
Citation: Liao, C.; Chen, J.; Guo, K.;

Liu, S.; Chen, J.; Gao, D. MODECP: A

Multi-Objective Based Approach for

Solving Distributed Controller

Placement Problem in Software

Defined Network. Sensors 2022, 22,

5475. https://doi.org/10.3390/

s22155475

Academic Editor: Symeon

Papavassiliou

Received: 12 June 2022

Accepted: 18 July 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MODECP: A Multi-Objective Based Approach for Solving
Distributed Controller Placement Problem in Software
Defined Network
Chenxi Liao, Jia Chen *, Kuo Guo, Shang Liu, Jing Chen and Deyun Gao

The School Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
20120060@bjtu.edu.cn (C.L.); 19111017@bjtu.edu.cn (K.G.); 21125049@bjtu.edu.cn (S.L.);
18111007@bjtu.edu.cn (J.C.); gaody@bjtu.edu.cn (D.G.)
* Correspondence: chenjia@bjtu.edu.cn

Abstract: Software-Defined Network is an emerging networking paradigm that enables intelligent
and flexible network management. Specifically, the design of the control plane is crucial. Therefore, in
order to avoid a single point of failure, multiple controllers are deployed constantly in a distributed
manner on the control plane. In this paper, we propose a controller placement approach based
on multiple objectives (MODECP), including network delay, network security, load-balancing rate,
and link occupancy. In the controller placement stage, an improved multi-objective differential
evolution algorithm is proposed to search for controllers’ positions and assign switches to controllers
reasonably. Furthermore, an improved affinity propagation algorithm is proposed to obtain the
number of controllers placed in the network partition stage, comprehensively considering the delay,
node security, and load. Simulations are performed based on several topologies from Internet
Topology Zoo. Extensive results show that the proposed algorithm can realize trade-offs among
multiple objectives and improve network performance in delay, security, controller load, and link
occupancy compared to the single-objective based approach. Moreover, compared with the genetic
algorithm and random placement algorithm, the proposed algorithm performs better with low
latency, high security, low load rate, and low link overhead.

Keywords: software-defined network; distributed controller placement; multi-objective; differential
evolution algorithm

1. Introduction

With the continuous expansion of network service requirements and network scale,
traditional network architecture has been unable to efficiently provide network resources
for users, creating a bottleneck to improving performance. A software-defined network [1]
separates the data plane from the control plane, which provides logically centralized
and programmable control on the control plane to achieve intelligent management and
optimization. Presently, the concept of SDN has been widely used in the fields of network
function virtualization [2], the Internet of Things [3], mobile networks [4], and vehicle ad
hoc networks [5], which helps to achieve intelligent resource management and service
orchestration, information retrieval, distribution [6], etc. Consequently, designing a control
plane for particular scenarios such as large-scale networks and software-defined satellite
networking [7] has received extensive attention. In particular, the issue of controller
placement is a typical problem. In SDN, there are one or more controllers to manage
the network. At the same time, the control plane interacts with the data plane through
southbound interface protocols such as OpenFlow [8] and P4Runtime [9]. The switch sends
the data packets without forwarding rules in the flow table to the control plane. Next,
the controller obtains the corresponding flow table rules and forwarding policies through
calculation and sends them to the switch to realize network control.

Sensors 2022, 22, 5475. https://doi.org/10.3390/s22155475 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155475
https://doi.org/10.3390/s22155475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22155475
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155475?type=check_update&version=1

Sensors 2022, 22, 5475 2 of 24

However, in large-scale SDN or multi-domain SDN, a single controller may have
two principal issues [10]: scalability and robustness. Therefore, the physically distributed
controllers placement method is frequently used to solve the above problems. In other
words, it is necessary to effectively place multiple controllers in the network to improve
network performance and the efficiency of network management. Additionally, there are
three architectures for distributed placement controllers [11]: flat, hierarchical, and hybrid
deployments. In the flat controller design, each controller has its own local view and the
global view of the entire network. In both cases, the controller communicates through
east–west interface protocols. In the hierarchical controller design, the control plane adopts
centralized management, and the top-level controller is set to manage the bottom-level
controller. The bottom controller relies on the top controller for strategy calculation and
forwarding of data packets. In the hybrid controller design, some simple control functions
are transferred to the data plane so that the devices in the data plane participate in the
control and decision processing.

Scalability in SDN [12] is usually manifested in the controller processing and response
to flow requests, installing flow table rules, and cooperating with other controllers to
manage the entire network. Specifically, Reference [13] evaluates the amount of traffic
exchanged in the control plane between the switches and controllers and the number
of flow rules installed, and it provides a quantitative model to quantify the maximum
scalability of reactive network applications. By effectively placing multiple controllers, the
single-point-of-failure problem can be avoided to enhance the control plane’s robustness
and achieve traffic engineering, anomaly detection, fault restoration, resource orchestration,
and other requirements. A key factor for the scalability of SDN in a large ISP (Internet
Service Provider) is to study bandwidth and delay requirements for the control network to
support the QoS requirements of the data plane [14].

In addition, security [15] is especially vital to a network. In order to avoid network
paralysis caused by external malicious attacks or internal failures as much as possible,
effective measures have to be taken to protect data from being leaked. The network
security is enhanced by reasonably deploying the controller on nodes with high-security
performance. To sum up, different multi-objective functions can be selected to optimize the
placement of the controller according to the requirements of different network scenarios.

A reasonable controller placement model has to be established in the case of simulta-
neous optimization of multiple objectives. Two sub-problems should be solved:

(1) Determine the number of controllers.
(2) Determine the placement position of the controllers and which controller the switch

should be assigned to.

Based on analysis of the problem, the controller placement problem is an NP-Hard
problem [16], and the use of a heuristic algorithm is an effective method.

Therefore, for the distributed controller placement of particular network scenarios,
this paper proposes a heuristic-based multi-controller placement approach called MODECP.
Firstly, multiple objective models are established, including the network end-to-end delay,
network security, controller load rate, and link cost. In particular, the network end-to-end
delay is expressed as switch–controller propagation delay, inter-controller propagation
delay, processing delay, and transmission delay. The network security is modeled as
the failure cost of the controller based on degree centrality, and the failure cost of the
control link is based on betweenness centrality. Meanwhile, the link cost is modeled as
the link bandwidth occupied by switch–controller communication and inter-controller
synchronization. Secondly, an improved approach based on affinity propagation algorithm
is proposed, which adaptively obtains a reasonable and effective number of controllers.
Finally, we propose an improved multi-objective differential evolution algorithm that
solves the controller placement problem and switches assignment to improve network
performance efficiently. The main contributions of this paper are as follows:

(1) The controller placement problem is effectively solved, and the network delay, net-
work security, controller load rate, and link cost are modeled. At the same time,

Sensors 2022, 22, 5475 3 of 24

a multi-objective model to solve the controller placement problem is obtained by
weighing multiple objectives.

(2) On the one hand, an improved affinity propagation algorithm is proposed, which
integrates the characteristics of network nodes, including delay, switch security, and
load. On the other hand, a controller placement approach based on a multi-objective
differential evolution algorithm is proposed to optimize performance objectives such
as delay, security, load balancing, and link cost.

(3) The proposed method is simulated extensively. We compare it with various single-
objective based schemes. In addition, we compare it to the multi-objective based
genetic algorithm and the delay-based random placement algorithm. Furthermore,
we compare the proposed approach under different topologies. The feasibility and
efficiency of MODECP are verified by comparing the performance. In addition, to
better evaluate the impact of delay and link state changes on the deployment results,
we change the delay calculation parameters and the link failure states predicted using
the SVM model to represent the performance of MODECP.

The structure of this paper is as follows. Section 2 briefly discusses related work, and
Section 3 describes the system model and problem formulation of distributed controller
placement. Section 4 proposes a MODECP approach based on the improved affinity propa-
gation algorithm and multi-objective differential evolution algorithm. The proposed algo-
rithm is simulated, and the performance is analyzed and evaluated in Section 5. Section 6
summarizes this paper.

2. Related Works

There are many strategies for the controller placement problem (CPP). In this section, op-
timization objectives and optimization algorithms are introduced for the controller placement.

2.1. Optimization Objectives for Controller Deployment

Network performance optimization parameters considered in existing solutions usu-
ally include reliability, load balancing, delay, and event response time. In order to rea-
sonably place the controller and allocate the switch–controller mapping relationship, op-
timization is generally achieved by optimizing single or multiple network performance
parameters. The algorithm proposed in [17] partitions the network to minimize the maxi-
mum delay between switches. Reference [18] considers the controller load factor, which is
regarded as a k-center problem with capacity, significantly increasing the capacity of the
control plane. Reference [19] defines the controller placement problem for load balancing,
which minimizes the average delay between switches and controllers while maintaining
load balancing among controllers. Some methods consider multiple optimization objectives.
Reference [20] employs a bargaining game to search for the optimal placement strategy of
the controller for minimizing the objectives of delay, communication overhead, and load
balancing. In order to ensure that the communication between the switch and controller
is not interrupted to guarantee the network’s reliability, Reference [21] proposes two re-
liable placement strategies. One is that there must be two disjoint control paths between
the switch and the controller. The other considers that the switch must be connected to
two different controller duplicates for efficient failover. In the multi-objective approach,
some objectives are conflicting; for example, if the average delay in the switch–controller
interaction is minimized, the average delay of the inter-controller becomes more exten-
sive, which leads to the degradation of QoS. In addition, some solutions to the controller
placement problem also consider other performance metrics, such as energy efficiency.
Reference [22] proposes an energy-aware solution called GreCo, which aims to minimize
network energy consumption.

In the early period of network establishment, the secure placement of controllers is a
challenging problem. Reference [23] proposes a controller placement strategy for multi-link
failures with maximum resource utilization and minimum worst-case delay to achieve
efficient network performance. Reference [24] proposes a heuristic algorithm to solve CPP

Sensors 2022, 22, 5475 4 of 24

with a single-link failure. In addition, the authors also exploit a greedy algorithm based
on Monte Carlo simulation to solve CPP with multiple-link failures. Apart from this, the
security of the network depends on the performance of the intrusion detection algorithm.
Reference [25] proposes a machine-learning-based anomaly detection algorithm to quickly
guide traffic classification and attack flow redirection problems to analyze unknown threats
and attacks better.

2.2. Optimization Algorithms for Controller Deployment

From the perspective of optimization algorithms for solving controller placement
problems, the common optimization methods for controller placement problems are based
on integer linear programming (ILP), heuristics, clustering, etc. Reference [26] adopts
hierarchical clustering to minimize the number of controllers while reducing the load
difference between different controllers. Reference [27] proposes a network state-based
traversal algorithm and a greedy algorithm that places the controller in polynomial time
and improves the performance in the event of link failure. Reference [28] proposes a multi-
objective genetic-algorithm-based controller placement strategy to minimize inter-controller
delay and load distribution. In order to avoid repeated management and intervention
of the controller and a sharp increase in link disconnection, Reference [29] considers the
reliability and capacity of the controller, which determined the controller failure in advance.
The authors propose a simulated annealing heuristic to solve problems on large-scale
networks efficiently.

Furthermore, controller dynamic placement is also a challenge. Most of the existing
controller placement methods consider static placement. However, since the traffic con-
stantly changes in large-scale or multi-domain networks, it is necessary to place controllers
dynamically. Currently, machine learning is commonly used in dynamic controller de-
ployment. Reference [30] proposes a Deep Q-Network-based Dynamic Clustering and
Placement (DDCP) approach, which significantly improves the network performance re-
garding response time and resource utilization. Reference [31] proposes a Deep Q-Network
(DQN)-empowered dynamic-flow data-driven approach to adapt to the dynamic network
environment with flow fluctuations. In Reference [32], an algorithm based on a quadratic
program is designed to solve the controller placement problem, and a dynamic switch
migration algorithm is developed to deal with network congestion.

In addition, Reference [33] quantitatively evaluated the control flow of ONOS, Flood-
light, and POX controllers and obtained the control channel usage of the controller. The
analysis of the control flow shows that the control flow is crucial to the scalability of the
control channel, which also provides strong support for the necessity of establishing the
delay model and link cost model. At the same time, the above research proves that the
distribution of load in the network and the security composed of link failure and controller
failure are of great significance to improving the network performance, which provides
support for the establishment of the load model and security model to solve the problem of
controller deployment.

In summary, Table 1 summarizes relevant studies that mainly optimize one or more
objectives such as delay, load, reliability, and energy efficiency. At the same time, through
the summary of existing relevant research, it is found that most of the studies have ignored
the determination of the number of controllers. References [20,26,28] consider the number
of controllers that need to be deployed in the network. However, these studies did not
consider the characteristics of each node when determining the number of controllers.
Thus, MODECP is proposed to solve the controller placement problem. Firstly, the number
of controllers is adaptively generated in the network according to the node characteristics.
Then, a multi-objective model is established to balance the multiple objectives simultane-
ously in the network, including end-to-end delay, network security, controller load, and
link cost, to obtain approximately optimal positions for controllers and approximately
optimal assignments for switches.

Sensors 2022, 22, 5475 5 of 24

Table 1. Summary of relevant studies.

Reference Objectives Number of Controllers Approach

Reference [17]
the maximum propagation
delay between the switches × hierarchical K-means

algorithm
the load of controllers

Reference (CCPP) [18]
the maximum propagation
delay between the switches × the capacitated K-center

problem
the capacity of controllers

Reference (LBCPP) [19]
the load of controllers × based on topological potential

and minimum cost flowthe average delay between
switches and controllers

Reference [20]

the delay between switches
and controllers √

bargaining game
the communication overhead

inter-controller
the load of controllers

Reference (RCP-DCP and
RCP-DCR) [21] single-link and node failures × Mixed Integer Linear

Programming (MILP)

Reference (GreCo) [22]
the path delays and load of

controllers × Binary Integer Program (BIP)
the energy consumption

Reference [23]
multiple-link failures ×

Betweenness Centrality
Principle (BCP), Statistical

Model (SM),

worst-case delays
Minimizing Maximum

Regret (MMR),
Hurwicz Criterion (HC)

Reference [24] single-link and multi-link
failures ×

the heuristic algorithm and
the greedy algorithm based on
the Monte Carlo Simulation

Reference [26]
the delay between switches

and controllers
√

hierarchical clustering
the load of controllers

Reference (CPCNS and
CPSLF) [27] node failures and link failures ×

a network
states-traversal-based

algorithm and greedy-based
algorithm

Reference [28] inter-controller delay, load
distribution

√
genetic algorithm

Reference (CNCP) [29]
worst-case latency × simulated annealing heuristic

multiple controller failures

Reference (DDCP)
[30]—Dynamic

the delay between switches
and controllers √

Deep Q-Networkthe Control Load (CL)
the Intra-Cluster Delay (ICD)
the Intra-Cluster Throughput

(ICT)

Reference (D4CPP)
[31]—Dynamic delay and load in the network × Deep Q-Network

Reference [32]—Dynamic
controllers–switches delay

× a quadratic programinter-controllers delay
controllers load

√
means the reference considers the number of controllers, ×means the reference does not consider the number

of controllers.

Sensors 2022, 22, 5475 6 of 24

3. System Model and Problem Formulation

In this section, we present the system model, including delay model, security model,
controller load model, and link cost model. The symbols used in this paper are summarized
in Table 2 for clarity.

Table 2. Summary of symbols.

Notation Description

G(N, E) The network with |N| switches and |E| physical links.
C = {c1, c2, . . . , ck} The set of controllers, where k is the number of controllers.

λi The average flow requests generated by switch i ∈ N.
Ca The capacity of the controller.

psync The frequency of synchronization between controllers.

dnc
ij

The shortest transmission path length between switch i and
controller j.

dcc
ij

The shortest transmission path length between controller i and
controller j.

v The propagation rate of electrical signals in cables.
σc, σn The degree centrality of controller c and switch n, respectively.

σij, σij(e)
The total number of shortest paths and the number of shortest

paths through link e from switch i to switch j, respectively.
lc, lopt The actual load and the ideal load of the controller c.

ρne, ρce
Link consumption for switch–controller communication and link

consumption for inter-controller communication.
Ac The set of switches managed by controller c.
Pij The set of control paths from switch i to switch j.
Be The bandwidth of link e.

yj
Binary variable whose value is 1 if switch j has a controller placed

and 0 otherwise.

xij
Binary variable whose value is 1 if switch i is linked to controller j

and 0 otherwise.
zeij Binary variable with value 1 if link eis in Pij, 0 otherwise.

3.1. System Model
3.1.1. Network Model

We define the underlying network as an undirected graph composed of G(N, E),
where N represents the set of SDN switches and E represents the set of physical links. The
number of controllers that will be placed on the network is defined as k, and the set of
controllers is defined as C = {c1, c2, . . . , ck}. Each controller manages a certain number of
switches. Importantly, each controller is located on a switch in the network. That is, some
nodes are responsible for both control and forwarding functions.

Moreover, two communication models exist for southbound interfaces in SDN, in-
band and out-of-band [34]. In this paper, we adopt the switch-to-controller communication
model with in-band connections. In a real network scenario, the servers are more widely
distributed geographically, resulting in a higher cost of building the network. For the out-
of-band communication model, it is necessary to add dedicated links for controlling traffic
transmission and available physical ports for adding dedicated links to achieve network
scalability. As a result, to reduce the cost of network deployment and efficiently utilize
resources such as links and ports, it is more reasonable to adopt the in-band communication
model between switches and controllers for practical network scenarios. Similarly, this
paper adopts in-band communication between controllers. A competitive relationship
exists between the switch–controller delay and the inter-controller delay. When reducing
the switch–controller latency, the controllers are deployed relatively far from each other,
increasing the inter-controller delay. Conversely, controllers are deployed relatively close
together to reduce inter-control communication latency, resulting in an increase in switch–
controller latency. If the controllers are required to be deployed geographically close to
each other, then it is more reasonable to use out-of-band link interconnections between

Sensors 2022, 22, 5475 7 of 24

controllers. However, considering the actual network environment, the switch–controller
delay is as significant as the inter-controller latency. Thus, controllers adopt in-band
communication to balance switch–controller delay with inter-controller delay.

Furthermore, the controllers can be arranged through a flat or hierarchical structure.
A hierarchical structure consists of multiple local controllers and a logically centralized
root controller [35]. In this case, the local controllers handle frequently occurring events,
while the root controller handles rarely occurring events. The controllers communicate
with each other based on events and asynchronously. Meanwhile, the root controller
employs a subscription-based approach to communicate with the local controllers. In a flat
architecture, strict consistency algorithms such as the Raft algorithm are often used between
controllers to maintain data consistency for all controllers to have a global view [36]. At
the same time, controller-synchronized traffic shares the data plane links with the traffic of
controller-managed switches. Therefore, updating forwarding rules between controllers at
regular intervals is essential for efficient packet processing.

We assume that the capacity of each controller is the same as its packet processing
rate, which is defined as Ca. The flow request rate of switch i is defined as λi, and each
switch can be managed by only one controller. Since the traffic in the network is changing
dynamically, we assume that the time interval of synchronization between controllers is
psync. At the same time, we assume that the communication frequency between switches
and controllers is disregarded.

3.1.2. Delay Model

In this paper, the delay is crucial for improving network performance. Specifically, the
delayed response of the network depends on the switch–controller interaction and the inter-
controller timing synchronization that updates the global view, the packet transmission
delay, and the processing delay.

The switch–controller interaction is represented as the average propagation delay
between switch i and controller j, which is calculated by Equation (1) through the shortest
path length between them. In addition, the physical link length of the network is calculated
by the geographical latitude and longitude positions of the nodes to combine with the
actual environment. The shortest path length is the combination of the number of hops of
the shortest path and the length of the single-hop physical link.

Dncavg =
1

|N| · v ∑
ni∈N

∑
cj∈C

dnc
ij xij, (1)

Here, dnc
ij represents the shortest transmission path length between switch i and

controller j, and v = 2 × 108 m/s represents the propagation rate of electrical signals
in cables.

The inter-controller timing update forwarding rule is expressed as the propagation de-
lay of inter-controller synchronization. Similarly, the delay of synchronization is calculated
by the shortest path length between controllers, expressed as Equation (2):

Dccavg =
∑ci ,cj∈C dcc

ij

v
, (2)

where dcc
ij represents the shortest transmission path length between controller i and con-

troller j, and v = 2× 108 m/s represents the propagation rate of electrical signals in cables.
In considering a real network scenario, the time for network traffic to be sent from the

switch or controller is defined as the transmission delay, which is calculated by Equation (3).
Each controller processes the packets received from the switch, and this phase is accom-
panied by processing delays related to the hardware devices. The packet processing in

Sensors 2022, 22, 5475 8 of 24

the controller is modeled by the M/M/1 queuing model [37], which is computed through
Equation (4).

Dtrans =
psend

Bl
, (3)

Dproc =
1
k ∑

cj∈C

1
Ca−∑si∈N,cj∈C λixij

, (4)

Here, psend is the packet size sent by the switch or controller, Ca is the average rate at
which the controller processes packets, and λi is the average flow request rate for switch i.

Therefore, in SDN, the delayed response of the network is defined as the end-to-end
delay, which is calculated by the round-trip time of the packets in the network [34,36],
represented by the following formula:

D = 2Dtrans + Dproc + 2Dncavg + 2Dccavg, (5)

3.1.3. Security Model

In any network topology, the degree centrality of a node [38] is the most direct mea-
surement parameter to describe the centrality of a node in SDN. Specifically, the greater
the degree of a node, the higher the degree centrality of the node, and the more influential
the node is in the network. During network operation, the failure cost of each switch
is assigned a different value due to its relative position and degree of influence on the
network. Therefore, we define the failure cost of a switch as the degree centrality of a node.
As the connectivity of the switch is greater, its relative position is more important in the
network. At the same time, if it fails, it will significantly impact the network, so its failure
cost will be greater. The failure cost of the switch is calculated by Equation (6):

ϕc =
σc

∑n∈N σn
, (6)

where σc is the degree centrality of controller c, and σn is the degree centrality of switch n
in the network.

In addition, the betweenness centrality of a link [39] measures how important a link is
in the network. Link betweenness is defined as the ratio of the number of paths traversing a
link to the total number of shortest paths among all the shortest paths. Specifically, a larger
link betweenness means that the role of the link in the network is more critical. Therefore,
we define the control link’s failure cost as the link’s betweenness centrality. If a link fails,
the greater the link betweenness, the greater the impact on the network. We expect the
set of control paths to contain paths with smaller link betweenness. The failure cost of the
control path is calculated by Equation (7):

ϕeij = ∑
i,j∈N

σij(e)
σij

, (7)

where ϕeij is the edge betweenness of link e from switch i to switch j, σij is the total number
of shortest paths from switch i to switch j, and σij(e) is the number of the shortest paths
passing through link e.

When the controllers in the SDN adopt the distributed placement method, to ensure all
the controllers obtain the same topology information on the whole network, one controller
communicates with other controllers regularly. In this paper, we assume that nodes in
the network will encounter malicious attacks or hardware and software failures, which
cannot be recovered autonomously. In other words, if one or more controllers are attacked
from outside, there is a certain probability that the control node or the control link will fail,
resulting in information leakage and data loss.

Therefore, we expect to enhance the network’s security as much as possible to min-
imize the probability of data loss. The expected percentage of control node failures and

Sensors 2022, 22, 5475 9 of 24

the expected percentage of control link interruption are considered as the parameters of
security, which are defined by the following formula:

S =
1

1− ∏
eij∈Pij ,c∈C

(1− ϕc)(1− ϕeij)
, (8)

where S is the security of the network, and Pij is the set of shortest control paths between
switch i and controller j.

To characterize the impact of link failures on controller deployment results, this paper
simulates multiple-link failures to illustrate the impact of reduced security performance on
network delay, load, and link overhead. To this end, we employ Support Vector Machine
(SVM) [40], a supervised learning method, for predicting link failures. Each link and its
state constitute a binary group (eij, sij). When sij = 1, link eij is not in failure. When sij = 0,
link eij is in a disrupted state. We adopt the historical data of link states for link failure
prediction. The prediction of link states is a nonlinear binary problem. Thus, the SVM
model uses a radial basis function kernel, as in Equation (9):

K(eij, e′ij) = exp(−µ
∥∥∥eij − e′ij

∥∥∥2
), (9)

where µ is the free parameter that controls the variance of the model.

3.1.4. Load Model

The ideal load-balancing state in a network is one in which equal load is assigned to
all controllers. In this section, we consider the average flow request volume of switches
within a controller’s management scope to be the controller’s load. Through the allocation
of switches, the load difference among all controllers is defined as the load deviation rate,
denoted as L. The smaller the index, the better the network load-balancing performance
after correctly placing controllers. The load deviation rate of the controller is calculated by
Equation (10):

L =

√
1
k ∑
∀c∈C

(lc − lopt)
2, (10)

where lc is the actual load of the controller c, and lopt = λi N/k is the load of the controller
in the ideal state.

3.1.5. Link Cost Model

To satisfy the growing number of service requirements and improve service quality in
SDN, we expect to improve the scalability of SDN with minimal network congestion cost.
In this paper, the network congestion cost is expressed as the link bandwidth consumption
of each control path during network operation. Its control path includes control paths
for switch–controller communication and inter-controller synchronization. Due to the
limited network resources, we expect to reduce the link consumption of each control path,
to minimize the link occupancy rate of the control path as much as possible and meet
the user’s available bandwidth requirements. Each control link is included in the set
of all control links, which is denoted as Pij. The switch–controller link occupancy rate
is calculated by Equation (11). The inter-controller link occupancy rate is calculated by
Equation (12).

Bprop = ∑
eij∈Pij

∑
ni∈N

∑
cj∈C

zeij ρnexij

Be
, (11)

Sensors 2022, 22, 5475 10 of 24

Here, zeij is a binary variable, indicating whether the link eij belongs to the set of
control paths. ρne is the link bandwidth consumption occupied by each switch–controller
communication.

Bsync = ∑
eij∈Pij

∑
ci ,cj∈C

zeij psyncρce

Be
, (12)

Here, zeij is a binary variable, indicating whether the link eij belongs to the set of
control paths. psync is the frequency of timing synchronization between controllers. ρce is
the link bandwidth consumption occupied by each inter-controller communication.

Therefore, the link cost metric is defined as the utilization of all control path links of
the whole network, which is calculated by the following formula:

B = Bprop × Bsync, (13)

3.2. Constraints

Next, we describe the constraints of the problem.
For a given network topology, the number of controllers to place is not known in

advance. Therefore, when it is determined that the number of controllers to be placed is k, k
switches should be selected as control nodes in the network. Constraint (14) ensures that k
controllers are placed in the entire network when solving the controller placement problem.

N

∑
c=1

yc = k, (14)

Constraint (15) ensures that each switch is managed by only one controller.

C

∑
c=1

xnc = 1, ∀n ∈ N, xnc ≤ yc (15)

The processing capability of the controller in the real network environment is affected
by the performance of its software and hardware. Therefore, to simulate reality, the amount
of flow requests handled by the controller to the switch does not exceed the capacity of the
controller, which is defined by Constraint (16).

lc = ∑
ni∈Ac

λi < Ca, ∀ni ∈ Ac, ∀c ∈ C (16)

Link bandwidth is limited in the network. Constraint (17) ensures that the link
consumption through which the switch–controller communication and the inter-controller
synchronization pass does not exceed the bandwidth threshold of the link itself.

zeij ρne ≤ Be, zeij ρce ≤ Be, ∀n ∈ N, ∀c ∈ C, ∀eij ∈ Pij (17)

Constraints (18), (19), and (20) are binary variables. yc represents whether the controller
is placed on switch c, xnc represents whether switch n is within the control range of
controller c, and zeij represents whether the control path eij is in the set of shortest control
paths Pij.

yc =

{
0, i f the controller is not placed on node c
1, i f the controller is placed on node c

, ∀c ∈ N, (18)

xnc =

{
0, i f switch n is managed by controller c
1, i f switch n is not managed by controller c

, ∀n ∈ N, ∀c ∈ C, (19)

zeij =

{
0, i f the link is not in the set
1, i f the link is in the set

, ∀eij ∈ Pij, ∀ni, nj ∈ N, (20)

Sensors 2022, 22, 5475 11 of 24

3.3. Problem Formulation

To address the issue of distributed controller placement, it is necessary to determine
how many controllers should be deployed, where the controllers are located, and to
which controller the switches are assigned. Therefore, in this section, this is divided
into two subproblems: the network partition subproblem and the controller placement
subproblem.

3.3.1. Network Partition Subproblem

The purpose of the network-partitioning stage is to determine the number of con-
trollers reasonably. For this purpose, we establish a network partition model to optimize
network performance while minimizing network deployment costs. Based on the network
analysis, delay, switch security, and load are the main factors that affect the number of
controllers. Therefore, the formula for network partitioning is as follows:

minimize Cplace = ∑
i
(∑

j
dij × λi × ϕi), (21)

where Cplace represents the network deployment cost, dij represents the length of the
propagation path between switch i and switch j, λi represents the average flow request
volume of switch i, and ϕi represents the failure cost of switch i.

3.3.2. Controller Placement Subproblem

For the distributed controller placement problem, we establish four models: delay
model, security model, load model, and link cost model. At the same time, according to
the requirements of network operators, we combine four objectives into a single-objective
problem as a new model for solving the controller placement problem. Since the evaluation
criteria for reaching the optimal value of each objective are inconsistent, we normalized
them, and the multi-objective based controller placement was calculated by the follow-
ing formula:

minimize α · D−Dmin
Dmax−Dmin

+ β · Smax−S
Smax−Smin

+ γ · L−Lmin
Lmax−Lmin

+ δ · C−Cmin
Cmax−Cmin

,
s.t. (14—20).

(22)

In this formula, to address controller placement for different network scenarios, α, β,
γ, and δ represent the weights of the delay model, security model, load model, and link
cost model, respectively, which are set by the ISP to match multiple service requirements.

4. MODECP Approach

In this section, to address this issue, we propose a heuristic-based multi-objective
controller placement approach, MODECP, which is divided into the network-partitioning
stage and the controller placement stage. Specifically, the network-partitioning stage aims
to determine the number of controllers that should be placed reasonably by relying on
the characteristics of the network through an improved affinity propagation algorithm.
In the controller placement stage, we propose an improved multi-objective differential
evolution algorithm to determine the placement position of the controllers in the network
and the ownership relationship between the switches and the controllers. Based on the
network partition stage and the controller placement stage, the MODECP approach can
produce a distributed network management scheme that makes the network performance
approximately optimal. Under different network requirements, various design objectives
can be optimized, including minimizing network transmission delay, maximizing network
security performance, minimizing controller load-balancing rate, and minimizing link
overhead cost. In addition, for clarity, the research approach in this section is represented
in Figure 1.

Sensors 2022, 22, 5475 12 of 24Sensors 2022, 22, x FOR PEER REVIEW 13 of 26

Topology

Network Partition
Algorithm

Node
characteristics

Population
initialization Mutation Crossover

Selection
Fitness

Calculation
Judge termination

condition

Network Partition
Module

Controller Placement
ModuleBest individual

F

T

Figure 1. MODECP Approach.

4.1. Network Partition Module
The purpose of the network partition module is to determine the number of network

partitions according to the node characteristics of different network environments. In
other words, in order to make various network performance indicators as good as
possible, a reasonable number of controllers should be placed in the network. In this
paper, the MODECP approach uses the affinity propagation algorithm to create a delay
matrix, a security matrix, and a load matrix based on network characteristics.

The affinity propagation algorithm is a semi-supervised algorithm [41] that does not
need to determine the number of clusters and the center of clusters in advance. The
clustering foundation of the affinity propagation algorithm is the similarity between the
network nodes. The preference p can be determined through the similarity matrix, and the
number of clusters presents different results based on the value of preference p, which
directly affects the selection of the number of clusters.

In order to obtain a reasonable number of controllers, which makes the network run
for as long as possible without failure and congestion, we minimized the controller
placement cost based on the improved affinity propagation algorithm, which includes
network delay, nodes security, and load according to the model established in Section 3.
The improved affinity propagation algorithm takes the negative value of the controller
placement cost as its similarity matrix, as in Equation (23), where preference p selects the
mean value of the similarity degree of each switch.

− × ×X = D S L, (23)

Here, X is the similarity matrix, D is the reachable path delay matrix from each
switch to other switches, S is the security matrix of the switch, and L is the load
matrix of the switch.

The affinity propagation algorithm updates responsibility and availability through
each iteration, which are denoted in Equations (24) and (25), respectively, and finally
obtains a reasonable number of clusters. This pseudocode is described in Algorithm 1.

≠
←() () { () ()}

j k
r i,k x i,k - max x i, j + a i, j , (24)

← (,) {0, (,) {0, (,)}}
k

a i k min r k k + max r j k ,

←(,) {0, (,)}a k k max r j k ,
(25)

Here, ()a i, j is the availability of switch j to switch i, ()x i, j is the similarity
between switch j and switch i, ()r i, k is the responsibility of switch k and switch i, (,)a i k
is the availability of switch k to switch i, and (,)r k k is the responsibility of switch k.

Figure 1. MODECP Approach.

4.1. Network Partition Module

The purpose of the network partition module is to determine the number of network
partitions according to the node characteristics of different network environments. In
other words, in order to make various network performance indicators as good as possible,
a reasonable number of controllers should be placed in the network. In this paper, the
MODECP approach uses the affinity propagation algorithm to create a delay matrix, a
security matrix, and a load matrix based on network characteristics.

The affinity propagation algorithm is a semi-supervised algorithm [41] that does
not need to determine the number of clusters and the center of clusters in advance. The
clustering foundation of the affinity propagation algorithm is the similarity between the
network nodes. The preference p can be determined through the similarity matrix, and
the number of clusters presents different results based on the value of preference p, which
directly affects the selection of the number of clusters.

In order to obtain a reasonable number of controllers, which makes the network run for
as long as possible without failure and congestion, we minimized the controller placement
cost based on the improved affinity propagation algorithm, which includes network delay,
nodes security, and load according to the model established in Section 3. The improved
affinity propagation algorithm takes the negative value of the controller placement cost as
its similarity matrix, as in Equation (23), where preference p selects the mean value of the
similarity degree of each switch.

X = −D× S× L, (23)

Here, X is the similarity matrix, D is the reachable path delay matrix from each
switch to other switches, S is the security matrix of the switch, and L is the load matrix of
the switch.

The affinity propagation algorithm updates responsibility and availability through
each iteration, which are denoted in Equations (24) and (25), respectively, and finally obtains
a reasonable number of clusters. This pseudocode is described in Algorithm 1.

r(i, k)← x(i, k)−max
j 6=k
{x(i, j) + a(i, j)}, (24)

a(i, k)← min{0, r(k, k) + ∑
k

max{0, r(j, k)}},

a(k, k)← max{0, r(j, k)},
(25)

Here, a(i, j) is the availability of switch j to switch i, x(i, j) is the similarity between
switch j and switch i, r(i, k) is the responsibility of switch k and switch i, a(i, k) is the
availability of switch k to switch i, and r(k, k) is the responsibility of switch k.

Sensors 2022, 22, 5475 13 of 24

Algorithm 1 Network Partition Algorithm

Input G(N, E), Delay matrix, Security matrix, Load matrix, iteration g
Output The number of controllers k

1 Computing X and setting preference p
2 Initialize the responsibility matrix and the availability matrix
3 for g0 ≤ g or cluster center update do
4 Iteratively update responsibility and availability according to Equations (24) and (25)
5 g0 = g0 + 1
6 end for
7 Calculate the number of cluster centers
8 return the number of cluster centers

4.2. Controller Placement Module

The purpose of the controller placement module is to select a certain number of switch
nodes from all switches to deploy control nodes so that these nodes contain both control
and forwarding functions. After that, the remaining switches are reasonably allocated
to controllers located at different positions so that the network can operate normally
with lower delay, higher security, more balanced load, and lower link overhead. The
controller placement approach comprehensively considers factors such as network delay,
node security, controller load balance, and link cost, and it searches for the approximate
optimal candidate switch to place the controller. According to the different requirements
of network operators, based on the formulation of the problem in Section 3, the controller
placement can be transformed from a single-objective optimization problem to a multi-
objective optimization problem. However, due to different optimization objectives, there is
regularly mutual restriction. That is, when one objective is optimized, other objectives will
not obtain the optimal result to a large extent. Therefore, there is regularly a Pareto-optimal
solution set for multi-objective optimization problems.

In this section, we solve the controller placement problem by normalizing the different
objectives. We propose a heuristic-based improved multi-objective differential evolution
algorithm to obtain an approximate Pareto-optimal solution set. Its main parts include:
(1) Population initialization. (2) Population mutation. (3) Population crossover. (4) Fitness
evaluation. (5) Optimal population selection.

In the improved multi-objective differential evolution algorithm, we believe that
the position of the node where the controller is located and the ownership of the switch
and controller are the main factors that constitute the chromosome. We obtain the main
parameters of the construction algorithm from the input network topology information.
The length of the chromosome is considered to be the total number of switches without
controllers. The fitness function considers the factors of network delay, node security,
controller load rate, and link overhead. A fitness evaluation function is constructed based
on the model in Section 3 to select the optimal population according to the latitude and
longitude geographic location, node connectivity, link betweenness centrality, and other
characteristics. In addition, this approach also should set factors such as population size,
mutation factor, and crossover factor. Additionally, the encoding method is natural number
encoding. The normal operation of this algorithm is terminated by setting iteration times.

Firstly, a reasonable population initialization is performed. After setting the population
number, the value of the chromosome is determined according to the decision space,
while the number k is randomly selected as the controller location in the decision space.
The range of the decision space is [0, N − 1]. The initialization of the population is the
process of initializing both the controller position and the ownership of the switch and
controller. The initialization occurred under the conditions of controller capacity constraint,
switch–controller ownership constraint, and random initial population. The population
initialization pseudocode is described in Algorithm 2.

Sensors 2022, 22, 5475 14 of 24

Algorithm 2 Initialization of the population

Input k, population size: np, chromosome length: cl, Ca, λi
Output Initial population

1 Randomly generate k values in the range [0, cl−1] as controller_set
2 Initial P←null
3 for i < np do
4 for j < cl do
5 Pi,j←randomly choose a value from controller_set
6 end for
7 Calculate the load of each controller
7 if the load of each controller exceeds capacity constraints then
8 reproduce Pi,j
9 end if
10 end for
11 return Initial population and the set of controllers

Secondly, the difference operation is performed on the newly generated population.
That is, two different vectors in the population are used to interfere with an existing
vector so as to achieve mutation. We randomly select three distinct offspring vectors
from the population to mutate based on a given mutation factor according to the formula
Vg

i = Pg
r1 + F · (Pg

r2 − Pg
r3); i = 1, 2, . . . , np. In the mutation process, in order to ensure the

validity of the selected controller, it is necessary to judge whether the controller assigned
to each switch exists in the set of candidate controller positions previously selected in the
mutant individual. In addition, the ownership of switches and controllers is also limited
by the capacity of the controllers. If these conditions are not met, the mutated individuals
are regenerated in the candidate controller set randomly. The pseudocode of the mutation
process is described in Algorithm 3.

Algorithm 3 Mutation

Input Population, controller_set, Mutation parameter: F
Output New population

1 Initial Ps←null
2 for i < np do

3
randomly generate the numbers of the three offspring vectors,
where r1, r2, r3 ∈ (1, np), r1 6= r2 6= r3

4 Vg
i = Pg

r1 + F · (Pg
r2 − Pg

r3); i = 1, 2, . . . , np
5 for j < cl do
6 for c < controller_set do
7 if chromosome don’t in controller_set then
8 randomly select a controller from controller_set as the newly

owning control node
9 end if
10 end for
11 end for
12 end for
13 return mutate population

In order to enhance the diversity of the population, the new population is crossed
to generate a variety of progeny vectors. For each individual in the population, the g-th
generation population is crossed with its mutated new population based on the given
crossover factor. By comparing with the crossover factor, the alleles of the new population
are selected from the unmutated population and the mutant population. The pseudocode
for the crossover process is described in Algorithm 4.

Sensors 2022, 22, 5475 15 of 24

Algorithm 4 Crossover

Input Population, mutation population, crossover parameter: cr
Output New population

1 Initial Ps←null
2 Randomly generate jrand and a real number r of size (np, cl) between 0 and 1.
3 for i < np do
4 for j < cl do
5 if r(i,j) < cr or j=jrand then
6 Ug

i,j←Vg
i,j

7 else
8 Ug

i,j←Pg
i,j

9 end if
10 Ps←Ug

i,j
11 end for
12 end for
13 return crossover population

Finally, to select the optimal individual from the population, we utilize the greedy
algorithm to select the population according to the evaluation result of the fitness function.
The fitness function of each individual in the population is compared, and the individual
with the best fitness function is selected and stored in the candidate optimal solution set.
The best performance result in the candidate solution set is ultimately selected as the
solution in the controller placement module, which effectively completes the selection
of the controller position and the management of the switch. The pseudocode for the
population selection process is described in Algorithm 5.

Algorithm 5 Selection

Input Population, crossover population
Output the better solution

1 Initial Ps←null
2 Calculate the fitness of all individuals in the population
3 if f (Ug

i) < f (Pg
i) then

4 Psg
i←Ug

i
5 else
6 Psg

i←Pg
i

7 end if
8 return the better solution

In the differential evolution process, the evaluation of the fitness function is a critical
step. The fitness of each individual distribution in each generation is calculated for the
purpose of comparing the approximate optimal results. The pseudocode for the calculation
process of the fitness function is described in Algorithm 6.

Algorithm 6 Fitness Calculation

Input Chromosome, controller_set
Output Fitness

1 Calculate D, S, C and L by Equations (5), (8), (10) and (13)
2 The fitness is calculated by normalizing to Equation (22)
3 return the fitness of chromosome

Through the above-mentioned operations of population initialization, mutation,
crossover, selection, and fitness evaluation, the population can evolve repeatedly and
cyclically. The algorithm stops running when the iteration reaches the maximum itera-
tion times.

Sensors 2022, 22, 5475 16 of 24

5. Simulation Results

In this section, we conduct extensive simulations of the proposed MODECP approach
from multiple perspectives. In addition, we analyze the simulation results of the pro-
posed algorithm and compare them with the traditional genetic algorithm and random
placement algorithm.

5.1. Simulation Environment

Experimental environment: This experiment runs on an ordinary PC with an Intel Core
i5-6600 CPU @3.30 GHz. All three algorithms are verified by Python 3.7.

Network topology: We evaluate the performance of the proposed approach on three
topologies from the Internet Topology Zoo [42], namely the Xspedius topology with
34 nodes and 49 edges, the Bellcanada topology with 48 nodes and 65 edges, and the
Uninett2010 topology with 74 nodes and 101 edges. Assuming that the request volume
of each switch is a randomly generated value in [150, 250] kilorequests/s, the capacity of
the controller is 150% of the average request volume of the switch, and the bandwidth of
each link is 2 Gbps. The packet size for synchronization inter-controller is 200 bytes, and
the synchronization interval is 5 s. We set packet_in packet size to 98 bytes, set packet_out
packet size to 104 bytes, and ignore the payload in the packet [13]. We set the evaluation
parameters, which are network delay, node security, load rate, and link cost.

The proposed algorithm is a differential evolution algorithm based on multiple ob-
jectives. Both the differential evolution algorithm and genetic algorithm are stochastic
intelligent optimization algorithms. However, their parameters are different in crossover,
mutation, and selection stages, which leads to the difference in accuracy and operation time
between the two algorithms. In addition, the random placement algorithm is uncertain,
but it considers the principle of minimizing delay for controller deployment. Therefore,
we choose the genetic algorithm based on multiple objectives and the random placement
algorithm based on minimum delay as the benchmark algorithms to prove the efficiency
and effectiveness of the proposed algorithm, respectively.

Proposed Algorithm: In order to evaluate its validity and efficiency, the fitness of
each population is calculated based on the multi-objective functions formed by fitting
the network delay, network security, load rate, and link cost. Among them, we set the
population size to 250, the number of iterations to 200, the mutation factor to 0.8, and the
crossover factor to 0.8.

Benchmark Algorithms:

• Genetic Algorithm: To ensure the results’ efficiency, the genetic algorithm evaluates
fitness based on the same multiple objectives as the proposed algorithm. Genetic
algorithms search optimization occurred through continuous iteration of selection,
crossover, and mutation. In this comparative experiment, the population size of the
genetic algorithm is set to 250, the number of iterations is 200, the mutation factor is
0.8, and the crossover factor is 0.8.

• Random placement algorithm: To ensure the results’ validity, the algorithm randomly
generates controller positions and allocates nearby switches according to the principle
of minimum delay. The algorithm maintains great randomness and instability without
iteration and optimization while the controller positions are selected.

In order to clearly compare the proposed approach with benchmark algorithms, the
parameter settings of the three algorithms are shown in Table 3.

Table 3. The Parameter Settings of algorithms.

Algorithm Delay Security Load Link Cost

Proposed Algorithm
√ √ √ √

Genetic Algorithm
√ √ √ √

Random Placement Algorithm
√

- - -

Sensors 2022, 22, 5475 17 of 24

5.2. Simulation Results
5.2.1. Performance Comparisons of Different Objective Models

We evaluate the algorithm performance of the improved differential evolution algo-
rithm in single-objective and multi-objective situations and verify its effectiveness in four
aspects, which are delay, security, load rate, and link overhead. To this end, we choose
Xspedius, Bellcanada, and Uninett2010 topologies to conduct many simulation experiments
to obtain the performance of MODECP.

Figure 2 shows the cumulative distribution functions for multi-objective and different
single-objective states. Through a large number of simulation experiments on multiple
network topologies, the performance of the MODECP can be obtained under the single-
objective conditions and simultaneous fitting of multi-objective conditions. Figure 2a
shows that when the end-to-end delay is used as the evaluation parameter, the improved
differential evolution algorithm considering only the delay performs the best compared
with other objective situations. Since the MODECP considers four objectives at the same
time, the end-to-end delay performance is inferior to that of the single-objective algorithm
that only considers the delay, but it is better than that of the other three single-objective
states. According to the security model in Section 3, security is inversely proportional to the
probability of data loss. In other words, when links or nodes fail, the higher the probability
of data loss is, the worse the network security performance is. Therefore, we hope for
controllers to be deployed on nodes with a low probability of failure and control paths to be
distributed on links with a low probability of failure. At this point, the larger the normalized
value, the better the security of the network, according to Equation (8). Figure 2b–d shows
the performance under five situations when node security, load rate, and link overhead,
respectively, are used as evaluation parameters. Similarly, these experimental results show
that the performance of the MODECP on three evaluation parameters is inferior to, or
similar to, the case where only a single objective is considered.

To evaluate the impact of link failures on deployment results, we train the SVM model
and predict the link state. We randomly generate the link traffic distribution and classify
the link state as 0 or 1 to be used in the dataset for training the SVM model. We also
simulate link traffic for five time periods in order to highlight the different link failure states
due to traffic changes at different periods. The SVM model predicts the links that fail and
tests the performance of MODECP in terms of delay, load, and link cost after link failures.
Specifically, we vary the percentage of failed links in the network to evaluate performance
in the simulation experiments, including 5%, 10%, and 15%.

Figure 3 presents the performance trends in delay, load, and link overhead at various
time periods after MODECP re-deployed the controller when changing the number of
links that failed in the network. Based on comparing the number of failed links at 0%, 5%,
10%, and 15% in the Bellcanada topology, there is no significant difference in performance
between no links failed and 5% of links failed. Due to the increased number of failed links,
the control path length must be increased to deploy controllers with distribution switches to
enable communication between the switches and controllers. As a result, the performance
of the state with 15% link failures is significantly worse than the other states.

5.2.2. Performance Comparisons of Different Algorithms

For the same network topology, we evaluate the performance of the proposed algo-
rithm with the same multi-objective based genetic algorithm and single-objective based
random placement algorithm in terms of delay, security, load rate, and link overhead. To
this end, we choose Bellcanada topology to conduct simulation experiments and obtain the
performance of MODECP compared with other algorithms. Additionally, we set two delay
states to describe the impact on the placement results by varying the delay calculation
parameters. State 1 indicates that all delays are considered, namely the switch–controller
propagation delay, the inter-controller propagation delay, transmission delay, and pro-
cessing delay. State 2 indicates that only the switch–controller propagation delay and the
inter-controller propagation delay are considered, without considering the transmission

Sensors 2022, 22, 5475 18 of 24

delay and processing delay. At the same time, we evaluate the time consumption for
different algorithms and different topologies.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26

(a) (b)

(c) (d)

Figure 2. Cumulative distribution functions for different target states. (a) Performance of different
states regarding end-to-end latency. (b) The performance of different states regarding node security.
(c) The performance of different states regarding the control node load rate. (d) The performance of
different states regarding the link overhead.

To evaluate the impact of link failures on deployment results, we train the SVM
model and predict the link state. We randomly generate the link traffic distribution and
classify the link state as 0 or 1 to be used in the dataset for training the SVM model. We
also simulate link traffic for five time periods in order to highlight the different link failure
states due to traffic changes at different periods. The SVM model predicts the links that
fail and tests the performance of MODECP in terms of delay, load, and link cost after link
failures. Specifically, we vary the percentage of failed links in the network to evaluate
performance in the simulation experiments, including 5%, 10%, and 15%.

Figure 3 presents the performance trends in delay, load, and link overhead at various
time periods after MODECP re-deployed the controller when changing the number of
links that failed in the network. Based on comparing the number of failed links at 0%, 5%,
10%, and 15% in the Bellcanada topology, there is no significant difference in performance
between no links failed and 5% of links failed. Due to the increased number of failed links,
the control path length must be increased to deploy controllers with distribution switches
to enable communication between the switches and controllers. As a result, the
performance of the state with 15% link failures is significantly worse than the other states.

Figure 2. Cumulative distribution functions for different target states. (a) Performance of different
states regarding end-to-end latency. (b) The performance of different states regarding node security.
(c) The performance of different states regarding the control node load rate. (d) The performance of
different states regarding the link overhead.

Figure 4 shows the performance comparison of the MODECP with genetic algorithm
and random placement algorithm under the same topology. For Bellcanada topology, the
three algorithms have different performances in the evaluation parameters of end-to-end
delay, security, load rate, and link overhead. No matter the point of view, MODECP
in delay state 1 generally outperforms the same multi-objective based genetic algorithm
in delay state 1 and the single-objective based random placement algorithm. Due to the
uncertainty of the random placement algorithm, its performance exhibits a trend of unstable
fluctuations. The performance trend of the MODECP and the genetic algorithm is basically
similar, but the accuracy of the MODECP is better. In addition, by varying the delay model
calculation parameters, it can be demonstrated that MODECP in state 2 performs slightly
better than state 1 in terms of delay evaluation. The reason for this performance is that
state 2 does not take processing delay and transmission delay into account as much as
state 1. It can also be seen from the comparison that the difference in performance between
state 1 and state 2 is minimal, which indicates that processing delay and transmission
delay have less impact on the network performance. In terms of security, load, and link
overhead, there is no significant trend of changing the delay model parameters in the
deployment results.

Sensors 2022, 22, 5475 19 of 24
Sensors 2022, 22, x FOR PEER REVIEW 20 of 26

(a) (b)

(c)

Figure 3. performance evaluation of different time periods after 0%, 5%, 10%, and 15% link failures
in Bellcanada topology. (a) Performance of different link failures in terms of delay. (b) Performance
of different link failures in terms of load rate. (c) Performance of different link failures in terms of
link overhead.

5.2.2. Performance Comparisons of Different Algorithms
For the same network topology, we evaluate the performance of the proposed

algorithm with the same multi-objective based genetic algorithm and single-objective
based random placement algorithm in terms of delay, security, load rate, and link
overhead. To this end, we choose Bellcanada topology to conduct simulation experiments
and obtain the performance of MODECP compared with other algorithms. Additionally,
we set two delay states to describe the impact on the placement results by varying the
delay calculation parameters. State 1 indicates that all delays are considered, namely the
switch–controller propagation delay, the inter-controller propagation delay, transmission
delay, and processing delay. State 2 indicates that only the switch–controller propagation
delay and the inter-controller propagation delay are considered, without considering the
transmission delay and processing delay. At the same time, we evaluate the time
consumption for different algorithms and different topologies.

Figure 4 shows the performance comparison of the MODECP with genetic algorithm
and random placement algorithm under the same topology. For Bellcanada topology, the
three algorithms have different performances in the evaluation parameters of end-to-end
delay, security, load rate, and link overhead. No matter the point of view, MODECP in
delay state 1 generally outperforms the same multi-objective based genetic algorithm in
delay state 1 and the single-objective based random placement algorithm. Due to the
uncertainty of the random placement algorithm, its performance exhibits a trend of
unstable fluctuations. The performance trend of the MODECP and the genetic algorithm

Figure 3. Performance evaluation of different time periods after 0%, 5%, 10%, and 15% link failures
in Bellcanada topology. (a) Performance of different link failures in terms of delay. (b) Performance
of different link failures in terms of load rate. (c) Performance of different link failures in terms of
link overhead.

Figure 5 shows the running time of the three algorithms under the Bellcanada topology
and the running time of the proposed algorithm under different topologies, including
Xspedius, Bellcanada, and Uninett2010. As can be seen from the description, the running
time of the MODECP increases with the number of controllers for the same topology. For
different topologies, the greater the number of switches in the network, the greater the
range of switches that can be selected to place control nodes, so the longer the running time.
Comparing the MODECP with the genetic algorithm and random placement algorithm,
the running time of the random placement algorithm is consistently the shortest. This is
because the random placement algorithm is based on the principle of minimum delay, and
it does not have an iterative process to select the optimal result. Under the same conditions,
the proposed algorithm has shorter running time and better convergence performance than
the multi-objective based genetic algorithm. Since the mutated individuals in MODECP are
obtained by differentiating the parent individuals and crossover with the parent individuals
to generate new individuals, they are finally selected directly with the parent individuals.
Therefore, the approximation effect of MODECP is better than that of the genetic algorithm.

Sensors 2022, 22, 5475 20 of 24

Sensors 2022, 22, x FOR PEER REVIEW 21 of 26

is basically similar, but the accuracy of the MODECP is better. In addition, by varying the
delay model calculation parameters, it can be demonstrated that MODECP in state 2
performs slightly better than state 1 in terms of delay evaluation. The reason for this
performance is that state 2 does not take processing delay and transmission delay into
account as much as state 1. It can also be seen from the comparison that the difference in
performance between state 1 and state 2 is minimal, which indicates that processing delay
and transmission delay have less impact on the network performance. In terms of security,
load, and link overhead, there is no significant trend of changing the delay model
parameters in the deployment results.

(a) (b)

(c) (d)

Figure 4. The performance of different algorithms under the Bellcanada topology. (a) Performance
regarding end-to-end delay; (b) performance regarding node security; (c) performance regarding
controlling node load rate; (d) performance regarding link cost.

Figure 5 shows the running time of the three algorithms under the Bellcanada
topology and the running time of the proposed algorithm under different topologies,
including Xspedius, Bellcanada, and Uninett2010. As can be seen from the description, the
running time of the MODECP increases with the number of controllers for the same
topology. For different topologies, the greater the number of switches in the network, the
greater the range of switches that can be selected to place control nodes, so the longer the
running time. Comparing the MODECP with the genetic algorithm and random
placement algorithm, the running time of the random placement algorithm is consistently
the shortest. This is because the random placement algorithm is based on the principle of
minimum delay, and it does not have an iterative process to select the optimal result.
Under the same conditions, the proposed algorithm has shorter running time and better
convergence performance than the multi-objective based genetic algorithm. Since the
mutated individuals in MODECP are obtained by differentiating the parent individuals

Figure 4. The performance of different algorithms under the Bellcanada topology. (a) Performance
regarding end-to-end delay; (b) performance regarding node security; (c) performance regarding
controlling node load rate; (d) performance regarding link cost.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 26

and crossover with the parent individuals to generate new individuals, they are finally
selected directly with the parent individuals. Therefore, the approximation effect of
MODECP is better than that of the genetic algorithm.

Figure 5. The running time of the algorithm.

5.2.3. Performance Comparisons on Different Topologies
Furthermore, to verify the universality of the MODECP, we evaluate the algorithm

in three different topologies to obtain efficient solutions for distributed controller
placement.

Figure 6 shows the performance of the proposed algorithm in three topological
situations: Xspedius, Bellcanada, and Uninett2010. From Figure 6a, it can be seen that the
performance of the proposed algorithm generally shows an increasing trend with the
increase in the number of controllers regarding the end-to-end delay. When the number
of controllers increases, the control scope of the controllers is reduced, resulting in a
reduction in the switch–controller transmission delay, but the synchronization delay of
the inter-controller will increase. Since the data packets synchronized by the controller are
usually larger than the data packets transmitted by the switch controller, the performance
of controller synchronization delay is more obvious. At the same time, the greater the
number of nodes in the network, the greater the end-to-end delay. Figure 6b shows that
node security generally shows a downward trend. When the number of controllers
increases, the probability of the controllers being placed on switches with greater degree
centrality will increase, so the security of the network decreases. That is, the more
controllers deployed in the network, the worse the security performance. At the same
time, when the number of nodes in the network is small, the search space for placing the
controller becomes smaller, resulting in lower security. Therefore, the number of
controllers deployed should not be too high to improve security. As can be seen from
Figure 6c, the difference in topology has little effect on the load rate. Although the time
interval of controller synchronization remains the same, the number of synchronizations
between controllers will rise as the number of controllers grows. The link cost caused by
synchronization increases, so Figure 6d shows that the link cost generally shows an
increasing trend.

Figure 5. The running time of the algorithm.

5.2.3. Performance Comparisons on Different Topologies

Furthermore, to verify the universality of the MODECP, we evaluate the algorithm in
three different topologies to obtain efficient solutions for distributed controller placement.

Figure 6 shows the performance of the proposed algorithm in three topological sit-
uations: Xspedius, Bellcanada, and Uninett2010. From Figure 6a, it can be seen that the
performance of the proposed algorithm generally shows an increasing trend with the

Sensors 2022, 22, 5475 21 of 24

increase in the number of controllers regarding the end-to-end delay. When the number
of controllers increases, the control scope of the controllers is reduced, resulting in a re-
duction in the switch–controller transmission delay, but the synchronization delay of the
inter-controller will increase. Since the data packets synchronized by the controller are
usually larger than the data packets transmitted by the switch controller, the performance of
controller synchronization delay is more obvious. At the same time, the greater the number
of nodes in the network, the greater the end-to-end delay. Figure 6b shows that node
security generally shows a downward trend. When the number of controllers increases, the
probability of the controllers being placed on switches with greater degree centrality will
increase, so the security of the network decreases. That is, the more controllers deployed in
the network, the worse the security performance. At the same time, when the number of
nodes in the network is small, the search space for placing the controller becomes smaller,
resulting in lower security. Therefore, the number of controllers deployed should not be too
high to improve security. As can be seen from Figure 6c, the difference in topology has little
effect on the load rate. Although the time interval of controller synchronization remains
the same, the number of synchronizations between controllers will rise as the number of
controllers grows. The link cost caused by synchronization increases, so Figure 6d shows
that the link cost generally shows an increasing trend.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 26

(a) (b)

(c) (d)

Figure 6. The performance of the proposed algorithm under different topologies. (a) performance
regarding end-to-end delay; (b) performance regarding node security; (c) performance regarding
controlling node load rate; (d) performance regarding link cost.

6. Conclusions
In this paper, we propose a heuristic-based MODECP approach to solve the

distributed controller placement problem in SDN, including the network partition stage
and the controller deployment stage. The appropriate number of controllers for placement
is obtained based on the improved affinity propagation algorithm. Based on the improved
multi-objective differential evolution algorithm, the placement position of the controller
and the mapping relationship of the switches and controllers are obtained. The MODECP
approach balances multiple optimization objectives to adapt to the different requirements
of network operators, including network delay, switch security, controller load, and link
overhead. Finally, extensive simulation results show that the MODECP approach exhibits
better performance in terms of delay, security, controller load, and link cost, while
reducing the running time.

The placement of distributed controllers significantly affects network performance.
Deep learning algorithms can be exploited to address this issue in future work to better
optimize multiple objectives. At the same time, in addition to the influencing factors
involved in this paper, exploring the elastic placement approach will also be a future
research direction. Furthermore, the placement of controllers or servers in other
application areas is also worth exploring. In virtual SDN networks (vSDNs), the
placement of a network virtualization hypervisor also affects vSDNs’ performance [43].
Therefore, the placement algorithm can be used to address vSDN scalability issues and
optimize network performance. In a content delivery network (CDN), it is necessary to
deploy multiple caching servers in areas that users frequently access. Therefore, the

Figure 6. The performance of the proposed algorithm under different topologies. (a) performance
regarding end-to-end delay; (b) performance regarding node security; (c) performance regarding
controlling node load rate; (d) performance regarding link cost.

Sensors 2022, 22, 5475 22 of 24

6. Conclusions

In this paper, we propose a heuristic-based MODECP approach to solve the distributed
controller placement problem in SDN, including the network partition stage and the
controller deployment stage. The appropriate number of controllers for placement is
obtained based on the improved affinity propagation algorithm. Based on the improved
multi-objective differential evolution algorithm, the placement position of the controller
and the mapping relationship of the switches and controllers are obtained. The MODECP
approach balances multiple optimization objectives to adapt to the different requirements
of network operators, including network delay, switch security, controller load, and link
overhead. Finally, extensive simulation results show that the MODECP approach exhibits
better performance in terms of delay, security, controller load, and link cost, while reducing
the running time.

The placement of distributed controllers significantly affects network performance.
Deep learning algorithms can be exploited to address this issue in future work to better
optimize multiple objectives. At the same time, in addition to the influencing factors
involved in this paper, exploring the elastic placement approach will also be a future
research direction. Furthermore, the placement of controllers or servers in other application
areas is also worth exploring. In virtual SDN networks (vSDNs), the placement of a
network virtualization hypervisor also affects vSDNs’ performance [43]. Therefore, the
placement algorithm can be used to address vSDN scalability issues and optimize network
performance. In a content delivery network (CDN), it is necessary to deploy multiple
caching servers in areas that users frequently access. Therefore, the placement algorithm
can be used to solve the placement problem of content cache servers to improve network
quality of service.

Author Contributions: Conceptualization, C.L. and K.G.; Data curation, S.L.; Formal analysis, C.L.;
Funding acquisition, J.C. (Jia Chen); Investigation, C.L., K.G., S.L. and J.C. (Jing Chen); Methodology,
C.L.; Software, C.L.; Supervision, D.G.; Validation, C.L.; Writing—original draft, C.L.; Writing—
review and editing, J.C. (Jia Chen). All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under grant no. 2018YFE0206800, fundamental research funds for the central universities
under grant no. 2021JBZD003, open research projects of Zhejiang lab under grant no. 2022QA0AB03,
and the Nature and Science Foundation of China under grant no. 61471029, 61972026, 62072030
and 92167204.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bannour, F.; Souihi, S.; Mellouk, A. Distributed SDN Control: Survey, Taxonomy, and Challenges. IEEE Commun. Surv. Tutor.

2017, 20, 333–354. [CrossRef]
2. Li, Y.; Chen, M. Software-Defined Network Function Virtualization: A Survey. IEEE Access 2015, 3, 2542–2553. [CrossRef]
3. Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606.

[CrossRef]
4. Chen, T.; Matinmikko, M.; Chen, X.; Zhou, X.; Ahokangas, P. Software defined mobile networks: Concept, survey, and research

directions. IEEE Commun. Mag. 2015, 53, 126–133. [CrossRef]
5. Chahal, M.; Harit, S.; Mishra, K.K.; Sangaiah, A.K.; Zheng, Z. A Survey on software-defined networking in vehicular ad hoc

networks: Challenges, applications and use cases. Sustain. Cities Soc. 2017, 35, 830–840. [CrossRef]
6. Feng, B.; Tian, A.; Yu, S.; Li, J.; Zhou, H.; Zhang, H. Efficient Cache Consistency Management for Transient IoT Data in

Content-Centric Networking. IEEE Internet Things J. 2022. [CrossRef]
7. Feng, B.; Huang, Y.; Tian, A.; Wang, H.; Zhou, H.; Yu, S.; Zhang, H. DR-SDSN: An Elastic Differentiated Routing Framework for

Software-Defined Satellite Networks. IEEE Wirel. Commun. 2022, 1–7. [CrossRef]

http://doi.org/10.1109/COMST.2017.2782482
http://doi.org/10.1109/access.2015.2499271
http://doi.org/10.1109/ACCESS.2016.2607786
http://doi.org/10.1109/MCOM.2015.7321981
http://doi.org/10.1016/j.scs.2017.07.007
http://doi.org/10.1109/JIOT.2022.3163776
http://doi.org/10.1109/MWC.011.2100578

Sensors 2022, 22, 5475 23 of 24

8. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow. ACM
SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

9. Osiński, T.; Tarasiuk, H.; Chaignon, P.; Kossakowski, M. P4rt-OVS: Programming Protocol-Independent, Runtime Extensions for
Open vSwitch with P4. In Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–25 June 2020;
pp. 413–421.

10. Karakus, M.; Durresi, A. A survey: Control plane scalability issues and approaches in Software-Defined Networking (SDN).
Comput. Networks 2017, 112, 279–293. [CrossRef]

11. Oktian, Y.E.; Lee, S.; Lee, H.; Lam, J. Distributed SDN controller system: A survey on design choice. Comput. Networks
2017, 121, 100–111. [CrossRef]

12. Ahmad, S.; Mir, A.H. Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of Diverse SDN Controllers.
J. Netw. Syst. Manag. 2020, 29, 9. [CrossRef]

13. Bianco, A.; Giaccone, P.; Mashayekhi, R.; Ullio, M.; Vercellone, V. Scalability of ONOS reactive forwarding applications in ISP
networks. Comput. Commun. 2017, 102, 130–138. [CrossRef]

14. Bianco, A.; Giaccone, P.; Mahmood, A.; Ullio, M.; Vercellone, V. Evaluating the SDN control traffic in large ISP networks. In
Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 5248–5253.
[CrossRef]

15. Scott-Hayward, S.; O’Callaghan, G.; Sezer, S. Sdn Security: A Survey. In Proceedings of the 2013 IEEE SDN for Future Networks
and Services (SDN4FNS), Trento, Italy, 11–13 November 2013; pp. 1–7. [CrossRef]

16. Heller, B.; Sherwood, R.; McKeown, N. The controller placement problem. ACM SIGCOMM Comput. Commun. Rev.
2012, 42, 473–478. [CrossRef]

17. Kuang, H.; Qiu, Y.; Li, R.; Liu, X. A Hierarchical K-Means Algorithm for Controller Placement in SDN-Based WAN Architecture.
In Proceedings of the 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),
Changsha, China, 10–11 February 2018; pp. 263–267. [CrossRef]

18. Yao, G.; Bi, J.; Li, Y.; Guo, L. On the Capacitated Controller Placement Problem in Software Defined Networks. IEEE Commun.
Lett. 2014, 18, 1339–1342. [CrossRef]

19. Cai, N.; Han, Y.; Ben, Y.; An, W.; Xu, Z. An Effective Load Balanced Controller Placement Approach in Software-Defined WANs.
In Proceedings of the MILCOM 2019—2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14
November 2019; pp. 361–366. [CrossRef]

20. Ksentini, A.; Bagaa, M.; Taleb, T.; Balasingham, I. On using bargaining game for Optimal Placement of SDN controllers. In
Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6. [CrossRef]

21. Vizarreta, P.; Machuca, C.M.; Kellerer, W. Controller placement strategies for a resilient SDN control plane. In Proceedings of the
2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 13–15 September
2016; pp. 253–259. [CrossRef]

22. Ruiz-Rivera, A.; Chin, K.-W.; Soh, S. GreCo: An Energy Aware Controller Association Algorithm for Software Defined Networks.
IEEE Commun. Lett. 2015, 19, 541–544. [CrossRef]

23. Petale, S.; Thangaraj, J. Failure-Based Controller Placement in Software Defined Networks. IEEE Trans. Netw. Serv. Manag.
2019, 17, 503–516. [CrossRef]

24. Yang, S.; Cui, L.; Chen, Z.; Xiao, W. An Efficient Approach to Robust SDN Controller Placement for Security. IEEE Trans. Netw.
Serv. Manag. 2020, 17, 1669–1682. [CrossRef]

25. Feng, B.; Zhou, H.; Li, G.; Zhang, Y.; Sood, K.; Yu, S. Enabling Machine Learning with Service Function Chaining for Security
Enhancement at 5G Edges. IEEE Netw. 2021, 35, 196–201. [CrossRef]

26. Sanner, J.-M.; Hadjadj-Aoufi, Y.; Ouzzif, M.; Rubino, G. Hierarchical clustering for an efficient controllers’ placement in software
defined networks. In Proceedings of the 2016 Global Information Infrastructure and Networking Symposium (GIIS), Porto,
Portugal, 19–21 October 2016; pp. 1–7. [CrossRef]

27. Guo, S.; Yang, S.; Li, Q.; Jiang, Y. Towards Controller Placement for robust Software-Defined Networks. In Proceedings of the 2015
IEEE 34th International Performance Computing and Communications Conference (IPCCC), Nanjing, China, 14–16 December
2015; pp. 1–8. [CrossRef]

28. Champagne, S.; Makanju, T.; Yao, C.; Zincir-Heywood, N.; Heywood, M. A genetic algorithm for dynamic controller placement
in software defined networking. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO
‘18), Kyoto, Japan, 15–19 July 2018; pp. 1632–1639. [CrossRef]

29. Killi, B.P.R.; Rao, S.V. Capacitated Next Controller Placement in Software Defined Networks. IEEE Trans. Netw. Serv. Manag.
2017, 14, 514–527. [CrossRef]

30. Bouzidi, E.H.; Outtagarts, A.; Langar, R.; Boutaba, R. Dynamic clustering of software defined network switches and controller
placement using deep reinforcement learning. Comput. Netw. 2022, 207, 108852. [CrossRef]

31. Wu, Y.; Zhou, S.; Wei, Y.; Leng, S. Deep Reinforcement Learning for Controller Placement in Software Defined Network. In
Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 6–9 July 2020; pp. 1254–1259. [CrossRef]

http://doi.org/10.1145/1355734.1355746
http://doi.org/10.1016/j.comnet.2016.11.017
http://doi.org/10.1016/j.comnet.2017.04.038
http://doi.org/10.1007/s10922-020-09575-4
http://doi.org/10.1016/j.comcom.2016.09.007
http://doi.org/10.1109/icc.2015.7249157
http://doi.org/10.1109/sdn4fns.2013.6702553
http://doi.org/10.1145/2377677.2377767
http://doi.org/10.1109/icmtma.2018.00070
http://doi.org/10.1109/LCOMM.2014.2332341
http://doi.org/10.1109/milcom47813.2019.9020804
http://doi.org/10.1109/icc.2016.7511136
http://doi.org/10.1109/rndm.2016.7608295
http://doi.org/10.1109/LCOMM.2015.2394457
http://doi.org/10.1109/TNSM.2019.2949256
http://doi.org/10.1109/TNSM.2020.2994837
http://doi.org/10.1109/MNET.100.2000338
http://doi.org/10.1109/giis.2016.7814936
http://doi.org/10.1109/pccc.2015.7410301
http://doi.org/10.1145/3205651.3208244
http://doi.org/10.1109/TNSM.2017.2720699
http://doi.org/10.1016/j.comnet.2022.108852
http://doi.org/10.1109/infocomwkshps50562.2020.9162977

Sensors 2022, 22, 5475 24 of 24

32. Mouawad, N.; Naja, R.; Tohme, S. Optimal and Dynamic SDN Controller Placement. In Proceedings of the 2018 International
Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–26 August 2018; pp. 1–9. [CrossRef]

33. Yu, B.-Y.; Yang, G.; Yoo, C. Comprehensive Prediction Models of Control Traffic for SDN Controllers. In Proceedings of the 2018
4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 262–266.
[CrossRef]

34. Awan, I.I.; Shah, N.; Imran, M.; Shoaib, M.; Saeed, N. An improved mechanism for flow rule installation in-band SDN. J. Syst.
Arch. 2019, 96, 1–19. [CrossRef]

35. Yeganeh, S.H.; Ganjali, Y. Kandoo: A framework for efficient and scalable offloading of control applications. In Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August 2012; pp. 19–24. [CrossRef]

36. Zhang, T.; Bianco, A.; Giaccone, P. The role of inter-controller traffic in SDN controllers placement. In Proceedings of the
2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Palo Alto, CA, USA,
7–10 November 2016; pp. 87–92. [CrossRef]

37. Das, T.; Gurusamy, M. Multi-Objective Control Plane Dimensioning in Hybrid SDN/Legacy Networks. IEEE Trans. Netw. Serv.
Manag. 2021, 18, 2929–2942. [CrossRef]

38. Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [CrossRef]
39. Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 2004, 38, 163–168. [CrossRef]
40. Ibrar, M.; Wang, L.; Muntean, G.-M.; Akbar, A.; Shah, N.; Malik, K.R. PrePass-Flow: A Machine Learning based technique to

minimize ACL policy violation due to links failure in hybrid SDN. Comput. Netw. 2020, 184, 107706. [CrossRef]
41. Wang, K.; Zhang, J.; Li, D.; Zhang, X.; Guo, T. Adaptive Affinity Propagation Clustering. arXiv 2008, arXiv:0805.1096.
42. Knight, S.; Nguyen, H.X.; Falkner, N.; Bowden, R.; Roughan, M. The Internet Topology Zoo. IEEE J. Sel. Areas Commun.

2011, 29, 1765–1775. [CrossRef]
43. Blenk, A.; Basta, A.; Zerwas, J.; Kellerer, W. Pairing SDN with network virtualization: The network hypervisor placement problem.

In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN),
San Francisco, CA, USA, 18–21 November 2015; pp. 198–204. [CrossRef]

http://doi.org/10.1109/comapp.2018.8460361
http://doi.org/10.1109/netsoft.2018.8460111
http://doi.org/10.1016/j.sysarc.2019.01.016
http://doi.org/10.1145/2342441.2342446
http://doi.org/10.1109/nfv-sdn.2016.7919481
http://doi.org/10.1109/TNSM.2021.3066847
http://doi.org/10.1016/j.socnet.2004.11.008
http://doi.org/10.1140/epjb/e2004-00111-4
http://doi.org/10.1016/j.comnet.2020.107706
http://doi.org/10.1109/JSAC.2011.111002
http://doi.org/10.1109/nfv-sdn.2015.7387427

	Introduction
	Related Works
	Optimization Objectives for Controller Deployment
	Optimization Algorithms for Controller Deployment

	System Model and Problem Formulation
	System Model
	Network Model
	Delay Model
	Security Model
	Load Model
	Link Cost Model

	Constraints
	Problem Formulation
	Network Partition Subproblem
	Controller Placement Subproblem

	MODECP Approach
	Network Partition Module
	Controller Placement Module

	Simulation Results
	Simulation Environment
	Simulation Results
	Performance Comparisons of Different Objective Models
	Performance Comparisons of Different Algorithms
	Performance Comparisons on Different Topologies

	Conclusions
	References

