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Abstract: Despite the fact that Versatile Video Coding (VVC) achieves a superior coding performance
to High-Efficiency Video Coding (HEVC), it takes a lot of time to encode video sequences due to the
high computational complexity of the tools. Among these tools, Multiple Transform Selection (MTS)
require the best of several transforms to be obtained using the Rate-Distortion Optimization (RDO)
process, which increases the time spent video encoding, meaning that VVC is not suited to real-time
sensor application networks. In this paper, a low-complexity multiple transform selection, combined
with the multi-type tree partition algorithm, is proposed to address the above issue. First, to skip the
MTS process, we introduce a method to estimate the Rate-Distortion (RD) cost of the last Coding Unit
(CU) based on the relationship between the RD costs of transform candidates and the correlation
between Sub-Coding Units’ (sub-CUs’) information entropy under binary splitting. When the sum of
the RD costs of sub-CUs is greater than or equal to their parent CU, the RD checking of MTS will be
skipped. Second, we make full use of the coding information of neighboring CUs to terminate MTS
early. The experimental results show that, compared with the VVC, the proposed method achieves a
26.40% reduction in time, with a 0.13% increase in Bjøontegaard Delta Bitrate (BDBR).

Keywords: versatile video coding; multiple transform selection; fast intra-coding; CU partition;
real-time sensor networks

1. Introduction

At present, real-time sensor networks (e.g., Visual Sensor Networks (VSNs) and
Vehicular Ad-hoc Networks (VANETs)) are rapidly evolving, with advances in imaging and
micro-electronic technologies. These networks acquire multimedia data such as images and
video sequences, integrating low-power and low-cost vision sensors. As a key application
in sensor networks, video compression and transmission technologies are widely used in
the field of broadcasting and communications. Furthermore, with the widespread use of
5th Generation (5G) mobile networks [1,2] and the rapid development of the Internet of
Things (IoT) [3–6], technologies for the coding and transmission of multimedia information
have become a popular research direction. Video sequences can be better integrated
with real-time sensor networks by improving the performance of multimedia information
compression. Hence, it is essential to investigate an efficient and fast video coding standard
for the application of encoded videos in real-time networks.

With the development of high-resolution video applications, High Dynamic Ranges
(HDRs), and High Frame Rates (HFRs), the urgent demand for a new generation of video-
coding technologies, beyond the High-Efficiency Video Coding (HEVC) standard [7], has
increased. The Joint Video Experts Team (JVET) has formulated the latest standard, called
Versatile Video Coding (VVC) [8], to address this issue. The VVC relies on a series of
high-computation coding tools to achieve a better coding performance than HEVC [9–15].
For intra-prediction, the Position-Dependent Intra-Prediction Combination (PDPC) [16,17] and
Cross-Component Linear Model (CCLM) [18,19] are utilized to optimize prediction accuracy.
Moreover, Sub-Block Transform (SBT) [20] and Low-Frequency Non-Separable Transform
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(LFNST) [21,22] are employed to further eliminate frequency redundancy. However, this high
complexity limits the use of VVC in real-time multimedia applications.

Transform is one of the most important modules in the video-coding model, since the
predicted residual blocks need to be transformed in all frames for subsequent quantiza-
tion and entropy coding processes. On the basis of obtaining different orientation angles,
the Steerable Discrete Cosine Transform (SDCT) [23] is proposed in HEVC to exploit the
directional Discrete Cosine Transform (DCT). To further enhance the coding efficiency,
the Multiple Transform Selection (MTS) [24] was proposed in the VVC, allowing for the
encoder to select a pair of horizontal and vertical transforms from a predefined set. These
sets include kernels from three trigonometrical transforms: DCT-II, Discrete Sine Trans-
form Type VII (DST-VII) and DCT-VIII. The MTS candidate indexes and corresponding
transform matrices are shown in Table 1. When the MTS in the Sequence Parameter Set
(SPS) is enabled, RD checking will be performed on combinations of DST-VII and DCT-VIII
in horizontal and vertical directions after applying DCT-II in both directions. With mini-
mal Rate-Distortion (RD) costs, the VVC can determine the optimal transform during the
Coding Unit (CU) partition and mode decision stages. Compared with HEVC, the compu-
tational complexity of the above process is increased as the RD cost of several transforms
needs to be evaluated. Besides, many advanced coding tools have been adopted in VVC,
such as the Quad-Tree plus Multi-Type Tree (QTMT) partition structure [25], the affine
motion compensation prediction [26,27] and the 67 intra-directional prediction modes.
These advanced tools make the coding process in VVC quite flexible while increasing the
computational complexity. Although VVC achieves a better coding performance than
HEVC, its complex computation greatly increases the coding time, which makes it difficult
to use in real-time sensor application networks. Hence, it is necessary to simplify the coding
process in VVC to make it suitable for real-time applications.

Table 1. The mapping relationship between MTS indexes and transforms.

MTS Candidate Indexes Horizontal Vertical

0 DST-VII DST-VII
1 DST-VII DCT-VIII
2 DCT-VIII DST-VII
3 DCT-VIII DCT-VIII

In this paper, we propose a low-complexity multiple transform combined with a multi-
type tree partition algorithm to accelerate the VVC coding process. It is worth mentioning
that the proposed algorithm could be combined with the fast CU partition method and other
methods to achieve more significant computational reductions during the coding process.

The main contributions of this work are summarized as follows:

1. Different from previous studies that reduced the computation by terminating CU par-
tition early, we propose a method to reduce computation complexity by investigating
the MTS process, to make it more suitable for real-time applications than VVC.

2. An MTS skipping method is introduced by exploring the relationship between the
RD cost of transforms and the correlation between Sub-Coding Units (sub-CUs)
information entropy. The RD checking of MTS can be skipped by comparing the sum
of the RD costs of the sub-CUs with the RD cost of their parent CU.

3. Based on the coding information of neighboring CUs, the MTS early-termination
method is proposed to reorder the candidates in MTS for subsequent RD checking.

2. Related Work

Considering the low computational complexity of encoders can accelerate the coding
and transmission of videos and achieve low-latency video streaming. Hence, a video
encoder with high coding efficiency and low complexity is a core requirement for real-time
sensor networks with limited transmission bandwidth and computational power.
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Most previous works focused on the early termination of the CU partition to speed
up the coding process. Based on the edge information extracted by the canny operator,
Tang et al. [28] proposed a method for CU partition in intra- and inter-coding. Lin et al. [29]
introduced a spatial feature method to accelerate the binary tree partition of CU. In [30],
the depth information of adjacent CUs was used to determine the depth of the current
CU partition. The position of reference pixels was utilized in [31] to minimize the coding
complexity of the Intra Subpartition (ISP) tool. In [32], a fast intra method was proposed to
reduce coding complexity by removing non-promising modes. Zhang et al. [33] proposed
an entropy-based method to accelerate the CU partition. In [34], a fast block-partitioning
method was proposed to skip the CU splitting and Rate-Distortion Optimization (RDO)
process by using a Light Gradient Boosting Machine (LGBM). To extract and utilize fea-
tures more efficiently, some methods of accelerating CU partition are proposed, based
on the Convolutional Neural Network (CNN). For JVET intra-coding, Jin et al. [35] pro-
posed a CNN-based fast-partition method. Similar studies have been conducted in [36,37].
By jointly using multi-domain information, Pan et al. [37] introduced a fast inter-coding
method to terminate the CU partition process early. A Hierarchy Grid Fully Convolutional
Network (HG-FCN) framework was proposed in [38] to effectively predict the quad-tree
with a nested multi-type tree (QTMT). There are also several studies that focus on the fast
algorithm of other coding tools. In [39], an entropy-based method was proposed to replace
the standard rate estimation. In [40], the approximation of DCT-VII was modelled to reduce
the computation. By combining the histogram of oriented gradient features and the depth
information, Wang et al. [41] proposed a sample adaptive offset acceleration method to
reduce the computational complexity in VSNs. Jiang et al. [42] used a Bayesian classifier
for the inter-prediction unit decision. However, the studies on fast algorithms for MTS are
rare. There is still much room for improvement to speed up the coding process.

This paper focuses on accelerating the MTS process in VVC to reduce coding time and
meet the requirements of real-time applications. It is worth mentioning that the proposed
method also can be combined with fast CU partitioning algorithms to further reduce
coding complexity.

3. Materials and Methods

To accelerate the coding process in VVC, a low-complexity multiple-transform se-
lection combined with a multi-type tree partition algorithm is proposed in this paper.
First, based on the correlation between sub-CUs information entropy and the relationship
between the RD cost of transforms, the RD cost of the last child CU can be estimated to
reduce the computational complexity. Furthermore, if the sum of children CUs’ RD costs of
the split pattern is greater than or equal to the RD cost of the parent CU, the RD checking
of MTS will be skipped early. Second, based on the coding information of neighboring
CUs, the MTS candidate checking is adaptively sequenced to make the RDO process more
efficient, so that the RD cost-checking of MTS for selected intra-modes can be terminated
earlier. The details are described as follows.

3.1. MTS Early Skipping Method

Based on the RD calculation for no splitting, horizontal binary splitting, vertical binary
splitting, vertical binary splitting, horizontal ternary splitting, vertical ternary splitting and
quad-tree splitting, the CU in VVC is successively partitioned. In the recursive RDO search
process of CU partition, whether to split the current CU is determined by the RD cost of
the current CU and its sub-CUs, as given by Formula (1):

split_ f lag =

0, RDp ≤
N

∑
i=1

RDi,

1, else,

(1)
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where RD_p and RD_i represent the RD cost of the current CU and the i-th sub-CUs,
respectively. N is the total number of the children CUs. split_ f lag indicates whether the
current CU is split. When the sum of the children CUs’ RD costs of the split pattern is
greater than or equal to the RD cost of the current CU, split_ f lag is set to 0, and the current
CU will not be split. Otherwise, split_ f lag is set to 1, which means the current CU will
be split.

The minimum RD cost of the last CU in Formula (1) is obtained by comparing the RD
cost of primary transform and MTS. The Formula (1) can be written as:

split_ f lag =

0, RDp ≤
N−1

∑
i=1

RDi + min(RD_pri, RD_mts),

1, else,

(2)

where RD_pri is the RD cost of primary transform for the last child CU. RD_mst represents
the RD cost of MTS for the last child CU.

Therefore, the above process can be accelerated by estimating the RD cost of the last
child CU. Moreover, the RD checking of the MTS will be skipped in advance under the
condition that the sum of the RD costs of the sub-CUs of the split pattern are greater than
or equal to the RD cost of their parent CU. To more accurately estimate the RD cost of the
last child CU, we counted the probability of using the same optimal transform for two
adjacent sub-CUs under binary splitting in video sequences of different resolutions. Table 2
shows the probability of using the same optimal transform in two adjacent sub-CUs under
binary splitting for all frames in a portion of the test video sequences. The quantization
parameter (QP) was set at 22, 27, 32, and 37. We can observe that the optimal transform
of two sub-CUs is the same for most binary-splitting cases in video sequences of different
resolutions. Furthermore, the two sub-CUs under binary splitting also have the same size.
Hence, using the previous RD cost as the estimate of the last child CU under binary splitting
is reasonable for sub-CUs with a strong correlation.

Table 2. The probability of using the same optimal transform in two adjacent sub-CUs under
binary splitting.

Video Sequences Probability

BasketballPass 94.7%
RaceHorsesC 93.6%

Johnny 96.7%
BasketballDrive 95.5%

Average 95.1%

Considering the information entropy of CUs can help to effectively reflect their amount
of content. Therefore, we used the information entropy of the two sub-CUs under binary
splitting to measure their similarity. Specifically, in the proposed MTS early skipping
method, we first calculated the information entropy H of i-th sub-CUs as follows:

Hi = −
n

∑
m=1

P(m)× log2 P(m), (3)

where P(m) represents the probability of factor m in the i-th sub-CUs. n is the total number
of the factors in the i-th sub-CUs.

Then, the similarity of the two adjacent sub-CUs was measured by the ratio of infor-
mation entropy as follows:

S =
H2

H1
, (4)
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where H1 and H2 denote the information entropy of the previous and the last sub-CUs
under the binary tree partition, respectively. If S is closer to 1, this means that the two
sub-CUs are more similar.

To analyze the relationship between the similarity and information entropy ratio of two
sub-CUs, we counted the information entropy ratio and RD cost ratio of two sub-CUs under
binary splitting. Figure 1 exhibits an approximate correlation between the information
entropy ratio and the RD cost of two adjacent sub-CUs under binary splitting in a encoded
frame. The QP was set at 27. This illustrates that, when the information entropy ratio S
is in the range of 0.9 to 1.1, the two adjacent sub-CUs have a strong similarity and their
RD costs are very close. Furthermore, there is a positive relationship between the RD cost
and information entropy of adjacent sub-CUs. Thus, for two adjacent sub-CUs with high
similarity, the RD cost of the last child CU can be estimated by the product of the previous
RD cost and the information entropy ratio of the adjacent sub-CUs. The Formula (2) can be
derived as:

split_ f lag =

0, RDp ≤
N−2

∑
i=1

RDi + (1 +
H2

H1
)× RDN−1,

1, else,

(5)

Figure 1. The relationship between RD cost ratio and entropy ratio of adjacent sub-CUs under
binary splitting.

As the CU content with quad-tree splitting in VVC is usually diverse and complex,
the estimation of the final RD cost may not be accurate enough, leading to degradations in
the coding performance. Hence, the proposed algorithm does not modify the MTS process
in the case of quad-tree splitting. In [43], Fu et al. demonstrate that the RD cost of primary
transform is approximately equal to the values of MTS in most cases. When the CU is
split by ternary tree partition or the sub-CUs under binary splitting are dissimilar, only the
primary transform is used to calculate the RD cost of the last child CU. The Formula (2) can
be written as follows:

split_ f lag =

0, RDp ≤
N−1

∑
i=1

RDi + RD_pri,

1, else,

(6)

According to Formulas (5) and (6), when the split_ f lag is 0, the current CU is no longer
split, so the RD checking of MTS can be skipped in the intra-coding process. The isSkipMTS
is used to determine whether to skip the MTS. The details of the proposed MTS early
skipping method are shown in Algorithm 1.
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Algorithm 1 The proposed MTS early skipping method
Input: RDi(1 ≤ i ≤ N − 1), RDp, H1, H2
Output: isSkipMTS
1: intialize isSkipMTS to false
2: if partition mode is binary splitting and 0.9 ≤ H2

H1
≤ 1.1 then

3: if RDp ≤ ∑N−2
i=1 RDi + (1 + H2

H1
)× RDN−1 then

4: isSkipMTS = true
5: end if
6: else if partition mode is not quad-tree splitting then
7: calculat RD cost of primary transform RD_pri
8: if RDp ≤ ∑N−1

i=1 RDi + RD_pri then
9: isSkipMTS = true

10: end if
11: else
12: calculate RD costs of primary transform RD_pri and MTS RD_mts
13: if RDp ≤ ∑N−1

i=1 RDi + min(RD_pri, RD_mts) then
14: isSkipMTS = true
15: end if
16: end if
17: return isSkipMTS

3.2. MTS Early Termination Method

In the process of determining the optimal intra-mode, some of the 67 intra-modes are
selected using the Rough Mode Decision (RMD) for subsequent RD checking. For these
modes, the DCT-II and MTS candidates are checked in turn, except for some candidates
that the fast algorithm could skip in the Video Test Model (VTM). To accelerate the MTS
selection process, we propose adjusting the above procedure of RD checking. Usually,
the currently encoded CU is related to the neighboring CUs in some way, and a more
reasonable algorithm can be proposed by taking full advantage of these characteristics. In
order to analyse the correlation between the current CU and neighbouring CUs in terms of
optimal transform, we counted the probability of using the same optimal transform for the
current CU and neighbouring CUs for a large number of videos at different resolutions.
The position of the current CU in relation to the neighbouring CUs is displayed in Figure 2.
The L, TL, BL, T and TR represent the CUs adjacent to the left, top left, bottom left, top and
top right of the current block, respectively. The MTS candidate index of these neighbouring
CUs can easily be obtained if their MTS CU-Level flag is 1.

Current CU

L

BL

T TRTL

Figure 2. Illustration of location between the current CU and neighbouring CUs.

Table 3 shows the statistical probability of using the same transform between the
current CU and its neighbouring CUs for all frames in a portion of the test video sequences.
The QP is set at 22, 27, 32, and 37. PDCT−I I indicates the probability that the optimal
transform of the current CU is DCT-II when the optimal transform mode of all neighbouring
CUs is DCT-II; PMTS represents the probability that the optimal transform of the current
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CU is MTS when the optimal transform modes of neighbouring CUs contain MTS. We
can observe a strong correlation in the optimal transform between the current CU and its
neighbouring CUs. In most cases, the optimal transform is included in the transforms of
neighboring CUs.

Table 3. The probability of being able to use the same optimal transform between the current CU and
its neighboring CUs.

Video Sequences PDCT−I I PMTS

BasketballPass 88.5% 78.6%
RaceHorsesC 80.6% 82.7%

Johnny 82.3% 79.3%
BasketballDrive 85.6% 80.5%

Average 84.3% 80.3%

Based on the above statistics and analysis of the correlation of the optimal transform
between the current CU and neighboring CUs, we propose a new order of MTS candidate
selection. Specifically, the proposed MTS early-termination method can be divided into
two cases for the CU transforms ordering:

1. If MTS is not included in the transform sets of the neighbouring CUs, only DCT-II is
performed on the selected intra-mode.

2. If MTS is used in the neighbouring CUs, DCT-II is first executed for the current CU,
then the transform set is ranked from high to low according to the frequency of each
transform in the MTS candidates used in the neighbouring CUs (the set of unused
transforms is ranked after the set of used transforms in the original order). When
the RD cost of the current transform is larger than the previous one, the subsequent
MTS process is terminated early. After determining the best transform, the optimal
prediction mode is obtained by RD checking of the prediction modes list. The overall
MTS early termination method is specified in Algorithm 2.

Algorithm 2 The proposed MTS early termination method
Input: the prediction modes list L
Output: the minimum RD cost of second pass RDCostmin and the best results
1: initialize the minimum RD cost of MTS RDCostminmts
2: reorder MTS candidates according to the frequency of transform used in neighboring CUs
3: calculate the RD cost of the current CU RDCostmin using DCT-II
4: for each transform transj in MTS candidates do
5: if all neighboring CUs choose DCT-II then
6: break;
7: end if
8: for each predicition mode modei in list L do
9: derive the RD cost RD(modei , transj);

10: if RD(modei , transj) <RDCostminmts then
11: update RDCostminmts by RD(modei , transj);
12: load the prediction results of modei ;
13: else
14: contine;
15: end if
16: end for
17: if RDCostmin>RDCostminmts then
18: update RDCostmin by RDCostminmts;
19: else
20: break;
21: end if
22: end for
23: return RDCostmin
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4. Results
4.1. Experimental Settings

To verify the improvement of the proposed low-complexity multiple transform selec-
tion combined with a multi-type tree partition algorithm, we implemented our method in
the VVC reference software VTM-3.0 and conducted experiments under JVET Common
Test Conditions (CTC) [44]. The simulation used All-Intra (AI) main configuration, and the
QP was set to 22, 27, 32, 37. The details of the simulation environments are shown in Table 4.
In addition, the details of the open-source test video sequences are shown in Table 5. We vali-
dated the effectiveness of the proposed algorithm through extensive experiments, including
comparisons with the default VTM-3.0 and state-of-the-art fast methods. The experiments
were performed on an Intel core i5-3470 CPU. The coding performance of the proposed
low-complexity multiple transform selection combined with multi-type tree partition algo-
rithm was measured by the Bjøntegaard Delta Bitrate (BDBR) [45], in which negative values
indicate a performance improvement. The Bjøntegaard Delta Peak Signal-to-Noise Rate
(BD-PSNR) [45] is another objective index used to evaluate coding performance, in which
positive values indicate performance improvements. Furthermore, the average savings of
the coding time SavT compared to the original VVC were calculated by:

SavT =
Td − Tp

Td
× 100%, (7)

where Td reperesents the total coding time of the VVC encoder. Tp is the total coding time
of the proposed algorithm.

Table 4. The environments and conditions of simulation.

Items Descriptions

Software VTM-3.0
Configuration File encoder intra vtm.cfg

Video Sequence Size
416 × 240, 832 × 480,

1280 × 720, 1920 × 1080
Number of Encoded Frames 30
Quantization Parameter (QP) 22, 27, 32 and 37

Sampling of Luminance to Chrominance 4:2:0

Table 5. Detailed characteristics of the experimental video sequences.

Class Sequences Size Bit-Depth Frame Rate

BasketballDrive 1920 × 1280 8 50
B BQTerrace 1920 × 1280 8 60

Cactus 1920 × 1280 8 50

BasketballDrill 832 × 480 8 50
C BQMall 832 × 480 8 60

PartyScene 832 × 480 8 50

BasketballPass 416 × 240 8 50
D BlowingBubbles 416 × 240 8 50

RaceHorses 416 × 240 8 30

FourPeople 1280 × 720 8 60
E Johhny 1280 × 720 8 60

KristenAndSara 1280 × 720 8 60

Slideshow 1280 × 720 8 20
F SlideEditing 1280 × 720 8 30

BasketballDrillText 832 × 480 8 50
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4.2. Experimental Results and Analyses

In this subsection, the objective results of the proposed algorithm are compared with
the original VVC. Table 6 shows the coding time savings by the proposed algorithm com-
pared with the original VVC. The BDBR, which measures the coding performance of the
model, is also included. Table 6 illustrates the great gain in coding speed obtained by the
proposed algorithm. The results distinctly show that the proposed algorithm achieves
26.40% coding time savings on average. Compared with the original VVC, the proposed
algorithm has a smaller computational complexity, making it suitable for real-time sensor
applications. The BDBR only increases by 0.13%, which means that the proposed algorithm
hardly degrades the coding performance of the VVC encoder. This is because the proposed
algorithm fully uses the correlation between sub-CUs and the relationship between the
RD cost of primary transform and MTS, so that the RD cost of the last child can be esti-
mated more accurately and reasonably to reduce the computational complexity. Moreover,
the proposed algorithm adaptively ranks the MTS candidates based on the neighboring CU
information to terminate the MTS process early while ensuring that the optimal transform
is not skipped in most cases.

Table 6. The proposed algorithm compared to the original VVC experimental results.

Class Sequences BDBR/% BD-PSNR/db SavT /%

BasketballDrive 0.08 −0.007 29.16
B BQTerrace 0.10 −0.004 28.02

Cactus 0.15 −0.008 26.06

BasketballDrill 0.12 −0.007 27.42
C BQMall 0.09 −0.003 24.53

PartyScene 0.10 −0.009 29.30

BasketballPass 0.15 −0.007 24.18
D BlowingBubbles 0.12 −0.008 27.09

RaceHorses 0.14 −0.007 25.13

FourPeople 0.16 −0.006 26.89
E Johhny 0.14 −0.007 25.47

KristenAndSara 0.11 −0.005 29.40

Slideshow 0.18 −0.009 24.64
F SlideEditing 0.14 −0.008 22.35

BasketballDrillText 0.13 −0.008 26.42

Average - 0.13 −0.007 26.40

Moreover, we also compared the proposed algorithm with the state-of-the-art fast
methods. As the results shown in Table 7, the proposed low-complexity multiple trans-
form selection combined with the multi-type tree partition algorithm saves more coding
time. The experimental results demonstrate that the proposed algorithm achieves greater
reductions in computational complexity without significantly increasing the BDBR. Fur-
thermore, compared with Fu et al. [43], the proposed method achieves a minor BDBR
increase, which means that the coding performance of the proposed algorithm is more
reduced. Compared with previous studies [43,46], the proposed algorithm can successfully
find a trade-off between encoding complexity and encoding efficiency. As we understand
it, one reason for this is that the proposed algorithm reduces computational complexity by
estimating the RD cost of the last child CU based on the RD cost of the previous one and
their information entropy ratio. Moreover, the proposed algorithm reorders the transform
candidates according to their frequency of use in the neighbouring CU. The MTS can be
terminated earlier to further reduce the computational complexity by comparing the RD
cost of the current transform with the minimum RD cost. Another reason for this is that
the CU contents with quad-tree splitting are more diverse and complex, and the proposed
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algorithm does not modify the coding process of the original VVC in this case, to ensure a
better coding performance.

Table 7. The proposed algorithm compared to the state-of-the-art experimental results.

Sequences
Fu et al. [43] Zhang et al. [46] Proposed

BDBR(%) SavT (%) BDBR(%) SavT (%) BDBR(%) SavT (%)

Cactus 0.18 23
−0.01

10 0.15 26.06
BQTerrace 0.12 25 8 0.10 28.02

BasketballDrive 0.09 23 8 0.08 29.16

BQMall 0.11 24
0.02

3 0.09 24.53
PartyScene 0.16 25 5 0.10 29.30

BasketballDrill 0.14 21 9 0.12 27.42

BasketballPass 0.19 23
0.06

7 0.15 24.18
BlowingBubbles 0.17 24 6 0.12 27.09

RaceHorses 0.16 23 1 0.14 25.13

FourPeople 0.22 23
0.03

7 0.16 26.89
KristenAndSara 0.19 23 10 0.11 29.40

Johnny 0.2 22 9 0.14 25.47

Average 0.16 23.30 0.03 6.92 0.12 26.89

To more intuitively show the effect of the proposed algorithm on the performance
of VVC coding, the R-D curves of the test sequences encoded by the proposed algorithm
and the original VVC are given in Figure 3. We can observe that the proposed algorithm
achieves almost the same coding performance as the original VVC.

(a) (b)

Figure 3. The R-D curves of sequences “BlowingBubbles” (Class D) and “BasketballDrill” (Class C)
under AI configuration. (a) BlowingBubbles; (b) BasketballDrill.

Moreover, Figure 4 compares the subjective quality of the “BasketballPass” encoded
by the original VVC and the algorithm proposed in this paper when QP is 22 under
AI configuration. As shown in Figure 4, the differences in subjective quality between the
original VVC and the proposed algorithm are also barely visible to the eyes, which indicates
that the subjective quality loss caused by the algorithm proposed in this paper is negligible.

Overall, the above results demonstrate that the proposed low-complexity multiple
transform selection combined with the multi-type tree partition algorithm can achieve
significant coding time savings without significantly degrading the coding quality.
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(a) (b)

Figure 4. Subjective quality comparison of the first decoding frame of “BasketballPass” from Class D.
(a) original VVC; (b) proposed algorithm.

5. Conclusions

The newly added coding tool with complex calculation is the bottleneck in the imple-
mentation of VVC for real-time transmission in sensor networks. In order to save coding
time and make VVC more suitable for real-time applications, we propose a low-complexity
multi-transform selection combined with a multi-type tree segmentation algorithm for
VVC in this paper. Based on the similarity between sub-CUs under binary splitting and the
correlation between the RD cost of primary transform and MTS, a method of estimating
the RD cost of the last child CU is proposed. Furthermore, when the sum of children
CUs’ RD costs in the split pattern is greater than or equal to the RD cost of the parent
CU, the RD checking of MTS is skipped. To further accelerate the coding process, an MTS
early termination method is proposed. The RD calculation for some MTS candidates is
terminated in advance by making full use of the coding information of neighbouring CUs.
Experimental results demonstrate that, compared with the original VVC, the proposed
algorithm achieves time savings of 26.4% on average, while maintaining a similar coding
performance. In future work, we will focus on fast prediction modes and CU partitioning
methods in VVC and combine them with the proposed low-complexity MTS method to
achieve more coding time savings.
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