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Abstract: Various genres of dance, such as Yosakoi Soran, have contributed to the health of many
people and contributed to their sense of belonging to a community. However, due to the effects of
COVID-19, various face-to-face activities have been restricted and group dance practice has become
difficult. Hence, there is a need to facilitate remote dance practice. In this paper, we propose a
system for detecting and visualizing the very important dance motions known as stops. We measure
dance movements by motion capture and calculate the features of each movement based on velocity
and acceleration. Using a neural network to learn motion features, the system detects stops and
visualizes them using a human-like 3D model. In an experiment using dance data, the proposed
method obtained highly accurate stop detection results and demonstrated its effectiveness as an
information and communication technology support for remote group dance practice.

Keywords: neural network; motion sensor; dance analysis; data visualization

1. Introduction

There are various genres of dance around the world, such as ballet, hip hop, and
Japanese dance. Like sports, dance is popular for its strong exercise benefit [1–7]. Dance also
has artistic aspects linked to the culture of a region and country, and it is effective for revital-
izing the community of a local region [8,9]. To perfect dance techniques, it is essential for a
performer to repeatedly practice choreography composed specifically for a song. In general,
the performer practices by getting advice on choreography from an instructor and watching
sample videos of the choreography [10,11]. However, it is challenging to practice face-to-
face because of the spread of COVID-19 infection in recent years. In addition, both the
number of instructors and the time available for practice are limited. However, information
and communication technology (ICT) and artificial intelligence (AI) technologies can now
be used to develop techniques to improve the efficiency of dance practice.

The Yosakoi Soran Festival is a typical Japanese dance event held in Hokkaido. This an-
nual event has an economic effect of more than 20 billion yen (around $173 million USD)
because many tourists visit it (https://app.yosakoi-soran.jp/news/view/324, accessed on
16 March 2022). Since Yosakoi Soran [12] is a group dance in which ordinary citizens partic-
ipate, it is important not only to choreograph individual dances but also to synchronize the
troupe members’ movements. In particular, abrupt stops during a dance are important in
choreography and are especially important for members of a troupe to synchronize with
each other. Abrupt stops are an important component not only of Yosakoi Soran but also
in traditional Asian dances in China, India, and elsewhere. Figure 1 shows how a stop
is performed. Although synchronization of stops among troupe members is key to the
successful performance of Yosakoi Soran, it is difficult for performers to notice slight differ-
ences in timing between themselves and the other performers. Therefore, it is necessary to
construct a dance practice system that detects the timing of stops in a remote environment
or in an on-demand format. Our proposal supports individual stopping practice and thus
can contribute to improving dance skills.
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Figure 1. Demonstration of flow of motion in Yosakoi Soran dance. From left to right in the first
line: no stop, stops, no stop. The stops factor is incorporated into the continuous dance process as a
mid-period.

Various researchers have recently proposed analyses of dance movements using
motion capture (MoCap) for teaching and training [13–20]. Those analyses have focused
on the performer’s pose during a dance. In [13,14], a dance practice support system using
MoCap was developed. MoCap-based systems obtain the dance movements of experts
and nonexpert performers, calculate the differences between the two, and feed those
differences back to the latter. These studies show the effectiveness of using MoCap to
support dance practice. In addition, it has been reported that performers prefer dance
practices based on an interactive system rather than conventional practice methods such as
watching choreography videos and direct instruction by instructors [21]. For Yosakoi Soran
in particular, an interactive practice system must help performers synchronize their starts
and stops with those of the other troupe members. The importance of synchronized stops
during a group dance is shown in [22]. Therefore, it is necessary to analyze the velocities
of the joints of a performer during a dance. Moreover, since the choreography of a stop
involves the sharpness of movement, analysis focusing on acceleration is also important.

This paper proposes a new stop detection method based on a neural network using a
motion sensor’s velocity and the acceleration of joint position. An overview of the proposed
method is shown in Figure 2. First, the motion data of a Yosakoi Soran performer is obtained
by using MoCap. Next, motion features based on velocity and acceleration are calculated
from the time-series data of the 3D coordinates of the right fist. Then, a stop is detected
based on a feedforward neural network (NN) [23] using those features. Finally, the detected
stops are visualized with a 3D humanoid model. The proposed method contributes to the
automatic evaluation of Yosakoi Soran movements because it detects the choreographed
timing of stops. In addition to streamlining individual repetition practice for Yosakoi Soran,
this method is expected to be adapted for various other dance forms that use stops.

This paper is organized as follows. In Section 2, the measurement method of the
dance movement by MoCap is explained. In Section 3, the proposed method is explained.
Specifically, the method for calculating features based on velocity and acceleration from
dance motions and the method for visualizing detected stops are described. In Section 4,
the experiments are described. Specifically, the effectiveness of the proposed method is
shown by comparing the accuracy of the detection and the visualization of stops between
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the proposed method and methods for comparison. In Section 5, the conclusions of this
paper and future work are described.

Figure 2. Overview of the proposed system. The dance motion data are recorded by MoCap
(Section 2). The proposed system consists of three phases (Section 3). First, the motion features based
on velocity and acceleration are calculated (Section 3.1). Stops are detected by a neural network model
(Section 3.2). Stops are visualized using a humanoid 3D model via virtual reality spaces (Section 3.3).

2. Recording of Dance Motion Data by MoCap

In this section, we explain how to record a performer’s motion data by MoCap to
detect stops in Yosakoi Soran. Using Perception Neuron 2.0 (https://www.noitom.com/,
accessed on 16 March 2022) (PN), which is NOITOM’s motion capture shown in Figure 3,
the performer’s dance motion is recorded while the performer wears the MoCap. The
MoCap consists of multiple small sensors that measure inertia, such as a gyroscope and an
accelerometer. Based on the data acquired from these sensors, the posture and position of
the performer are estimated.

There are two main advantages of PN. While PN is less accurate than optical MoCaps in
estimating posture and position, PN costs only about 1/100 to 1/1000 the cost of an optical
MoCap. From this point of view, the practical application of the proposed system becomes
realistic. The other advantage of the proposed system is that it has fewer restrictions on
its use. For example, an optical MoCap is highly accurate but requires a dedicated studio
with multiple cameras and can measure motion only within a limited area. In contrast,
PN can be used anywhere if nearby metal or magnetic objects are kept away. On the
other hand, PN has some disadvantages: over a long period, errors in a PN gradually
increase due to problems in posture- and position-estimation methods. Moreover, the
accuracy of position estimation is low. However, if the PN is calibrated periodically and
used in a large space where the influence of electromagnetic waves is minimized, the
error can be minimized to the extent possible. Actually, Yosakoi musical pieces are short
(about 3–10 min each), so the effect of errors caused by continuous use is considered small.
Instead, PN is used to analyze various movements such as surgical simulation [24] and the
analysis of sports movements [25]. Within this background, we adapt PN for our analysis
of dance movement.

https://www.noitom.com/
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Figure 3. Attachment of PN to the performer is presented with 18 small sensors at hand, arm, shoulder,
leg, head, and waist that measure inertia, such as a gyroscope and an accelerometer. The relative
positions among the sensors are measured, and the 3D positions of the sensors are obtained.

In dance, the part of the body that has the widest range of movement is the hand.
Therefore, in this study, as shown in Figure 3, the MoCap is attached to the performer’s
hand, and the dance movement, including stops, is recorded. This study describes a method
of detecting stops using the movement trajectory data on 3D coordinates of the back of the
right hand among the recorded data.

3. Detection and Visualization of Stops by NN Based on Velocity and Acceleration

This section describes the proposed method of detecting stops based on NN and
the visualization of detected stops. First, the motion features consist of velocities, and
acceleration is calculated using the movement trajectory data of the back of the right hand
as recorded by the MoCap. Section 3.1 describes the method of calculating the motion
features of a stop. Then, the detection model is constructed based on NN using those
features in Section 3.2, and Section 3.3 describes the method of visualizing the detected
stops. The details are shown below.

3.1. Calculation of Motion Features

Since stopping is an operation that pauses choreographic movement for a moment, the
characteristics of the velocity and acceleration of the hand are calculated. First, we define
the movement trajectory data fi,j(i = 1, 2, . . . , N; j ∈ {x, y, z}|N is the number of series of
movement loci) of the back of the right hand from MoCap.

3.1.1. Calculation of Velocity

Since the sensor mounted on the MoCap is extremely sensitive, the obtained move-
ment trajectory data contain high-frequency components such as noise. It is desirable to
apply smoothing to the movement trajectory data to remove noise in advance because
the calculation of velocity and acceleration requires differentiation of the movement tra-
jectory data. Therefore, the moving average processing [26] is applied to fi,j, as shown
in Equation (1).

f ma
i,j =

1
2n + 1

i+n

∑
k=i−n

fk,j, (1)
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where, n is an arbitrary natural number. Note that n and the sampling rate of fk,j were
empirically set to 5 (i.e., window size being 12) and 60 Hz, respectively, based on prior
equipment preparation for data acquisition. Then, the velocity f ′i,j is calculated by the
5-point approximation formula of the derivative in Equation (2).

f ′i,j =
f ma
i−2h,j − 8 f ma

i−h,j + 8 f ma
i+h,j − f ma

i+2h,j

12h
, (2)

where, although h is a minute width of differentiation, h = 1 is set to obtain the displace-
ment for each frame in this paper. If a high-frequency component is also generated in the
calculated velocity f ′i,j, the velocity f ′i,j is applied to the subsequent calculation of the accel-
eration. Therefore, it is necessary to smooth the transition of f ′i,j. However, the velocity f ′i,j
may change drastically, and if moving average processing is applied, the size characteristics
may be impaired. Therefore, the following root mean square f rms

i,j is calculated from the
velocity f ′i,j in Equation (3).

f rms
i,j =

√√√√ 1
2n + 1

i+n

∑
k=i−n

( f ′k,j)
2. (3)

Then, the one-dimensional velocity f abs
i is calculated from the three-dimensional

velocity as shown in Equation (4).

f abs
i =

√
( f rms

i,x )2 + ( f rms
i,y )2 + ( f rms

i,z )2. (4)

Finally, the change in velocity f abs
i is smoothed by reapplying Equation (2) to the result

obtained in Equation (4). Note that the velocity vnorm
i is calculated by normalization in

the range of 0 to 1. Moreover, the minimum and maximum values used in normalization
are determined independently for each set of motion data acquired from each subject. An
example of the calculated velocity vnorm

i is shown in Figure 4. The green, red, and blue
circles indicate frames that have been visually confirmed to be stopped. It can be confirmed
that some of the frames whose velocities are minimal or approach 0 are stops (frames of stop
possibility, i.e., of the possibility of stopped motion). The green, red, and blue circles are
defined as short, normal, and long stops, respectively. Moreover, among the stop possibility
frames, a frame that shows no stop is defined as no stop. Table 1 shows the characteristics
of each stop. However, since the characteristics of short, normal, and long stops differ, they
are labeled separately to improve the NN’s accuracy of stop detection below.

Figure 4. Example of velocity transition.
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Table 1. Stops characteristics.

Types of Stops Details

Short stop Operation stop time is about 25 frames.
Normal stop Operation stop time is about 50 frames.

Long stop Operation is stopped for a while.

3.1.2. Calculation of Acceleration

To detect stopping, we calculate acceleration, which is strongly related to the sharpness
of movements. Specifically, using the calculated velocity vnorm

i , the first derivative ai of the
velocity vnorm

i is calculated by the 5-point approximation formula, as shown in Equation (5).

ai =
vnorm

i−2h − 8vnorm
i−h + 8vnorm

i+h − vnorm
i+2h

12h
, (5)

where, to obtain the displacement for each frame, h = 1 is set in this paper. Then, anorm
i

is calculated by normalizing the result obtained by Equation (5) in the range of −1 to 1,
and the minimum and maximum values are determined the same way as the calculation of
vnorm

i . At this time, the frame at the moment when anorm
i becomes a value from negative

to zero or more is the frame when velocity vnorm
i becomes the minimum. However, the

frame at the moment when the velocity vnorm
i approaches zero is slightly delayed with this

method. Therefore, the acceleration afil
i is calculated from anorm

i as shown in Equation (6).

afil
i =

{
0 if −0.05 ≤ anorm

i ≤ 0.05,
anorm

i else.
(6)

Note that the threshold (=0.05) is set to suppress minute discrepancies, determined
empirically from test data from multiple experiments. By calculating afil

i , it is possible to
find all stop possibility frames. An example of the acceleration afil

i is shown in Figure 5.
The green, red, and blue circles are frames whose accelerations change from negative to 0
and which correspond to each stop or stop possibility frame in Figure 4.

Figure 5. Example of acceleration transition.

3.1.3. Construction of Training Data Set for Stop Detection

The NN’s training data are constructed by using velocity and acceleration. The frame
number of each stop possibility frame in Figures 4 and 5 is called t. In addition, the
operation’s stop time tended to be about 25 to 50 frames. Therefore, the characteris-
tics related to before and after the stop possibility frame t are calculated from Equa-
tions (7)–(10) by using vnorm

i and afil
i . As a result, the NN’s training data for four ele-

ments rt = [Vback(t), Vforward(t), Aback(t), Aforward(t)]T are obtained. These are approxima-
tions of the graph area of Figures 4 and 5 in the range of 25 frames before and after the
t frame.
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Vback(t) =
1
2

t−1

∑
k=t−25

(vnorm
k + vnorm

k+1 ), (7)

Vforward(t) =
1
2

t+24

∑
k=t

(vnorm
k + vnorm

k+1 ), (8)

Aback(t) =
1
2

t

∑
k=t−25

(afil
k + afil

k+1), (9)

Aforward(t) =
1
2

t+25

∑
k=t

(afil
k + afil

k+1). (10)

3.2. Construction of a Stop Detection Model of the NN

This section describes how to detect a stop by forwarding the propagation type of
the NN using the motion features calculated in the previous section. The NN used in
the proposed method consists of an input layer, a hidden N-layer, and an output layer.
The motion features of each frame calculated in the previous section are used as a vector
with rt as input data. In the output, the values c = 1, · · · , C of the class indicating the
detection result are associated. Let the number of nodes in the input, hidden, and output
layers be M, L, and C, respectively. The bias is set by x0 = 1. Let the vector of motion
features rt correspond to (x1, · · · , xM). The following propagation equation is obtained at
the node of the l in the middle layer, as shown in Equation (11).

hl(rt) = h

(
M

∑
m=0

w1
l,mxm

)
, (11)

where, w1
m,l is the weight between the input layer and the hidden layer. Note that the

rectified linear unit (RELU) function [27] is used as the activation function h(·). The linear
sum yc(rt) of the output of the hidden element, including the bias and the weight w2

l,c
between the hidden and output layers, is obtained as shown in Equation (12). yc(rt) is the
c-th output value in the output layer.

yc(rt) =
L

∑
l=0

w2
c,lhl(rt). (12)

Moreover, the following sc can be obtained as the probability value indicating the
class by conversion with Equation (13) (softmax function [28]) using all the outputs in the
output layer.

sc =
exp{yc(rt)}

∑C
c′=1 exp{yc′(rt)}

. (13)

In the NN’s training, the weights and biases for each layer that minimize the cross-
entropy error [29] are determined by using the training data set created in the previous
section. Finally, the short, normal, long, and no stops are classified by inputting the same
test data as the training data format to the trained NN.

3.3. Visualization of a Stop by Human-like 3D Model in Virtual Reality

This section describes the visualization of a stop by the proposed system. The system
described below was developed using Unity (https://unity.com, accessed on 16 March
2022), a virtual reality (VR) development environment. Unity is used to visualize motion
analysis research [20,30] and is also useful for actual application development. So, we
used the development engine of this virtual environment. For effective practice, it is
important for the system to visualize the differences in stop timing between the expert and
the performer. Our proposed system can easily confirm the detection results, side by side,

https://unity.com
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of stops made by the expert and by the performer. In the following sections, we describe
the functions of the visualization system in detail.

First, using the stop detection model constructed in the previous section, we obtain the
stop detection results from the motion data for testing. Next, we prepare the two human
3D models shown in Figure 6 in the VR space and adapt the dance motion. By clicking
the Load button below the 3D model, the recorded dance motion is applied to each 3D
model. By adopting the dance motion to the human 3D model, the model moves in the
same way as the dance motion recorded by motion capture and the color of the model
changes to red only when a stop is performed during the dance movement, as shown in
Figure 7. The details of the various user interfaces (UI) of the visualization system are
shown in Table 2. Specifically, the UI allows the user to fast-forward and rewind the motion
data at 0.5×, 1×, and 2× speeds. The upper-right corner of the screen displays the current
frame number,giving the performer an idea of the timing of the choreography he or she
wants to check. One of them is the dance movement of the performer, and the other is the
dance movement of the expert. This allows the performer to visually learn the difference in
posture and timing of the stops of the performer and the expert.

Figure 6. 3D model for stop visualization system.

Figure 7. Motion data playback.
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Table 2. Details of each UI in visualization system.

UI Details

Now Frame Display the current frame.
Load (Student) Read the dance movement data of the expert dancer.
Load (Teacher) Read the performer’s dance movement data.

Start Start playback of dance movement data.
Stop Pause playback of dance movement data.

Finish End playback of dance movement data.
0.5× Play back dance movement data at 0.5× speed.
−0.5× Rewind dance movement data at 0.5× speed.

1× Play dance movement data at 1× speed
−1× Rewind dance movement data at 1× speed
2× Play back dance movement data at 2× speed.
−2× Rewind dance movement data at 2× speed.

4. Experimental Section

This section verifies the effectiveness of stop detection by the proposed method. It also
verifies the visualization accuracy of detected stops.

4.1. Verification of Stop Detection Accuracy

In this section, the accuracy of the proposed method in detecting stops is verified by
using comparative methods.

4.1.1. Verification of the Effectiveness of the Proposed Method

In this experiment, the stop detection accuracy is verified. First, the data used in this
experiment are described. To construct a high-quality dataset of Yosakoi Soran motion in
the first 90 s of the song “Yochore”, a total of five dance movements performed by three
experienced dancers were recorded and used in the experiment. The details of each dance
movement and about the three expert dancers (Subject A–Subject C) are shown in Table 3.
In the experiment, we confirmed that stable measurement was achieved with data acquired
multiple times by calibrating the PN in a space free of electromagnetic radiation. The
choreography of “Yochore” used in the experiment is available on YouTube (https://www.
youtube.com/watch?v=FRMOpCPw2xA&t=0s, accessed on 16 March 2022). The number
of expert performers was set to an appropriate value based on the [13–15,17,20,31], which
performed the motion analysis. The choreography of the Yosakoi dance was composed
for ordinary people to earn and reproduce the characteristics of each Yosakoi team, and
many various dance processes have been generated at the festival. It is not easy to correct
many samples for a partial process of each dance. According to the team’s situation of the
Yosakoi festival, 679 data were prepared for the detection of the stops in the dance process.

Table 3. Details of each dance movement.

Subject Gender Age Height Dance
Experience

No. of
Samples

A Male 23 years old 164 cm 9 years 128
B1 Male 23 years old 168 cm 15 years 135
B2 Male 23 years old 168 cm 15 years 138
B3 Male 23 years old 168 cm 15 years 135
C Female 36 years old 164 cm 19 years 143

To evaluate the stop detection accuracy, six methods (Comp. 1–Comp. 6) were used to
compare the stop detection accuracy with that of the proposed model (PM). The outline
of each method is shown in Table 4. Note that the batch size in the proposed method
is set to 581 and the training rate is set to 0.001. The parameters of each comparative
method were determined experimentally. Since long short-term memory (LSTM) [32] is
analyzing series data in generally, the input data shapes in Comp. 2 and Comp. 3 are
changed. Specifically, backwards and forwards are combined in the time direction for

https://www.youtube.com/watch?v=FRMOpCPw2xA&t=0s
https://www.youtube.com/watch?v=FRMOpCPw2xA&t=0s
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the velocity and acceleration features calculated from Equations (7)–(10), respectively.
Moreover, the same preprocessing is performed on the time-series data. For this reason,
the temporal window size of LSTM is 2, and the number of input nodes is half that of the
NN. The effectiveness of feature data is examined by using time-series data. Specifically,
the effectiveness of the NN at detecting stops is shown by using LSTM, which is said to be
effective for time-series analysis. The effectiveness of the PM is shown below.

• The effectiveness of the feature data is confirmed by comparing the detection accuracy
of the stops by the PM and Comp. 1.

• The effectiveness of stop detection by the NN is confirmed by comparing the detection
accuracy of stops by the PM and Comp. 2.

• The effectiveness of combining feature data and NN in detecting stops is confirmed
by comparing the accuracy of the PM and Comp. 3.

• We verify that the PM is more effective than traditional supervised learning-based
methods by comparing the detection accuracy of stops by the PM and Comp. 4–
Comp. 6.

Based on the previous section, 679 feature data are constructed from these dance
motion data and used as training data for the PM, Comp. 2, and Comp. 4–Comp. 6.
Moreover, in the velocity vnorm

i and acceleration afil
i in the previous section, let t be the

stop possibility frame in Figures 4 and 5. In this case, 679 time-series data consisting of
vnorm

i and afil
i corresponding to the interval of t− 25 ≤ i ≤ t + 25 are used as training data

for Comp. 1 and Comp. 3. Moreover, the time-series data are divided into training data,
verification data, and test data as shown in Table 5.

4.1.2. Explanation of Evaluation Index

Next, the evaluation index is explained. In stop detection, it is important to detect a
greater number of correct stops. For this reason, it is necessary to evaluate the recall for
stop detection. On the other hand, it is also important to reduce false positives. Therefore,
it is necessary to evaluate precision as well. For this reason, the F−measure, which is the
harmonic mean of precision and recall, is used as the evaluation index for stop detection.
The goal of the experiments is to detect stops, and it is impossible to classify short, normal,
and long stops accurately, but this does not matter. Therefore, short, normal, and long
stops are collectively referred to as stops. At this time, the F−measure is calculated by
Equations (14)–(16).

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F−measure =
2× Precision× Recall

Precision + Recall
(16)

where, true positive (TP) is a set composed of the predictions (stops) and correct answers
(stops); false positive (FP) is a set composed of the prediction (stops) and correct answer
(no stop); and false negative (FN) is a set composed of the prediction (no stops) and
correct answer (stops). The four stop classes are prepared in our detection method via NN
architecture. According to our basic concept of detecting the stops in Yosakoi dance, the
evaluation is based on two classes: no stop and stops.
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Table 4. Overview of each method.

Model Data Input Size No. of Hidden
Layers

No. of Hidden
Nodes Output Size

PM NN Feature data 4 1 16 4
Comp. 1 NN Time-series data 102 1 128 4
Comp. 2 LSTM [32] Feature data 2 × 2 1 16 4
Comp. 3 LSTM [32] Time-series data 51 × 2 1 128 4

Model Data Input Size Kernel Output Size

Comp. 4
Nonlinear

Support Vector
Machine [33]

Feature data 4 Radial basis function 4

Model Data Input Size No. of Neighbors Output Size

Comp. 5 k-Nearest
Neighbor [34] Feature data 4 5 1

Model Data Input Size No. of Trees in the Forest Output Size

Comp. 6 Random
Forest [35] Feature data 4 115 4

Table 5. Breakdown of the number of data sets for each training.

Training Verification Testing

short stop 50 10 10
normal stop 51 12 12

long stop 9 3 3
no stop 363 78 78

Total 473 103 103

4.1.3. Results and Discussion

The stop detection results of all methods are shown in Table 6. The accuracy is based on
the value of the test data when the loss of the validation data stops decreasing. The tran-
sition of the loss function of the training data and the verification data in the NN-based
methods is shown in Figure 8. Note that all data were recognized as no stop, so the precision
and F-measure are not calculated in Comp. 3.

Table 6. Stop detection accuracy of each method.

Precision Recall F-Measure

PM 0.938 0.600 0.732
Comp. 1 1.000 0.400 0.571
Comp. 2 0.813 0.520 0.634
Comp. 3 - 0 -
Comp. 4 0.698 0.539 0.546
Comp. 5 0.715 0.472 0.536
Comp. 6 0.641 0.575 0.558

First, from Table 6, the F-measure of the PM stops is shown to be higher than those
in Comp. 1–Comp. 6. From this, it can be said that the PM is effective in stop detection.
Specifically, first, it can be seen that the PM has succeeded in improving the recall and
F-measure when compared with Comp. 1. This shows the effectiveness of introducing
feature data. Next, by comparing the PM with Comp. 2, it can be seen that the recall,
precision, and F-measure have been successfully improved. This indicates the effectiveness
of introducing the NN in stop detection. Next, by comparing the PM with Comp. 3, it
can be seen that the recall, precision, and F-measure have been successfully improved.
This indicates the effectiveness of combining feature data and the NN in stop detection.
Moreover, by comparing the PM and Comp. 2 with Comp. 4–Comp. 6, it can be seen
that the precision and F-measure have been successfully improved. This indicates the
effectiveness of the NN-based method in stop detection. From the above, the effectiveness
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of the PM was shown. From Figure 8, it can be seen that the learning stopped before the
tendency of the loss function of the verification data began to increase. From this, it can
be said that overfitting was successfully suppressed. From Table 6, when feature data are
used in the same machine learning method, the precision, recall, and F-measure tend to
be higher than when time-series data are used. From this, it can be said that the feature
data can express the difference between stops and no stops better than the time-series data.
From the PM results, it can be concluded that the most accurate stop detection model has
been constructed from among the tested methods.

Figure 8. Transition of loss function.

4.2. Confirmation of Visualization Timing of Stops

In this section, the visualization timing of the detected stops is confirmed.

4.2.1. Confirmation Method

The method by which we confirm the visualization accuracy of stops is explained.
By applying the various methods used in the previous section to actual dance motion data,
the visualization accuracy of the stops is evaluated. The dance motion data to be used
in this experiment are 90 s of dance motion performed by another skilled dancer with
15 years of dance experience. This dance motion includes 32 stops (14 short, 15 normal, and
3 long stops). These dance motion data show that various models visualize only the stops
performed by the right fist.

At this time, the number of times a correct stop is visualized is the number of detections,
the number of times a no stop is visualized is the number of false positives, and the number
of times a correct stop is not detected is the undetected number. The visualization accuracy
of stops is quantitatively evaluated based on the number of detected stops, the number of
false positives, and the number of undetected stops.

4.2.2. Results and Discussion

The visualization result of the stops is shown in Figure 9. However, the green part in
the figure is a visualized short stop, the red part is a visualized normal stop, the blue part
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is a visualized long stop, the black part is a visualized no stop, and the gray part is a point
in time where neither a stop nor a not stop was visualized. The numbers of stop detections,
nondetections, and false positives are shown in Table 7.

Figure 9. Comparative example of visualization timing of stops.

Table 7. Quantitative evaluation of visualization accuracy.

No. of Stop Detections No. of Nondetections No. of False Positives

PM 11 21 4
Comp. 1 6 26 1
Comp. 2 10 22 3
Comp. 3 0 32 0
Comp. 4 2 30 3
Comp. 5 11 21 12
Comp. 6 8 24 12

First, Figure 9 and Table 7 show that the PM visualized more stops than Comp. 1–
Comp. 4 and Comp. 6. Moreover, the number of false positives in the PM is less than that
in Comp. 5. From this, we can judge that the PM is most effective in stop visualization.
Then, the characteristics of the stops visualized in the PM are discussed. From Figure 9, a
normal stop tends to be more easily visualized than a short or long stop. A normal stop
has a longer stopping time than a short stop. These results suggest that the duration of a
stop is a major factor in the criteria for judging a stop. In addition, the reason for the low
visualization accuracy of a long stop is considered to be the insufficient number of data
compared to the other labels.

Next, the false-positive behavior of the PM is discussed. When we checked the falsely
detected motions, we found that folding motions such as waving tended to be falsely
detected as stops. For example, consider a choreographed movement where the hands are
waving. The apparent motion appears to stop only for a short time during the moment
when the direction of the wave reverses. In particular, turning movements tended to be
similar to those of short stops. From these points, it is considered that folding motions were
mistakenly detected as short stops. However, considering the practical application of the
stop detection model, the future challenge is how to increase recall while maintaining high
precision. This problem is expected to be solved by increasing the number of high-quality
data from people with dance experience.

Finally, we discuss aspects of different dance analysis research approaches. Table 8
shows the analysis and visualization functions in the related studies. As the table shows,
all the methods perform movement analysis based on the characteristic elements of each
dance. First, the proposed method and those in the literature [15,17,20] perform motion
analysis based on features characteristic of a dance. In addition, the proposed method and
those in the literature [13,14] provide motion analysis and training applications. From the
above, it is important to link motion analysis and visualization technologies to develop
from fundamental analysis to practical applications, such as dance practice and stage use.
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Table 8. List of analyses and visualization features in related studies.

Literature No. of Subjects/Dance Genres Analysis Examples Application for Motion
Visualization

PM 5 / Yosakoi (JPN) NN-based stop detection Highlighting a teacher and a student
stop with VR

Chan et al. [13] 6 / Hip-hop and a-go-go (USA) Motion matching from motion
database

Highlighting incorrect movement
joints with VR

Hachimura et al. [14] 5 / Street dance (USA) - Overlay of the computer graphics
characteristics of a trainer with AR

Shiratori et al. [15] 2 / Aizu-bandaisan (JPN) Segmentation of motion sequence
based on the music rhythm -

Yoshimura et al. [17] 5 / Fuji Musume (JPN)
Proposal of coordinate system

considering local moving for motion
tracking

-

Aristidou et al. [20] 3 / Bachatta dance (DMA) Proposal of Laban Movement
Analysis motion features for Laban

Only playback of tracked motion with
VR

5. Conclusions

In group dance, stops are important to improve the synchronization of the troupe’s
movements. However, due to the effects of COVID-19, school, work, and so on, it is difficult
to practice dancing in groups. This study proposes a dance practice support system based
on detecting stops in a remote environment. The most accurate stop detection among
machine learning methods was achieved by training the NN with velocity and acceleration
features. Experiments showed the effectiveness of the proposed method. In addition, the
detected stops were visualized using a humanoid 3D model. With these, remote control
construction of a future dance practice environment was proposed.

In the experiment, the NN’s detected stops more accurately than comparative methods.
On the other hand, the comparative methods also showed relatively high detection results.
From this point of view, it can be said that it is possible to detect stops using various
models, and it is expected that a system can be developed at low cost and have a direct
effect on dance practice. In addition, because stops are an essential technique not only in
Yosakoi Soran but also in a wide range of various genres of dance, the proposed system
can be easily applied to other forms of dance by obtaining training data sets from other
experienced dancers.

It is difficult to estimate 3D human pose with high accuracy, including depth, based
on video images. Therefore, although MoCap was used in this study, the proposed method
can be used if the coordinate information can be obtained in three dimensions, including
depth. If video-based 3D human pose estimation technology including depth [36–38] can
be put to practical use, a better training environment will be constructed.
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Abbreviations

ICT Information and Communication Technology
AI Artificial Intelligence
MoCap Motion capture
NN Neural network
PN Perception Neuron
ReLU Rectified Linear Unit
VR Virtual Reality
UI User Interfaces
PM Proposed method
LSTM Long Short-Term Memory
TP True Positive
FP False Positive
FN False Negative
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