. In the next section, we present a study case
showing the advantages of MATL in the O-RAN architecture.

4. A Case Study on Multi-Agent Team Learning in O-RAN

As a case study, we investigate the advantages of using MATL for optimizing resource
block and power allocation in O-RAN. Prior studies have shown reinforcement learning
based resource block and power allocation outperform traditional approaches [22]. There-
fore, we focus on only machine learning approaches in this paper and extend them with
the notion of team learning. In our case study, for simplicity, we consider a team of two
heterogeneous xApps: one optimizing power allocation and another xApp optimizing
resource block allocation.

The core idea is to let xApps take into account the actions of other team members. This
is achieved by changing the state of the xApps to a combination of both environmental
information and action information from other team members. In addition, xApps also in-
form other team members about the actions they decide to take. By exchanging information,
team members consider the actions of the others and hence improve the team member’s
coordination as well as the overall performance of the RAN. We define our performance
metrics as system throughput and energy efficiency. As shown in Figure 3, we propose
three schemes to study the interactions among agents and the repercussions of exchanging
information. We define our schemes as follows:

Figure 3. Sequential multi-agent deep reinforcement learning (SMADRL), Concurrent multi-
agent deep reinforcement learning (CMADRL) and Team multi-agent deep reinforcement learning
(TMADRL) schemes.

• SMADRL: In the sequential multi-agent deep reinforcement learning (SMADRL),
team members act in a sequential fashion. xApp 1 first observes the environment and
takes actions, then xApp 2 acts;
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• CMADRL: In the concurrent multi-agent deep reinforcement learning (CMADRL),
team members act concurrently, allowing in such arrangement, the simultaneous
observation and the reward gathering for both xApps;

• TMADRL: In the team multi-agent deep reinforcement learning (TMADRL), team
members exchange the action information with each other, and make their own
decisions accordingly. Specifically, xApp 1 and xApp 2 will take their actions in each
time slot based on the team member’s previous action and the environmental states.
After sharing such feedback in terms of actions, the agents apply their actions to the
system. Finally, they update their models with a single team reward.

4.1. Team Learning xApps Markov Decision Process (MDP)

In our case study, both xApps are implemented using deep Q-learning (DQL) [23].
The MDP of two the xApps in the proposed TMADRL scheme are defined as follows:

1. Power allocation xApp:

• State space is defined as:

Sm
t = {Γn,m′

t , Rn,m′
t , pn,m′

t ,

Γn′ ,m′
t , Rn′ ,m′

t , pn′ ,m′
t , Ln′ ,m′

t |n ∈ N},
(1)

where Γn,m
t denotes the signal to interference plus noise ratio (SINR) of the transmission

link of the mth RBG of the nth base station (BS), Rn,m
t denotes the current transmission rate

and pn,m
t denotes the transmission power. The subscript t indicates the time step and Ln,m

t
is the length of queued data in the buffer.

Additionally, m′, n′ are respectively the index of resource block that will be allocated
to the kth user and the index of BS that the kth user will be associated in the next time slot.
This is given as:

m′, n′ ∈

{m′ ∈ M, n′ ∈ N, αn′ ,m′ ,k
t+1 = 1|k ∈ {αn,m,k

t = 1}},
(2)

where αn,m,k
t is a binary indicator to indicate whether the mth RBG of the nth BS is allocated

to the kth user equipment. M corresponds to the number of RBGs of a BS and N corresponds
to the number of BSs in the environment. The binary RBG allocation indicator of the next
time slot is indicated by the action of the resource block allocation xApp. In this way, the
chosen action of resource block allocation xApp will be included in the state of power
allocation xApp.

• Action space is defined as:

An,m
t = {Pmin, Pmin +

Pmax − Pmin
B− 1

, . . . , Pmax}. (3)

The transmission power values are discretized into B levels according to the maximum
and the minimum defined values to be assigned to each RBG.

• Reward: The reward is defined as the total throughput minus the sum transmission
power, which is given as:

rt = Σm∈MΣn∈N(Rn,m
t − βPn,m

t ), (4)

where β is a factor used to balance the reward of throughput and transmission efficiency.

2. Radio Resource block allocation xApp:

• State space is given as:

Sn
t = {αn,m,k

t Γn,m
t , αn,m,k

t Rn,m
t , αn,m,k

t pn,m
t ,

αn,m,k
t Ln,m

t , pn,m
t+1, |m ∈ M, k ∈ K},

(5)
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where pn,m
t+1 is obtained from the power allocation xApp.

• Action space is defined as:

The action of BS n is to choose a user by:

An,m
t = {k0, k1, . . . , kD−1|kd ∈ Hn

t }, (6)

where Hn
t denotes the set of all the user equipment attached to the nth BS.

• Reward: The reward of resource block allocation xApp is defined likewise the power
allocation xApp.

Both xApps learn and act in the same system with four BSs and 30 user equipments.
We use a self-made Python network environment that includes the communication models
needed to simulate a mobile network. Finally, the deep reinforcement learning algorithm
is implemented with the TensorFlow library. We set up and train the xApps models
independently as it is typically performed in the Near RT-RIC of the O-RAN architecture.
The simulation settings are shown in Table 1.

Table 1. Simulation settings.

Parameter Value

Networking Environment 4 Base Stations with 1 kilometre inter-site
distance, 30 user equipments.

Propagation 120.9 + 37.6 log10(distance) dB,
Log-Normal shadowing: 8 dB.

Carrier configuration
20 MHz bandwidth, 100 resource blocks,
12 subcarriers per resource block,
12 resource blcok groups (RBGs).

PHY configuration
Maximum transmission power of 38 dBm,
minimum transmission power of 1 dBm,
Additive white Gaussian noise = −114 dBm.

Traffic model Poisson distribution
with varying load between 4–7 Mbps.

Network
settings

Simulation time 20,000 time slots. 1 time slot is 100 ms.
Network structure Number of hidden layers: 2

Number of neurons xApp 1: N1
h = 256 and N2

h = 128,
xApp 2: N1

h = 512 and N2
h = 256.

Discount factor γ = 0.2
Learning rate αl = 0.001

Machine
learning
settings

Reward importance ratio β = 0.35

4.2. Performance Evaluation

Figure 4 shows the convergence curves of the three different algorithms for five trials.
It can be observed that the TMADRL algorithm receives a higher reward from the environ-
ment compared with the two baselines. Furthermore, in Figure 5, we present the energy
efficiency and throughput results of the three schemes under study. The figure indicates
that TMADRL achieves a more efficient energy utilization with a gain of 29.7% and 59.04%
when compared with CMADRL and SMADRL. Additionally, it can be seen that TMADRL
can achieve an improvement of throughput with a gain of 1% and 4.56%. It is important
to mention that despite the throughput improvement is not relevant, TMADRL achieves
a significant improvement in terms of energy efficiency while maintaining throughput
rates. The throughput is measured by the averaged amount of useful data rate per unit
of time and the energy efficiency is defined as the ratio of the throughput and the power
consumed by the BSs. The reason behind this performance enhancement is related to the
capabilities of our team members to exchange information in terms of actions which avoids
non-Markovian environment behavior and thus, allowing team convergence. Lastly, in
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Figure 6, we present four simulation results, each one representing the MATL and baseline
behavior under four different traffic loads per user. We can observe a clear positive trend
in terms of throughput for the presented algorithms, TMADRL being the best performer
among all. Furthermore, an interesting uptrend behavior is observed in the energy effi-
ciency metric that has its roots in the user traffic and the BS resource capacity. When a low
user traffic is employed, the transmission capacity is underutilized, meanwhile when the
traffic increases, the BS is capable of a more efficient utilization of the resources. Under all
the traffic loads, the TMADRL scheme outperforms the baselines presented in this work
with a more evident gain in higher loads such as 6 and 7 Mbps. To sum up, MATL shows
promising results in the O-RAN architecture with additional improvements when feedback
exchange is considered. Note that, despite our use cases focus on xApps, the employed
MATL schemes and techniques are extensible to rApps as well. It is also worth mentioning
that, under this cooperative setting, the overhead and required processing memory will
grow as a trade-off of the increased throughput and efficiency. Specifically, the processing
memory will rise by an order of 2N and the communication cost between the two xApps
will increase by an order of 2N , where N corresponds to the number of xApps.

In the next section, we elaborate on open issues, as well as the opportunities of MATL
in O-RAN.

x
3

Figure 4. Learning convergence for the TMADRL, CMADRL and SMADRL schemes.
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Figure 5. Average energy efficiency (Ee) and throughput performance metrics for the TMADRL,
CMADRL and SMADRL schemes.
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Figure 6. Average energy efficiency (Ee) and throughput performance metrics for the TMADRL,
CMADRL and CMADRL schemes for 4, 5, 6 and 7 Mbps traffic load per user.

5. Open Issues and Future Directions for Multi-Agent Team Learning in O-RAN

Despite many potential benefits of MATL in O-RAN, several challenges need to be
addressed before it can be dominantly used in O-RAN control and optimization. In this
section, we identify the challenges, open issues, and opportunities in MATL for O-RAN.
It should be noted that some challenges are already fundamental in learning in the MAS
environment, while others are only specific to O-RAN.

• Convergence: Similar to all other machine learning-based techniques in wireless,
MATL for the O-RAN should converge fast. Divergent behavior will cause instability
and slow convergence might hinder decision capability in real-time. However, con-
vergence guarantee in decentralized learning for stochastic teams is known to be a
challenging problem [24]. For fast convergence, boot strapping techniques or offline
training can be considered.

• Scalability: Dimensionality issues have been a recurrent issue when the number of
agents (so as the states and actions) in an MAS tend to increase. As more xApps become
intelligent agents in O-RAN, the scalability of learning, inter-agent communication,
and environment feedback need to be addressed.

• Lack of full observability: As xApps act in an environment, they will be simultane-
ously modifying the environment of other agents. Therefore, to take an optimal action,
each agent will need to predict other agents’ actions unless all agents can fully observe
the environment, which is unlikely in O-RAN. Hence, decisions need to be made based
on the agents’ partial observations. This can result in a sub-optimal solution. To this
end, learning models that are robust under partial observability need to be explored.

• Information sharing: It is essential to decide how much of the available local informa-
tion should be shared among agents for enhancing the modeling of an environment.
This should be jointly considered with fronthaul and midhaul capacity and the func-
tional split decisions in O-RAN.

• Selecting the optimal team size: In MATL, choosing the optimal team size can affect
learning and system performance. Although a larger team can provide more compre-
hensive visibility over the environment and access more relevant information, each
agent’s incorporation and learning experience can be affected. Meanwhile, one can
obtain faster learning within a smaller team size, but a sub-optimal performance may
be achieved due to the limited system view. Therefore, optimal team organization will
be fundamental to MATL in O-RAN.
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• Goal selection: In the O-RAN environment, conflicting actions of agents may degrade
the network performance, even though each agent intends to maximize the perfor-
mance. The goal of MATL should be minimizing conflicts and focusing on overall
performance enhancement.

• Impact of delayed feedback and jitter: Most MAS studies consider that the feedback
from the environment is immediate, and if agents are communicating, their feedback is
instant. However, in disaggregated RANs, feedback can be delayed. Delayed feedback
may cause agents to interact with different observations of the environment and lead
to degraded RAN performance.

• Security and trust: Most MAS rely on the truthfulness of information shared among
agents. Although there are studies on uncertainty or partial observability, inten-
tional wrong reporting and adversarial behavior should also be addressed. This is
particularly important when embedding intelligence to O-RAN.

6. Conclusions

In this paper, we discuss the potential of using MATL to organize intelligence in
O-RAN. We first provide an overview of RAN evolution from C-RAN to vRAN to O-RAN,
and then we provide a short summary of MAS and MATL and their applications in O-RAN.
Additionally, we present a case study on team learning in the O-RAN architecture by
comparing three schemes—sequential multi-agent deep reinforcement learning (SMADRL),
concurrent multi-agent deep reinforcement learning (CMADRL) and team multi-agent
deep reinforcement learning (TMADRL). Simulation results show that team learning via
the TMADRL scheme offers a gain in terms of energy utilization of 29.7% and 59.04% when
compared to SMADRL and CMADRL, respectively. Additionally, TMADRL overperforms
CMADRL and SMADRL in terms of throughput with a gain of 1% and 4.56%, respec-
tively. Finally, we provide a detailed discussion of the challenges, open issues, and future
directions for MATL in O-RAN.
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