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Abstract: There is a growing body of literature that recognizes the importance of Multi-Robot
coordination and Modular Robotics. This work evaluates the secure coordination of an Unmanned
Aerial Vehicle (UAV) via a drone simulation in Unity and an Unmanned Ground Vehicle (UGV) as a
rover. Each robot is equipped with sensors to gather information to send to a cloud server where all
computations are performed. Each vehicle is registered by blockchain ledger-based network security.
In addition to these, relevant information and alerts are displayed on a website for the users. The
usage of UAV–UGV cooperation allows for autonomous surveillance due to the high vantage field of
view. Furthermore, the usage of cloud computation lowers the cost of microcontrollers by reducing
their complexity. Lastly, blockchain technology mitigates the security issues related to adversarial or
malicious robotic nodes connecting to the cluster and not agreeing to privacy rules and norms.

Keywords: blockchain; image detection; robotics; Robot Operating System (ROS); multi-robot
coordination; IoT security; cloud robotics; Unmanned Aerial Vehicle (UAV); Unmanned Ground
Vehicle (UGV)

1. Introduction

Beginning in the 1980s with the boom of the Internet, researchers have been motivated
to design and build robots that can work together. Research has thus far been mostly
focused on improving the coordination and communication, applications, and architecture
of multi-robot systems (MRS) [1–3]. Unlike humans, a team of robots can perform a task
that requires a high level of perseverance and focus. Using multiple sensors and cameras, a
multi-robot system can bring robustness to the system through information redundancy,
which is essential in search and rescue operations [4]. The present work is focused on
building a novel multi-robot coordination system that is secured by blockchain technology,
uses drones for searching, and uses rovers to perform rescue operations.

In the past decade, the number of lives lost due to natural disasters ranges from 14,389
in 2015 to as high as 314,503 in 2020 [5]. According to [6], the average cost of a search and
rescue (SAR) operation is USD 1375 per person. Multi-robot systems can provide numerous
benefits for disaster response. They can often fit into places humans are unable to reach,
operate in environments not habitable to humans, operate continuously without sleep, can
outperform humans in certain tasks, and most importantly, they are replaceable. Robots
can be sent to places no human can access, which is often necessary during disasters. The
use of drones and rovers can allow for smaller-scale search and rescue operations that do
not require expensive equipment (e.g., helicopters) [7]. Drones provide a field of view
from a high vantage point, where telemetry data can provide an accurate description of
the location of both the drone and rover. When considering large areas, it requires a large
roster of individuals to perform tasks such as delivery or search. This system allows the
use of a drone to identify a designated goal from a much higher vantage point and then
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maneuver the rover towards the goal. This allows for a single person to watch over a large
area with fewer personnel.

Recent developments in collaborative robots have heightened the need for improved
security in adversarial environments. Current research, including AutoSOS [8] and Cen-
tauro [9], has mostly focused on locomotion and coordination and placed less importance
on the security of the system. A brief comparison of the ongoing research is shown in
Table 1. According to [10], due to the decentralized nature of multi-robot systems the indi-
vidual robots or nodes communicate via an unprotected communication channel, which
makes the system vulnerable to adversarial attacks. Such risks could range from security
breaches to loss of confidential data [11]. With the multi-robot system being autonomous,
the robots mostly rely on sensors to perceive their environment. With direct knowledge
of the sensors, an adversary can tamper with the perceived environment and gain con-
trol [12]. SkyJack [13] is a drone hijacking software that can change the SSID of a drone
and establish a malicious connection. This results in Byzantine faults in the MRS, which
are difficult to identify [14,15]. Blockchain technology [16] has been highly successful in
achieving Byzantine Fault Tolerance due to its consensus algorithm [17]. Studies over the
past decade have used the concepts of blockchain in finance sectors and expanded to AI
and robotics [18,19]. In [20], Strobel et al. compared the results of classical and blockchain
approaches on a collective decision-making scenario in both the presence and absence
of Byzantine robots using the ARGoS [21] swarm robotics simulator. Ahmad et al. [22]
carried out a comprehensive survey on cloud attacks, security issues, present challenges,
and limitations in cloud computing, and highlighted the importance of securing cloud logs
through blockchains.

Table 1. This is a comparison of work carried our in Search and Rescue (SAR) Robotics. We compare
the existing literature based on whether the system is autonomous or not, where the data are
processed, and whether a cloud is involved. We compare the architecture of the system, i.e., whether
it is distributed or centralized. The scenario categorizes what kind of SAR environment the work
focused on. The security protocols used in different works are compared as well.

Description Auton. Sensory
Processing

Distribution
Control Scenario Security Cloud

AutoSOS [8] Multi-UAV supporting maritime
SAR with lightweight AI X Onboard Distributed Maritime

SAR - -

Centauro [9] Locomotion and high power
resilient manipulation platform - Onboard Central Harsh Envi-

ronments - -

SmokeBot [23] Robots with sensors for mapping
in low visibility areas X Onboard Central Low Visiblity - -

TRADR [24] Robots operate in SAR
environments alongside humans X Onboard Central Industrial - -

UAV-UGV
Construc-
tion [25]

UAV-UGV team that maps and
plan around construction sites X Onboard Central Construction - -

Swarm
Robotics
Blockchain [20]

Simulation of Byzantine robots
within robot swarm utilizing
blockchain security

X - Distributed Simulation Blockchain -

Wilderness
SAR [26]

Simulation of wilderness SAR
with proposed algorithm using
Market-based Approach

X - Distributed Wilderness
(Simulation) - -

Our work

UAV maps the terrain and locates
the target, cloud process the
sensory images and sends the
coordinates to the UGV

X Offboard Distributed Simulation +
Wilderness Blockchain X
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A blockachain is a type of shared database or ledger that is maintained by all the
members within a network. It differs from a typical database in that a blockchain stores
data in blocks that are then connected via cryptography. This work is an implementation
of blockchain technology in a multi-robot system. When a new rover is connected to the
network, a new block is added to the blockchain, which stores the hash of the previous
rover and maintains the database of all connected rovers within the network. Computations
and communications are offloaded to the cloud, and a website was built that can track the
progress of the surveillance, as shown in Figure 1. All rovers or nodes connected to the
system were built using Robot Operating System (ROS) [27] and are a part of the blockchain
private to that network. This is a novel work that uses the security of blockchain technology
to secure a multi-robot communication system built on a Cloud framework.

Figure 1. Conceptional illustration of a search and rescue mission utilizing a drone and rover.

Additionally, in the recent literature efficient networks such as LNSNet [28] and
ESPNet [29] were created with the purpose of allowing for mobile usage by reducing
power usage and size of the model. In [25], UAV and UGV collaboration were highlighted
in an indoor environment using semantic segmentation from a blimp and Simultaneous
Localization and Mapping (SLAM) for local mapping and obstacle avoidance. A priority
in this analysis was real-time computations done on the robots, so LNSNet was used for
semantic segmentation. This work offloads these computations onto the cloud, which is a
novelty in UAV-UGV collaboration, by removing limitations present in mobile applications.
A Fully Convolutional Network (FCN) [30] with ResNet-50 [31] backbone was used.

2. Methodology

This work is scoped to successfully find a specified item in a small plot of land. On
the website, the user can see all rover sensor readings and camera footage. Most heavy
computations (i.e., machine learning inference and global path planning) are done on the
cloud. Figure 2 shows the overall system, including parts that are separate from the cloud.

When provided with an area to search and an item to find, the drone provided vision
which was sent to the cloud. After processing, a set of coordinates are sent to the rover and
the movement is executed. The user had a full view of this situation from the web page,
where the user can look at camera footage and sensory data.
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Figure 2. System diagram highlighting parts involved with Cloud (AWS). Block1 and Block2 are the
vehicles connected to the network and serve as individual blocks of the blockchain.

2.1. Blockchain for Distributed Authentication

In certain scenarios, it is very important that untrusted third-party actors are not able
to read communications between network members (i.e., vehicles). The classic way to deal
with this is through encryption of the data [32]. Most of the top commercial cloud and IoT
services have created their own encryption techniques, as shown in Table 2. Traditional
encryption techniques are more vulnerable to manipulation by a malicious administrator or
outside hackers because they lack immutability. Blockchain uses Proof of Work to validate
a transaction [33], which provides resiliency, integrity, and privacy and builds trust among
the agents. This work presents a simple private blockchain network that was built on top
of the IoT system. Each node in the network had a public key and a private key generated
with the RSA algorithm [34]. Every node stored every other node’s public keys, and each
message was signed with the public key of the sender. A node only accepted a message if it
was signed by a private key that matched a public key it had on file [See Figure 3].

Table 2. A succinct list of the features of IoT frameworks.

IoT Framework Company Cryptography Security Protocol

Samsung SmartThings [35] 128-bits AES protocol. OAuth/ OAuth2 protocol.

AWS IoT Amazon [36] 128-bits AES + other primitive X.509 Certificates + AWS IAM
+ AWS Cognito

Calvin Ericsson [37] ECC protocol X.509 Certificates + Sim-based
Identity

Brillo/Weave Google [37] Full disk encryption
supported by Linux kernel OAuth 2.0 + TEE

Kura Eclipse [37,38] Multiple cryptography
primitives secure sockets

ARM Mbed [39] mbed TLS + Hardware
Crypto.

X.509 Certificates + other
standards (mbed TLS)

HomeKit Apple [40] 256-bits AES + many others Ed25519 public/private key
signature + Curve25519 keys

Azure IoT Microsoft [37] Multiple cryptography
primitives

X.509 certificates +
HMAC-SHA256 signature
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Figure 3. Pictorial representation of the Blockchain: To maintain the chain integrity, the preceding
block’s hash must be located in the current block.

To start with, each vehicle and the controlling cloud computing node had an RSA-
generated 512-bit private key and public key. Every network member had all the public
keys, but only the node itself had access to its private key. Each member also had a copy of
the blockchain [41]. As shown in Figure 3, each block had data, its own hash, and the hash
of the block before it. Peer-to-peer verification is achievable because each node possesses a
copy of the blockchain. In the event of a tie, the chain with the most blocks is picked. In
this implementation, the data that reside on the blockchain are the public keys of member
variables. Whenever a node sends a message (in JSON format) to all the other nodes, a
signature field is required, which is where the node uses its private key to sign the data.
Each public key on the blockchain of the node that receives this transmission is used to
attempt to verify the signature in a linear fashion. Only the public key connected to the
private key has the ability to verify it. Therefore, if one of the blockchain’s keys can confirm
it, the message was from a real member. If not, the message is not to be trusted.

In this implementation, the network had six opcodes, which were the operations the
network members could perform. For a message to be legitimate, it must have an opcode
field, a data field, and a signature field. The six opcodes are as follows: ADD_BLOCK,
INTRUSION_ATTEMPT, SENSOR_DATA, BROADCAST_BLOCK, ERROR, and CONFIR-
MATION. They are described in detail in Table 3.

Table 3. Network Opcodes.

Opcode Data Description

ADD_BLOCK Public key of a new node

This message is sent when a
new node is to be added to the
chain. When nodes hear this

message, they craft a new
block with the public key that

was in the message.

INTRUSION_ATTEMPT IP address of illegitimate
message sender

This is sent when a
well-formed message is

received that is not signed by
a network member.

SENSOR_DATA Any kind of data
This will carry important data
received from the cameras and
sensors connected to the rover.
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Table 3. Cont.

Opcode Data Description

BROADCAST_BLOCK Public key of new node
This is used by the cloud

computing node to send an
add_block to each node.

ERROR Description of error message

This is when a message is not
formed correctly, and it lets
the sender know something

went wrong.

CONFIRMATION Confirmation and the name of
what is being confirmed

This is sent to let the sender
know the operation was

successful.

2.2. Rover Operating via ROS

In this work, the Husarion ROSbot 2.0 [42] rover has been used which functions
under ROS. It is equipped with LiDAR and IMU sensors which are responsible for local
path planning and communication metrics. ROS was used to control the movements and
generation of status metrics, while a Python 3 script with Boto3 was used for polling of the
coordinates and publication of the IMU metrics to AWS.

After the cloud-generated coordinated were downloaded, the navigation stack as
shown in Figure 4 executes them in order. The data from the LiDAR sensor are sent to
slam_gmapping to create the local map and move_base is executed.

The move_base package provides an implementation of an action that, once given
a goal in the world, attempts to reach it with a mobile base. The move_base node links
together a global and local planner to accomplish its global navigation task. The move_base
node also maintains two cost maps: one for the global planner, and one for a local planner
used to accomplish navigation tasks. The /drive_controller node subscribes to the /pose
topic, which contains the rover’s orientation and position. It uses this information and
publishes a transform.

Figure 4. Navigation stack of the rover.
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2.3. Cloud Computations

The cloud computations are responsible for receiving and processing sensory data to
create movement instructions for the rover. These movement instructions include a set of
coordinates that start at the rover and end at the objective.

The cloud service platform used was Amazon Web Services (AWS), of which Sage-
Maker and Lambda were used for processing and a Simple Storage Service (S3) was used
for storage. SageMaker is a cloud machine learning platform, and was used to label images,
train models, and deploy them for inference. Lambda is a serverless computing platform,
and was used to execute scripts for processing.

For the creation of the machine learning model, Unity was used to simulate a drone’s
footage, where the scene contained the rover, obstacles, and objectives. The data were
created by randomizing each object’s position and orientation. As the dataset was simulated,
there were fewer random elements present when compared to real drone footage. The
benefit is that there was less time required for the creation of the model.

The machine learning task used was semantic segmentation, where the choice of
algorithm, backbone, and optimizer were based on accuracy over a short period of training
time. An FCN algorithm, ResNet-50 backbone, and RMSProp [43] optimizer provided the
best accuracy. The learning rate was tuned using Bayesian optimization. The decay and
momentum factor were used in RMSProp, and these parameters were left at their default
values. The hyperparameters for the best performing model are shown in Table 4.

E[g2](t) = γE[g2](t− 1) + (1− γ)(
∂c
∂w

)2 (1)

w(t) = αw(t− 1)− η√
E[g2](t)

∂c
∂w

(2)

Table 4. Hyperparameters for the semantic segmentation model.

Key Value Description

Algorithm FCN The network used to create model.
Backbone ResNet-50 The encoder used.
Crop Size 240 The image size for input during training.
Early Stopping True Regularization to avoid overfitting.
Early Stopping Min Epochs 20 The minimum number of epochs.
Early Stopping Patience 4 The number of epochs to meet before stopping.
Early Stopping Tolerance 0
Epochs 50 The maximum number of epochs.
Gamma1 (decay factor) 0.9 γ factor used in (1)
Gamma2 (momentum
factor) 0.9 α factor used in (2)

Learning Rate 0.000545237 η factor used in (2)

Learning Rate Scheduler polynomial The shape of the scheduler that controls its
decrease over time

Number of Classes 4 The number of classes to segment, including
the background.

Number of Training
Samples 400 The number of images used for training.

Optimizer RMSProp The optimizer used to modify parameters.
Validation Mini Batch Size 32 The batch size fore validation.

Equation (1) is the moving average of squared gradients used in RMSProp. γ is
the decay factor, and ∂c/∂w is the gradient. Equation (2) is the weight equation with a
momentum factor α.

The pipeline used for the cloud computations can be visualized in Figure 5. The first
AWS Lambda function was to run inference, and this was implemented using a SageMaker
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SDK layer to call the deployed model for inference. The function first obtains an image
from S3, then runs inference to create the highest probability mask image. The resulting
mask is then stored back into S3 for the second AWS Lambda function.

Figure 5. AWS pipeline for processing and sending coordinates to the rover.

The second AWS Lambda function was to run the global path planning, convert
coordinates systems, and send them to the rover. This procedure can be visualized in
Figure 6. To process the mask, an OpenCV layer was utilized. The path planning algorithm
used was A* with a greedy heuristic [44]. Specifically, the Euclidean distance was used
to calculate the distance from the current search node and the goal node, as shown in
Equation (3); the pseudocode is shown in Algorithm 1. Greedy heuristics have been used
in past works when considering global path planning with UAVs [7].

Euclidean Distance = h(n) =
√
(x2 − x1)2 + (y2 − y1)2 (3)

After coordinates were created from the mask, they were converted to the rover’s
coordinate system by changing the domain and range of the grid to have the origin centered
with positive and negative values. All coordinates were translated to force the rover to be
at the origin of the grid.
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Figure 6. Procedure to obtain rover coordinates.

Euclidean Distance = h(n) =
√
(x2 − x1)2 + (y2 − y1)2 (3)

Once coordinates were created from the mask, they were converted to the rover’s 205

coordinate system Once coordinates were created from the mask, it is required to convert 206

them to the rover’s coordinate systemthe coordinates to the coordinates that the rover uses. 207

Figure 6. Procedure to obtain rover coordinates.
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Algorithm 1 A* shortest path Algorithm with Greedy heuristic

Require: maze, start and goal
Ensure: start 6= goal

1: procedure A_STAR(maze, start, goal) . returns path
2: Add start to priorityQueue
3: searchedNodes← φ
4:
5: while priorityQueue 6= φ do
6: if currentNode← goal then
7: return path
8: end if
9: Remove currentNode from priorityQueue

10: Add currentNode to searchedNodes
11:
12: child← neighbor.currentNode
13:
14: for each child in neighbor do
15: if child is in searchedNodes then
16: continue
17: end if
18: child.g← currentNode.g + d . d is distance between currentNode and

child, which is 1 in this case
19:
20: child.h← distance from child to goal
21:
22: child. f ← child.g + child.h . h is calculated using heuristic function, Eu-

clidean distance in this case
23:
24: if child.position is in priorityQueue then
25: if child.g > priorityqueue.child.position.g then
26: continue
27: end if
28: end if
29:
30: Add child to priorityQueue
31: end for
32: end while
33:
34: return f ailure . If priorityQueue is φ
35: end procedure

2.4. Website for Monitoring

The website included features that monitored the stats of the drone and the rover. The
website acted as the central hub for all monitoring to ensure that the drone and the rover
were performing correctly. The front end was built using a ReactJS framework, and all
routing was done using React Router Dom. AWS Amplify was used to host the website,
and AWS Cognito was used to support the Login system.

3. Results

For the cloud computations, machine learning and global path planning were pe-
formed and shown to effectively offload computation to the cloud. For the rover, it man-
aged to reach its objective coordinates based on the local mapping created from its LiDAR
sensor. For the system, the coordinates were obtained by the rover and its protocol was
successfully executed. This protocol included reaching the objective and uploading its
status metrics to display on the website.
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3.1. Semantic Segmentation Model

Using the Unity simulation, 500 images were created for training; the training and
validation data set were split into an 80:20 ratio (400 training and 100 validation). The
GPU instance used for training was ‘ml.p2.xlarge’ using an NVIDIA Tesla K80 Accelerator,
4 vCPUs, and 61 GB of memory [45]. Three main metrics were considered: training loss,
pixel accuracy, and mean intersection over union (mIoU). Pixel accuracy measures the
correct prediction of each pixel over all pixels, while the intersection of union measures the
overlap of masks for each class. The best performing model’s tuning hyperparameters are
shown in Table 4, and the graph of the metrics are shown in Figures 7–9.

When tuning for maximum mIoU, the maximum number of epoch was set to 50. The
best performing model ran for 39 epochs, at which point early stopping was initiated due
to the lack of substantial improvements in the model. From Figure 7, the training loss
is shown to gradually decrease then level off, which indicates a healthy model. For the
two performance metrics shown in Figures 8 and 9 the curves look similar, with a gradual
increase and eventual leveling. However, it is important to note that the pixel accuracy
score ranges from approximately 0.96 to 0.99, while the mIoU provides a more realistic
score range of 0.5 to 0.85. The reasoning behind this biased score is that the images provided
had mostly background elements, as shown in Figure 10b.

0 5 10 15 20 25 30 35 40

0.1

0.2

0.3

Epochs

Tr
ai

n
Lo

ss

Train Loss

Figure 7. Graph of training loss over each epoch. Initial large decrease for the first ten epochs
followed by a gradual decrease.
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Figure 8. Graph of pixel accuracy over each epoch. Initial increase then gradual improvements.
Notice the range of pixel accuracy.
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m
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Figure 9. Graph of mean intersection over union (mIoU) over each epoch. A similar graph to the
pixel accuracy, although notice the more realistic range.

(a) (b)
Figure 10. (a) An example Unity image. (b) The resulting mask from the best performing model.

When running inference on AWS Lambda, the instance used was ’ml.g4dn.xlarge’
using an NVIDIA T4 GPU, 4 vCPUs, and 16 GB of memory [46]. Using this instance
resulted in an average inference time of 2.5 s for each image. To show that there was an
offload of computation, images were batch processed for approximately 6 min and CPU
and GPU utilization were measured. From Figure 11, it can be seen that the CPU and GPU
utilization were increased by approximately 30% and 15% respectively. Table 5 compares
different parameters from this work to previous works that used efficient networks for
mobile application.

0 1 2 3 4 5 6
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20

40

Time(minutes)

U
ti
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at
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%

GPU and CPU utilization

CPU Utilization
GPU Utilization

Figure 11. Graph of CPU and GPU utilization over 6 min of batch inference.
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Table 5. Comparison of the cloud model to efficient networks in previous works.

ResNet-50 (Cloud) LNSNet 1 ESPNet 2

GPU Utilization (%) 15 37 99
CPU Utilization (%) 30 11 21
Model Size (MB) 256 1.07 1.46

1 Performed on Intel i7-4710HQ and NVIDIA GeForce GTX 960M; 2 Performed on NVIDIA Jetson TX2.

3.2. The Path Planning Algorithm

After the mask was created, a path was generated from it using the A* algorithm. In
order to lower computation time, the mask was down-sampled by a factor of 10, effectively
reducing the search space to 1% of the original mask. As the Unity frames were randomly
generated, most images were similar to the one shown in Figure 10a, with no obstacles
between the start and goal. The average computation time for these cases was very fast, at
approximately 0.5 s.

3.3. Rover Obstacle Avoidance

The rover navigated to each coordinate provided by the cloud computations. This
was done by incorporating a local occupancy grid-based path planner. The rover took in
the LiDAR data and plotted a path to reach the coordinate while avoiding any obstacles
lying between. In order to validate this system, a test bench was created called “Titanic”,
shown in Figure 12. The “Titanic” test bench had an obstacle in between the rover and the
coordinate (visualized using a white post-it note). The goal was to reach the coordinate
without colliding with the obstacle and return to where it started while avoiding the
obstacle again.

Figure 12. The “Titanic” test bench.

When tuning the navigation stack, the “Default” was defined to be the first iteration of
the stack that resulted in three of five successful attempts. Additionally, the greatest factor
in reducing the time to and from the coordinate was the movement capabilities of the rover.
The ability to make tighter turns, in particular, allowed for reduced collisions and less time
spent adjusting.
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The greatest factor in the reliability of success was the map update frequency. This
allowed the rover to make adjustments faster and prevent collisions when moving at high
rates of speed. Figure 13 displays the performance with different tuning parameters.
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Figure 13. (a) Default test bench results. (b) Test bench results with only forward speed increase.
(c) Test bench results with both forward speed and update frequency increase. (d) Final tune test
bench results.

3.4. Rover Communication

The rover stayed stationary until the coordinates were polled from the cloud (AWS).
This was done using the Boto3 library and checking whether a text file in S3 has changed
file sizes, which indicated new coordinates. After the coordinates are pulled from S3, it
copied the coordinates and uploaded a blank text file to replace the one in S3. This served
to prevent the next poll to execute old coordinates.

When the rover began to move, it sent its metrics from the IMU to the cloud to display
on the website. This is done in a similar way as uploading the metrics to S3, and the website
polled S3 to update itself. Figure 14 demonstrates this process .

3.5. System

The whole system starts initiated with a wrapper function that executed the the
inference and created the the rover coordinates. The rover coordinates are written into
an empty text file located in S3. The rover polls S3 for changes in this text file, and when
a change is noticed it executed its protocol. Blockchain implementation means that only
trusted messages are read.

Two cases were tested: one without obstacles between the start and goal and one with
an obstacle. The case with no obstacle was used to test whether the complete system was
able to function with networking, while the case with an obstacle was otherwise the same
while testing the obstacle avoidance on the rover. The case with no obstacle shown in
Figure 15, while the one with an obstacle is shown in Figure 16.

The timing performance was split between processing time on the cloud and network
latency. The average measured processing time on the cloud was 2.5 s for inference and 0.5 s
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for path planning, which sums to 3 s of processing. The AWS region used was us-east-2
(Ohio); thus, the latency was dependent on the location of the network used by the rover.
The average latency when testing ranged from 50 ms to 100 ms.Sensors 2022, 1, 0 14 of 20
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Table 6. (a) Initial rover position status metrics from the website alongside real world reference.
(b) Second rover position. (c) Third rover position. (d) Final rover position. Notice the orientation
was reset to near zero; this indicates that the rover has reached the goal.

3.5. System

The whole system starts initiated with a wrapper function that executed the the
inference and created the the rover coordinates. The rover coordinates are written into
an empty text file located in S3. The rover polls S3 for changes in this text file, and when
a change is noticed it executed its protocol. Blockchain implementation means that only
trusted messages are read.

Two cases were tested: one without obstacles between the start and goal and one with
an obstacle. The case with no obstacle was used to test whether the complete system was
able to function with networking, while the case with an obstacle was otherwise the same
while testing the obstacle avoidance on the rover. The case with no obstacle shown in
Figure 14, while the one with an obstacle is shown in Figure 15.

The timing performance was split between processing time on the cloud and network
latency. The average measured processing time on the cloud was 2.5 s for inference and 0.5 s
for path planning, which sums to 3 s of processing. The AWS region used was us-east-2
(Ohio); thus, the latency was dependent on the location of the network used by the rover.
The average latency when testing ranged from 50 ms to 100 ms.

Figure 14. (a) Initial rover position status metrics from the website alongside real world reference.
(b) Second rover position. (c) Third rover position. (d) Final rover position. Notice the orientation
was reset to near zero; this indicates that the rover has reached the goal.

(a)

(b) (c)
Figure 15. Cont.
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(d) (e)
Figure 15. (a) No obstacle Unity frame. (b) The initial position was manually setup. (c) Second
coordinate position. (d) Third coordinate position. (e) Final coordinate position, where the rover has
reached the goal.

(a)

(b) (c)

(d) (e)
Figure 16. (a) One obstacle Unity frame. (b) Initial position. (c) Second coordinate position, where the
rover’s obstacle avoidance keeps a distance from the cone. (d) Third coordinate position, where the
rover swerved around the cone. (e) Final coordinate position, where the rover has reached the goal.

4. Discussion

In the present day, with improvements in 5G, dependable internet, intelligent mobile
devices, IoT infrastructures, and AI-based business intelligence platforms, there is a need
to review how traditional cloud services are managed and solve related security risks. To
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strengthen data storing methods in the cloud and data security, blockchain technology
with decentralized cloud storage is useful, and this strategy protects the stored data from
alteration and deletion. The design proposed here uses blockchain technology to secure
linked devices, making cloud systems impenetrable and boosting user confidence in the
cloud environment.

In recent works involving UAV-UGV SAR processing has been carried out onboard,
and the computation requires dedicated hardware. Hardware can be expensive, and
costs scale with the number of robots used. In this work, the cloud was introduced to
reduce onboard processing. This can lead to reduced upfront hardware costs and allow
for increased flexibility and scalability. As most heavy computations are performed on
the cloud, dedicated hardware can be removed from the robots, lowering the total cost.
Furthermore, more robots can be deployed simultaneously which can effectively lower
search time. Lastly, updates and changes to the computations can be carried our remotely.

Recent studies that approach real-time computer vision tasks require specialized
networks, such as LNSNet and ESPNet, to create fast and efficient models. While these
models are smaller in size and require less powerful GPUs, they have lower accuracy when
compared to models created from large networks. In our work, all processing and models
are located and carried out in the cloud, and thus limitations of hardware and size are not
present. GPU instances are used to run inference, and they can be swapped to increase
timing performance. Furthermore, model sizes are redundant in this work, as shown by
the model size in this work being 256 MB, while LNSNet and ESPNet were both less than
2 MB.

The implementation of rover-based local pathfinding and obstacle avoidance allows
for fewer generated coordinates. This translates to less data having to be sent and stored.
Additionally, the local obstacle avoidance allows for path adjustments in real time for
use in more dynamic environments. Using a cloud-based global path planner allows
for large scale path generation. This, paired with the local path planner on the rover,
provides a quickly reacting and more knowledgeable navigator compared to a single robot
solution. While we have not tested how weak network connectivity affects the blockchain
approach, we believe that it will not affect the performance of the entire system, as all noisy
communication channels with be verified in a peer-to-peer manner. Any mismatch due to
loss of information will be considered invalid.

5. Conclusions and Future Work

This work serves as a proof of concept of a cloud-based UAV-UGV and blockchain
secured approach to search and rescue. The drone detects an object and sends the relevant
information to the cloud for computing. The processed information is sent back to the rover
for it to move to the object’s location. This communication is secured using blockchain.
After receiving coordinates from the cloud, the rover navigates to the object while avoiding
obstacles using its LiDAR sensor. The drone provides vision to the cloud where it creates
a map of the area that is being considered. This allows for optimal path planning, as it
provides a second viewpoint that shows the “full picture”. Without a drone, a local path
planning robot needs to make sub-optimal decisions, resulting in lost time.

For future work, usage of real drones will be considered. Footage from a drone
can add randomness to the machine learning model and to testing the overall system.
As a machine learning model will be more complicated than the one created from the
Unity simulation, different tasks will be considered, e.g., object detection. Additionally,
different path planning algorithms can be tested with fewer dependencies from local
mapping. In [7], three different algorithms were considered: greedy heuristics, potential-
based heuristics, and partially observable Markov decision process-based heuristics. Using
different algorithms can reduce the need to rely on the rover’s local path planning, which
reduces the required computations on the robots. Currently, only a drone and a rover
have been used to as a part of the blockchain, and the blockchain used was very small.
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More rovers can be introduced to the network to compare the delay times in verifying the
authenticity of an external rover as the blockchain grows longer.
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