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Abstract: Landslide susceptibility maps (LSM) are often used by government departments to carry
out land use management and planning, which supports decision makers in urban and infrastructure
planning. The accuracy of conventional landslide susceptibility maps is often affected by classification
errors. Consequently, they become less reliable, which makes it difficult to meet the needs of
decision-makers. Therefore, it is proposed in this paper to reduce classification errors and improve
LSM reliability by integrating the Small Baseline Subsets-Interferometric Synthetic Aperture Radar
(SBAS-InSAR) technique and LSM. By using the logistic regression model (LR) and the support vector
machine model (SVM), experiments were conducted to generate LSM in the Dongchuan district. It
was classified into five classes: very high susceptibility, high susceptibility, medium susceptibility,
low susceptibility, and very low susceptibility. Then, the surface deformation rate of the Dongchuan
area was obtained through the ascending and descending orbit sentinel-1A data from January 2018 to
January 2021. To correct the classification errors, the SBAS-InSAR technique was integrated into LSM
under the optimal model by constructing the contingency matrix. Finally, the LSMs obtained before
and after correction were compared. Moreover, the correction results were validated and analyzed by
combining remote sensing images, InSAR deformation results, and field surveys. According to the
research results, the susceptibility class of 66,094 classification error cells (59.48 km2) was significantly
improved in the LSM after the integration of the SBAS-InSAR correction. The enhanced susceptibility
classes and the spectral characteristics of remote sensing images are highly consistent with the
trends of InSAR cumulative deformation and the results of field investigation. It is suggested that
integrating SBAS-InSAR and LSM is effective in correcting classification errors and further improving
the reliability of LSM for landslide prediction. The LSM obtained by using this method plays an
important role in guiding local government departments on disaster prevention and mitigation,
which is conducive to eliminating the risk of landslides.

Keywords: Dongchuan district; integration; SBAS-InSAR; landslide susceptibility; correction

1. Introduction

As one of the most catastrophic geological disasters worldwide, landslides are causing
substantial casualties and economic losses each year [1,2]. Especially in southwest China,
there are various geological hazards frequently posed by the complexity of geological
formations, stratigraphy, and lithology, which makes it prone to landslides. Therefore, it is
practically significant to reduce the damage caused by disasters effectively. In most cases, it
is costly to reinforce all unstable slopes, which is not the best option for local governments
and those affected. Monitoring and forecasting are regarded as the most cost-effective
measures to reduce landslide risk, which are universally applicable. As an important tool

Sensors 2022, 22, 5587. https://doi.org/10.3390/s22155587 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2418-6749
https://doi.org/10.3390/s22155587
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155587?type=check_update&version=2


Sensors 2022, 22, 5587 2 of 21

for landslide prevention management [3], landslide susceptibility maps offer a primary
option for preventing landslide risk as they are applicable to predict the relative spatial
probability of landslide occurrence. It carries the basic data for landslide risk evaluation,
thus providing a reference for disaster prevention and mitigation. Moreover, it provides
the final data as guidance on land use planning [4].

Currently, the approaches to conventional landslide susceptibility mapping methods
can be divided into two categories in general: knowledge-driven and data-driven. The
former includes the fuzzy logic model (FL) [5,6], the analytic hierarchy process (AHP) [7,8],
and the interval pairwise comparison matrix (IPCM) [9]. They are adopted mainly to
identify the contributors to landslides based on expert experience, determine the weight
of human factors and natural factors, and build regional landslide susceptibility maps.
The latter is purposed to generate landslide susceptibility maps by statistically analyzing
the contributors to landslides and establishing quantitative prediction models, such as
mathematical and statistical models and machine learning models. With the rapid develop-
ment of computer technology, remote sensing (RS), and geographic information systems
(GIS), it has been made easier to collect landslide spatial data, and various data-based
methods of data-driven vulnerability modeling are widely applied [10], such as the logistic
regression (LR) [11,12], random forest (RF) [13,14], support vector machine (SVM) [15,16],
and artificial neural network (ANN) [17,18]. They all have shown high prediction accuracy
and efficiency in the practice of susceptibility mapping. In [19], a section along the northern
Himalayas in India was taken as an example to map the LSM of the region through LR,
as verified in the field. It was found that 72% of the landslide areas were concentrated in
the high and very high susceptibility zones according to the susceptibility results, which
indicates the feasibility of LR in landslide susceptibility mapping. In [20], the LSM of the
Loess Plateau region in Shanxi was obtained by using three models of informativeness,
the weight of evidence, and logistic regression, respectively. A test was conducted on the
predictive ability of the models with test samples, revealing that the accuracy rate exceeded
80% for the logistic regression model. Tjis evidences the high reliability of the logistic
regression model in the LSM. In [21], with a specific region of Serbia in the Frushkagera
Mountains selected for the study, the LSM constructed by SVM and AHP was compared
in terms of the K-index, the area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve, and the false alarm rate in the stable ground. In addition, SVM was
found to outperform AHP. In [22], the LSM of Hanyuan County, China was mapped by
using the generalized additive model (GAM), support vector machine (SVM), and adaptive
neuro-fuzzy inference system (ANGIS) combined with frequency ratios, to validate their
accuracy against ROC. As suggested by the results, all three models performed well in
making predictions, with the support vector machine model achieving the highest pre-
diction rate of 0.875. As demonstrated by all the above studies, both LR and SVM have a
strong generalization ability and achieve high accuracy. However, the accuracy of LSM is
closely related to historical landslide data, causal variables, and the exact modeling method.
Due to the incompleteness of manually-investigated landslide data and the static nature
of variables, LSM may encounter many classification error problems under conventional
models. For example, the area prone to landslides is mistakenly classified as a stable area,
or the stable area is mistakenly classified as a landslide area. These classification errors
that contradict reality will increase the uncertainty of LSM to a certain extent, which will
significantly reduce the economic value of land and even endanger the safety of life and
properties. Nevertheless, there is still little attention paid in previous studies to developing
effective solutions to reducing misclassification in LSM.

In recent years, emerging remote sensing technology has provided new means for
landslide investigation. InSAR technology has become mainstream with the advantages of
high accuracy detection of surface deformation and wide area identification of potential
landslides [23]. At present, InSAR technology has been proven to have high feasibility and
reliability for landslide identification, which can perform long-time, high-precision overall
deformation monitoring of slopes [24–26]. Zhang et al. [27] used SBAS-InSAR to investigate
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landslides in the Zhouqu area of China from December 2007 to August 2010, and identified
11 active mudflows, 19 active landslides with deformation rates exceeding 100 mm/year,
20 new unstable slopes, and demonstrated the excellent performance of InSAR technology
in landslide investigation in combination with field survey results. Zhou et al. [28] obtained
the deformation results of the Muyubao landslide by the SBAS-InSAR method and verified
the reliability of SBAS-InSAR with global positioning system monitoring data to reveal the
deformation characteristics of the landslide.

Based on the advantages of InSAR technology in landslide identification, we propose
a method in this paper to integrate SBAS-InSAR and LSM while ensuring the accuracy of
the susceptibility model and introducing dynamic surface deformation information into
LSM to correct the classification error, which compensates for deficiencies of previous LSM
studies’ failure to improve classification errors which makes it difficult to provide a reliable
reference for decision-makers. In this experiment, the Dongchuan district, which is faced
with severe geological hazards, was chosen to verify the proposed method, so as to provide
a valuable reference for disaster prevention and mitigation as well as land use planning.

2. Study Area

The Dongchuan district falls within the jurisdiction of Kunming city, Yunnan province.
It is located in the northeast of Yunnan province and the northernmost part of Kunming
city, bordering Huize county to the east, Xundian county to the south, Luquan county to
the west, and Huidong county and Huili county in Sichuan province across the Jinsha
River to the north [29]. Geographically, it is positioned between 102◦47′–103◦18′ E and
25◦57′–26◦32′ N (Figure 1). The lithology covers three major rock types: metamorphic
rocks, magmatic rocks, and sedimentary rocks. The shallow metamorphic rocks of the
Kunyang group emerged first, Mesozoic red dust was prevalent all over the southwest,
and quaternary concentrated mainly in the intermountain basin and river valley area [30].
The process of rock formation has long been affected by tectonic movements and various
climatic factors, which leads to broken rock bodies, the development of joints, and the soft
structural surfaces that affect their engineering and geological properties.

Figure 1. Geographical location and landslide distribution in the study area.
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The Xiaojiang river basin runs through the study area from south to north, on both
sides of which the high mountain valley is bounded by the Xiaojiang river. The valley is
depressed and conforms to a ‘V’-shaped distribution, which makes it a typical deep-cut
high mountain valley. The area is significantly affected by the economically developed
Xiaojiang Fracture Zone, and the surface rock layer is broken and poorly stabilized. At
the same time, the rainy season in the study area lasts from May to September, with an
average annual rainfall of about 1000.5 mm. The localized single-point heavy rainfall in
summer creates favorable conditions for the development of geological hazards due to
abundant rainfall and strong erosion [31]. This results in the frequent occurrence of various
geological disasters such as landslides and debris flows. According to the relevant statistics,
between the 1960s and the 1990s, large-scale landslides and mudslides became disastrous
on 33 occasions, causing 211 deaths, 90 injuries, and destroying 2133.3 hectares of farmland.
The total economic loss exceeded 150 million yuan [32], which makes it a major constraint
on regional economic development and social stability.

3. Materials and Methods
3.1. Data and Variables

In this experiment, there were 458 landslides identified through field surveys and
historical data collection up until January 2021. These historical landslides involve three
types of geological hazards: landslides, collapses, and debris flows. They are mainly
distributed along the high mountain valley areas on both sides of the Xiaojiang River basin
(Figure 1). By means of GIS, the landslide area was transformed into 96,966 landslide points,
with an equal number of non-landslide points randomly generated to comprise the sample
set for the model input. In total, 80% of the samples were used for model training, and the
remaining 20% were used to test the model on training accuracy.

In the current practice of landslide susceptibility modeling, there are no unified criteria
applied to the selection of causative variables, but the fundamental principle is always to
ensure that the variables are operational, measurable, and non-redundant [33]. According
to previous studies, the selection of variables is not judged by number, because too many
variables contribute nothing to improving the accuracy of LSM. On the contrary, it reduces
the accuracy of LSM by introducing noise [34]. Therefore, a total of 11 influencing factors for
land use type were adopted as the main indicators of LSM in this paper: lithology, distance
to a river, profile curvature, plane curvature, NDVI index, distance to road, aspect, slope,
elevation, and fluctuation. Meanwhile, the objective accuracy of the causative variables
was ensured during the geological survey. Besides this, they were replaced by X1 to X11,
respectively, for the subsequent processing. The sources of experimental data are as follows:
(1) 250 m spatial resolution lithology map with 1:250,000 road and water system vector
data from the Geoscience Service Platform (China); (2) 30 m spatial resolution land use
data collected from the Resource and Environment Science and Data Center of the Chinese
Academy of Sciences (China); (3) DEM with 30 m resolution from NASA SRTM (USA) for
slope, aspect, plane curvature, profile curvature, elevation, and fluctuation; (4) vegetation
cover index extracted from geospatial data cloud Landsat8 (USA) data with 30 m resolution;
(5) ascending and descending sentinel-1A data from European Space Agency (ESA) for the
deformation rate of the study area. The specific parameters are shown in Table 1.

Table 1. Sentinel data parameters used in this study.

Ascending Orbit Descending Orbit

Track 128 62
Wave C C

Polarization mode VV polarization VV polarization
Average angle of incidence (◦) 41.98 36.93

Average azimuth (◦) −12.43 −167.53
Time span 7 January 2018–3 January 2021 9 January 2018–5 January 2021
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In addition, it is essential to ensure that the selected susceptibility indicators can meet
the requirements of the model. To achieve this purpose, it is necessary to verify the mutual
independence of variables before landslide susceptibility mapping. Apart from that, it is
crucial to remove the variables with close correlation by thoroughly analyzing the current
situation in the study area. In this way, it is possible to avoid the inaccuracy and distortion
in model assessment caused by the high correlation between variables [35]. Therefore, the
correlation coefficient was used to assess the mutual independence between variables. To
be specific, the values of less than 0.3 indicate that the factors are irrelevant to each other,
the values ranging between 0.3 and 0.5 indicate low correlation, the values ranging from
0.5 to 0.8 indicate moderate correlation, and the values of no less than 0.8 indicate high
correlation [36]. After verification (Figure 2a), there are high correlations between elevation
(X10), undulation (X11), and other variables (X1 . . . X9). The correlation coefficients reach
as high as 0.53 and 0.89, both of which exceed 0.5. Besides, they are removed from the index
system by taking into account reality. After elevation and undulation were eliminated,
the correlation test was conducted again on the remaining variables (Figure 2b). It was
discovered that all the correlation coefficients between the variables fell below 0.3, which
suggests mutual independence. Therefore, the requirements of the model can be satisfied.

Figure 2. Correlation coefficient matrix. (a) is the correlation matrix of 11 variables, and (b) is the
correlation matrix after excluding elevation (X10) and undulation (X11), where X1 to X11 represents
land use type, lithology, distance to a river, profile curvature, plane curvature, NDVI index, distance
to road, aspect, slope, elevation, and fluctuation, respectively.

In addition to the selection of LSM variables, the selection of mapping cells is another
prerequisite for LSM modeling. In general, it involves raster cells, slope cells, and basin cells.
Among them, the slope and raster cells are most used. However, the practical application
of slope cells is constrained by the low operability, the difficulty in manipulation, the
discontinuity of the obtained slope cells, and the heavy reliance on manual correction [37].
In contrast, raster cells demonstrate such advantages as regular shape, fast dissection,
and high model computational efficiency, despite no favorable conditions created for
characterizing topographic features. For this reason, the raster cell method was adopted in
this paper for landslide susceptibility mapping. Besides, the 30 × 30 m cell was treated as
the minimum mapping cell [38] so as to resample the final nine selected variables, unify
the cell resolution size to 30 × 30 m, and grade each variable based on the experience of
previous researchers and the pattern of hazard points distribution (Figure 3).
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Figure 3. Classification chart of disaster-causing variables: (a) is the land use type, (b) is the lithology,
(c) is the distance to a river, (d) is the profile curvature, (e) is the plan curvature, (f) is the NDVI, (g) is
the distance to road, (h) is the aspect, and (i) is the slope. In (b), a represents acidic deep-formed rocks,
b represents basaltic volcanic rocks, c represents carbonate sedimentary rocks, d represents neutral
volcanic rocks, e represents mixed sedimentary rocks, f represents siliceous clastic sedimentary rocks,
and g represents loose sediment.

3.2. Landslide Susceptibility Models
3.2.1. Logistic Regression Model (LR)

As one of the most used multivariate statistical methods, logistic regression (LR) is
applicable to deal with complex nonlinear problems [39]. The advantage of LR is as follows.
By introducing a suitable link function into the general linear regression, the variables may
become either discrete or continuous, or any combination of both types. Besides, they do
not necessarily conform to normal distributions. This method is effective in predicting the
probability of occurrence or classifying a dependent variable when the dependent variable
is a categorical variable, especially a binary dependent variable [40]. Among the models
based on statistical learning, the logistic regression model performs better in reflecting the
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binary relationship between landslides and non-landslides, and in mapping the nonlinear
function between landslide catalogues and their causative factors. It can be expressed
as follows.  P(Y = 1|X) =

1
1 + e−z

Z = β0 + β1X1 + β2X2 + · · ·+ βnXn

(1)

where, P represents the probability of landslide, the value range of which is [0, 1]; Xi
indicates the independent variable; Z denotes the relationship between the probability of
landslide and each causative factor; and βi refers to the logistic regression coefficient of
each causative factor.

The nine types of causal factors as selected in Section 3.1 were taken as independent
variables, and the result of whether landslides occurred was treated as the dependent
variable Y (1 for landslide occurrence and 0 for no landslide occurrence). With the attributed
values of the variables assigned to each sample point, all sample values were inputted
into SPSS26 for binary logistic regression analysis. In doing so, the probability value of
landslide occurrence between 0 and 1 was predicted for each sample so as to generate the
LSM in the Dongchuan district.

3.2.2. Support Vector Machine Model (SVM)

As a nonlinear classification method, the support vector machine is premised on the
principle of the Vapnik-Chervonenkis Dimension and structural risk minimization [41]. By
means of nonlinear transformation, the input variables in the original space are mapped into
a high-dimensional linear feature space. Then, the optimal decision function is constructed.
The core idea is to make the data that are not separable in the original input space linearly
separable by constructing an optimal separation hyperplane. The model performs better in
solving such realistic problems as small samples, high dimensionality, and nonlinearity,
which endows it with an excellent generalization capability [42].

Suppose (xi, yi) = 1,2, . . . , n for a linearly divisible sample, then the optimal hypersur-
face can be solved through the following function.

min(
1
2

∥∥∥→w∥∥∥2
+ C

n
∑

i=1
ξi

yi(
→
w ·→x i + b)− 1 + ξi ≥ 0

ξi ≥ 0, i = 1, 2 · ··, n

(2)

where ω represents the weight vector that determines the hyperplane direction, b indicates-
the deviation, ξi denotes the relaxation factor, and C refers to the penalty factor. With the
introduction of the Lagrange multiplier, the Wolf pair theory is applied to transform it into
the following equivalent pair problem.

max(∑
i

αi −
1
2 ∑

i,j
αiαjyiyj(

→
x i ·

→
x j))

∑
i

αiyj = 0, 0 ≤ αi ≤ C
(3)

Then, the resulting decision function can be used to classify the new sample data and
it is expressed as follows.

f (x) = sgn(
n

∑
i=1

yiαiK(xi, yi) + b) (4)

where αi represents the Lagrangian multiplier, and K(xi, yi) indicates the kernel function
of the support vector machine. The performance of SVM models is closely related to
the choice of kernel functions. Currently, the commonly used kernel functions include
the linear kernel function, polynomial kernel function, radial basis kernel function, and
Sigmoid kernel function.
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In this paper, the widely used radial basis is chosen as the nonlinear mapping function
for the model [43,44] which requires optimization for two types of parameters: the penalty
factor C and the kernel function parameter Gamma. C represents a tunable constant that
determines the degree of penalty for incorrect samples. Besides that, the larger C is, the
heavier the penalty would be for errors. Comparatively, Gamma determines the distribu-
tion of the data after mapping to a new feature space, thus affecting the generalization
performance. Besides, the larger Gamma is, the more likely it is for overfitting to occur,
and vice versa [45]. To ensure the accuracy of the model, the grid search method [46] was
adopted for hyperparameter tuning, which is aimed to arrange and combine the possible
values of parameters C and Gamma (2−10 to 210). In addition, all possible combination
results were listed to generate a grid, thus determining the best parameter values. When
the penalty parameter C was 0.5 and the Gamma parameter was 0.5, the highest accuracy
reached was 87.06%. Therefore, C = 0.5 and Gamma = 0.5 were taken as the optimal
parameters of the model. On this basis, the SVM model was constructed by adopting the
framework of Libsvm [47] under Matlab language, so as to obtain the landslide probability
value of each sample and to establish the LSM based on SVM in the Dongchuan district.

3.3. SBAS-InSAR

The SBAS-InSAR technique was first proposed by Italian scholars Berardino et al. [48]
in 2002. It is intended mainly to decompose SAR images into several small baseline sets
based on the spatial and temporal baseline thresholds. In the meantime, least squares
are used to calculate each subset, so as to obtain surface deformation time series. This
technique is effective not only in solving the decoherence and atmospheric effects caused
by long spatial baselines but also in improving spatiotemporal coherence and increasing
sampling frequency. The basic principle of it is as follows [49]:

Suppose there are N + 1 SAR images of the same area as captured at time tA to tB, and
M differential interferograms generated for N + 1 SAR images, then it is satisfied that:

N + 1
2
≤ M ≤ N(N + 1)

2
(5)

For the jth (j = 1, 2, . . . , N + 1) differential interferogram generated by the two images
at the moments tA and tB(tA < tB), the interference phase at any point can be expressed as:

δϕj = ϕtB − ϕtA ≈
4π

λ
(dtB − dtA) + ∆ϕ

topo
j + ∆ϕatm

j + ∆ϕnoise
j (6)

With the removal of the atmospheric delayed phase, residual topographic phase, and
noise phase, Equation (6) can be simplified into:

δϕj = ϕtB − δϕtA ≈
4π

λ
(dtB − dtA) (7)

It is assumed that the deformation rate shows linearity at two adjacent time intervals
so that the deformation phase of the jth interferogram can be written as:

δϕj =
tA,j

∑
k=tB,j+1

(tk − tk−1) · vk (8)

where t represents time, δφ indicates phase, λ denotes the wavelength, d refers to the
cumulative deformation, and v stands for the deformation rate.

InSAR technology has emerged in recent years for the early identification of geological
hazards due to its robustness to various weather conditions, wide monitoring range, and
high accuracy, which makes it widely applicable in landslide detection research [50,51].
However, the motion of slopes is three-dimensional in space. Due to the characteristics
of sideview imaging performed by SAR sensors, the surface deformation as detected by
InSAR technology is confined to the surface deformation occurring along the line of sight
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(LOS) direction of the satellite. In order to associate it with real-world deformation, many
scholars have attempted to transform the deformation along the LOS direction into the
deformation along the slope direction [52,53]. However, such a practice was not used in this
study because slope-oriented deformation can play its role only in the case of translational
landslides [54]. Through the field survey, it was discovered that most of the landslides
that occurred in the study area involved the deformation caused in the vertical direction.
Therefore, the experiments were conducted by using the ascending and descending orbits
sentinel-1A data. Moreover, by taking into account different geometric parameters (Table 1),
the deformation in the LOS direction was transformed into that along the vertical direction,
so as to obtain the deformation information closer to the slope motion in the study area.
The equation of its projection conversion is expressed as [55]:

dLos = dNth sin α sin θ − dEst cos α sin θ + dUp cos θ (9)

In the Equation (9), there are three unknown variables (dNth, dEst, dUp). For this
reason, it is necessary to establish at least three equations for solving the equation. The
geometric relationship of the near-polar flight of the SAR satellite makes it insensitive to
the deformation occurring in the north-south direction. Therefore, when there are only two
different SAR data sets that can be obtained, the components in the north-south direction
can be ignored [56], so as to reduce the number of unknown variables. Then, Equation (9)
can be simplified into: {

dALos = dEst cos αA sin θA + dUp cos θA

dDLos = dEst cos αD sin θD + dUp cos θD
(10)

where dALos ; dDLos ; dEst; dNth; dUp represent the projection components in the ascending and
descending orbital LOS direction, east-west direction, north-south direction, and vertical
upward direction, respectively, while α is the azimuth angle of the satellite flight direction,
and θ is the incidence angle.

3.4. Integration

The purpose of integration is to improve the accuracy of LSM and minimize the
misclassification results through SBAS-InSAR. In doing so, it is achievable to obtain more
accurate LSM results for those landslide-prone areas. To achieve this goal, the LSM and
SBAS-InSAR acquired vertical deformation rate Vup values as obtained from the model
separately were reclassified in this study. Meanwhile, a value was assigned to each cate-
gory: very low susceptibility = 1; low susceptibility = 2; medium susceptibility = 3; high
susceptibility = 4; and very high susceptibility = 5. The SBAS-InSAR vertical deformation
rate classification was determined by the standard deviation (σ = 8 mm/year): very low
deformation (0–−8 mm/year) = 1; low deformation (−8–−16 mm/year) = 2; medium
deformation (−16–−24 mm/year) = 3; high deformation (−24–−32 mm/year) = 4; and
very high deformation (<−32 mm/year) = 5. Notably, since the deformation triggered
by landslides is often manifested as subsidence, it is necessary to exclude the positive
part of Vup if it exceeds 0, with positive values representing uplift and negative values
representing subsidence. Then, depending on the Vup value, the susceptibility class of the
LSM classification results increased. More specifically, a denotes the susceptibility class
value as obtained by the model, b denotes the Vup class value, and C denotes the corrected
value. It can be expressed as the following equation:

C =

{
a = (b− a), a < b
a, a ≥ b

(11)

According to Equation (11), the contingency matrix (Table 2) was constructed to inte-
grate SBAS-InSAR and LSM. In this way, the cell susceptibility classes of those characterized
by surface deformation can be updated, thus reducing the classification errors. When the
value of the model-based landslide susceptibility class falls below that of the Vup class,
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the landslide susceptibility class increases by the difference between the two classification
results. When the value of the model-based landslide susceptibility class equals or exceeds
that of the Vup class, the original landslide susceptibility class remains unchanged. As
shown in Table 2, for the area with a susceptibility class of 1, the updated value can be
0, +1, +2, +3, or +4 as the Vup value increases, and for the area with class 2, the updated
value can be 0, +1, +2, +3, and so on.

Table 2. Contingency matrix applied to the LSM considering the average Vup in each cell. (The
susceptibility degree from 1 to 5 represents very low, low, moderate, high, and very high, respectively).

Vup(mm/year)

0–−8 −8–−16 −16–−24 −24–−32 <−32

1 0 +1 +2 +3 +4

Susceptibility degree
2 0 0 +1 +2 +3
3 0 0 0 +1 +2
4 0 0 0 0 +1
5 0 0 0 0 0

4. Results
4.1. The LSM of the Dongchuan District

The LR and SVM models as constructed in Part 3.1 were implemented by SPSS26 and
Matlab2020b software. Then, the landslide probability values of each cell (30 × 30 m) in
the study area were obtained and classified into five classes by using the natural breaks
method [22,57] in the GIS environment. In ascending order, they are very low susceptibility,
low susceptibility, medium susceptibility, high susceptibility, and very high susceptibility,
respectively (Figure 4). On the whole, the two models maintain good consistency in the
spatial distribution in those very low and very high susceptibility areas, especially the
high susceptibility areas concentrated in the high mountain valley areas on both sides
of the Xiaojiang River basin. This is attributable to the complexity of topography and
geomorphology in the watershed, and to the long-term damage caused to the ecological
environment. Ultimately, it led to the loss of ecological functions in most areas. Therefore,
the units in the watershed were assigned a higher landslide susceptibility class. Apart from
this, most of the remaining areas showed either very low or low susceptibility.

In order to validate LSM, both qualitative and quantitative perspectives were taken
in this paper. From the qualitative perspective, three typical landslide areas and three
stable areas, as illustrated in Figure 4a,b, were selected to test the LSM through their spatial
correlation. Among them, Lao Gan gully, Jiang Jia gully, and Big and small-White mud
gullies are located in the severely eroded mid-alpine geomorphic area. They feature not
only relatively significant height differences in the terrain but also the deep cutting and
accumulation of loose solids in the gully bed, which makes them the three major mudslide
gullies most frequently struck by geological disasters in the Dongchuan District. From
Figure 4a,b, it can be seen that the units within the three areas in the LSM are assigned
an extremely high value of susceptibility, indicating the extremely high likelihood of
landslides occurring in these areas relative to other areas. This is consistent with reality.
The remaining three areas include the town of Tuobuka, the town of Redland, and the
urban area of Dongchuan. As the densely populated residential areas in the Dongchuan
District, they are characterized by a large number of artificial buildings, slight topographic
undulations, and flat terrain. This leads to high stability and prevents the occurrence
of landslides. According to the LSMs, as obtained from the two models, all three urban
areas are located in the zone with very low susceptibility. Through qualitative verification,
a preliminary conclusion can be drawn that the LSM as obtained by using the logistic
regression model and support vector machine model is reasonable and macroscopically
consistent with the actual performance. Quantitatively, it was achieved mainly through the
ROC curve which provides an effective solution to assessing the validity of the classification.
Besides, a higher value of the area under the curve (AUC) means a higher accuracy of
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prediction for the model [58]. As shown in Figure 4c, the AUC values are 0.84 and 0.91 for
the logistic regression model and the support vector machine model, respectively. That
is to say, the support vector machine model outperforms the logistic regression model in
predicting landslide susceptibility in the Dongchuan district. Therefore, it is more suitable
for obtaining the LSM in the area. However, its value is lower than 1, which suggests that
there remain some classification errors in the LSM. It is thus necessary to correct them
through appropriate methods, which is the focus of Section 4.3.

Figure 4. Landslide susceptibility map and ROC curve in the Dongchuan district. (a) is the landslide
susceptibility map generated by the logistic regression model, (b) is the landslide susceptibility map
generated by the support vector machine model, and (c) is the ROC curve.
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4.2. SBAS-InSAR

With 0.7 as the coherent threshold, the line of sight (LOS) deformation velocity (VLos)
was calculated in SBAS-InSAR processing. Besides this, through the raster calculator in
Arcgis 10.2, the results of the deformation rate in the vertical direction of the study area
were obtained by projecting them to the vertical direction in accordance with Equation (10)
(Figure 5a). In addition, the vertical deformation rate results must be resampled to maintain
the same cell size (30 × 30 m) as LSM. Since this experiment focused only on landslides
and the surface deformation in flat areas was ignored, the areas with a slope of less than
5◦ and Vup values higher than 0 were excluded. Therefore, only the subsidence results in
sloped areas were retained (Figure 5b). In general, landslide surface deformation is part of
the essential information required for analyzing the stability and hazard of landslides and
for warning of collapse [59]. From Figure 5, it can be seen that the areas with significant
changes to vertical deformation in the Dongchuan District concentrate on both sides of
the Xiaojiang River basin, conforming to an “I” distribution. In comparison, the areas
with lower deformation rates are distributed throughout the densely populated urban
areas, which is consistent with the division of very high and very low susceptibility
areas in LSM. According to the InSAR results, most of the areas exhibited deformation
but to different degrees, with the maximum vertical deformation rate reaching as high
as −206.5 mm/year. There were 12 potential landslide areas identified with obvious
subsidence centers and denoted as H1, H2 . . . H12, respectively. Among them, nearly
all the cells in the seven hidden areas fall within the high and very high susceptibility
zones according to the landslide susceptibility results. However, over half of the cells in
the remaining five hidden areas concentrate in the very low and low susceptibility zones,
which is inconsistent with the vertical deformation rate performance. It is indicated that
there may be a classification error in some areas for the original LSM, as confirmed by the
AUC value of 0.91 in Section 4.1.

Figure 5. Vertical deformation rate results. (a) shows the results of the vertical deformation rate in
the complete Dongchuan district, and (b) shows the results of the vertical deformation rate after
excluding Vup > 0 and the flat area.
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4.3. Integration

As revealed by the evaluation results of the two models in Section 4.1, SVM (0.91)
achieves a higher accuracy than LR (0.84), which makes it more suitable for the generation
of LSM in the Dongchuan district. Therefore, the LSM was selected under the optimal
model SVM. Besides this, the 30 × 30 m grid was constructed by Arcgis 10.2 to traverse
the LSM and the reclassification class values of each cell in the vertical deformation rate
results. Then, the integration with SBAS-InSAR was implemented by using Equation (11)
and the contingency matrix (Table 2), so as to generate the new LSM (Figure 6a). The
new LSM is characterized by the shrinkage of very low and low susceptibility areas and
by the expansion of very high and high susceptibility areas. Compared with the LSM
generated by the original SVM, the percentage change of each class cell in the new LSM
is less significant. That is to say, most of the study area can be correctly classed by the
original LSM, despite a small minority of the area requiring correction by SBAS-InSAR. To
intuitively assess the magnitude of change between the original LSM and the new LSM,
the differences between them were calculated by using the susceptibility class values of
each unit (Figure 6b). These differences were analyzed quantitatively, as shown in Table 3.
According to the new LSM, the susceptibility class of unit 66,094 increased (59.48 km2):
unit 49,528 (44.57 km2) increased by 1 class, unit 12,061 (10.85 km2) increased by 2 classes,
and unit 4478 (4.06 km2) increased by 3 classes or more. It is demonstrated that after the
SBAS-InSAR technology was applied, the susceptibility of 66,094 classification error units in
the original LSM had been corrected. What is noteworthy are the regions with an increase
by 3 classes and more. This is because a sharper increase indicates a lower susceptibility in
the original LSM and more significant classification errors.

Figure 6. LSM and difference graph after correction. (a) shows the LSM after the integrated SBAS-
InSAR correction, and (b) shows the difference graph before and after the correction. (0, 1, 2, 3,
4 represent the correction class value respectively).
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Table 3. Comparison of the original landslide susceptibility assessment degrees with the revised
degrees after correction.

Susceptibility
Degree Original LSM New LSM Susceptibility

Degree Increase

Class NO. Cells % NO. Cells % Class NO. Cells

1 986,793 47.78 930,191 45.03 0 1,999,531
2 358,563 17.35 394,492 19.10 +1 49,528
3 316,316 15.31 329,650 15.96 +2 12,061
4 207,117 10.03 210,570 10.19 +3 3174
5 196,836 9.53 200,721 9.72 +4 1331

In Figure 6b, there are three typical classification error regions (numbered 1–3) circled
with significant changes in susceptibility class, which is purposed to better explain the
variations and to verify the outcomes of correction. According to the field survey and
remote sensing images, area 1 was found to be extremely hazardous. Around the two
landslide potentials (H2 and H3) in area 1, there are a large number of villagers taking
residence and engaging in production activities. If this area is classified as stable for land
use that should be banned, it will cause severe loss of life and properties in the case of a
landslide without any precautionary measures in place. Compared with areas 2 and 3, this
area deserves more attention. Therefore, in the following section, our focus is on the two
slopes shown in the typical area 1.

4.4. Results of Specific Case

In this section, our focus is to analyze two slopes in the typical area 1: H2 and H3.
This is achieved through a combination of three means: remote sensing images, InSAR
monitoring results, and field visits.

H2 is located on the westward slope of the rotten mountain depression (Figure 7a).
The slope in this area ranges mostly between 25–30◦. It is steep at the top and gentle at the
bottom, resembling a lap chair, which makes it more likely for landslides to occur. Mixed
sedimentary rocks are the main material that constitutes this slope, which results from the
extrusion of the Xiaojiang Fracture Zone, with broken and loose rock masses, weak shear
strength, and weathering resistance. Therefore, it is highly susceptible to the effects caused
by wind and rainfall. Especially in the middle and back edge, the signs of deformation
are evident. Besides, some open structural surfaces facilitate the infiltration of rainwater
into the slope. This leads to the erosion of geotechnical soil and increases the geotechnical
capacity, thus accelerating the deformation of the slope. In addition, two villages, Luna
village and Sanjia village, are located on both sides of the slope, with plenty of agricultural
land surrounding them. Due to engineering construction and irrigation, the deformation
caused to the slope is accelerated to different degrees. As suggested by the SBAS-InSAR
monitoring results (Figure 7c), the vertical deformation rate in this area exceeds −32 mm
per year, which indicates the ongoing deformation of the slope. Judging from the trend
of cumulative deformation (Figure 7e) over time, the overall deformation of the slope is
significant, and the cumulative deformation reaches as high as 280 mm over three years. In
November 2018, the change was accelerated significantly, with the cumulative deformation
reaching as high as 120 mm in just over a month. Initially, it was speculated that a minor
landslide occurred during this period.

H3 is located on the east-facing slope of the Ragged Mountain Depression (Figure 7a).
Across this area, the slope exceeds 35◦ in most cases, with carbonate sedimentary rocks
as the dominant components. The slope plane resembles a long tongue on the whole,
featuring a local stepped slope. The vegetation in the area is sparsely distributed, the
bedrock structure is destroyed by tectonic movement, the development of internal pores
and fissures is extraordinary, and the cracks tension and shear can be found all over the
slope body. Recharged by rainfall and hillslope runoff, stagnant layers tend to develop in
the interbedded parts of fine-grained soils or strongly weathered bedrock surfaces, where
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the softening and flow of water can prompt the loose accumulation to slide as a result of
gravity [27]. As can be seen in Figure 7b, the maximum sliding of the slope occurs at the
broken bedrock face in the back edge part, which exceeds −32 mm/year. Besides this, the
deformation rate gradually decreases as the slope is reduced. By taking into account the
trend of cumulative deformation in this area (Figure 7d), it can be clearly seen that the
slope body experienced severe deformation twice between November 2018 and June 2020.
The deformation increased first and then decreased, thus forming two large “U” shaped
sinkholes. Especially, the first settling funnel indicates a brief but significant deformation.
Before the formation of the second funnel, there is a level-off period, during which there is
almost no deformation occurring to the slope. Different from the first subsidence funnel,
the second one becomes relatively gentle, lasting nearly one year. It is indicated that after
a level-off period, the deformation of the slope resumes, and it maintains a slow pace
thereafter. The slope presents a major safety risk to the road leading to Luna village. Once
the slope destabilizes and triggers a landslide, it will destroy the road and cut off the
connection between the village and the outside world.

Figure 7. Typical regional remote sensing images and cumulative deformation time series of feature
points. (a) is remote sensing image, (b,c) are H3 and H2 regional zooms, respectively, and (d,e) are
the cumulative deformation time series of feature points P1 and P2, respectively.
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In addition, these two areas were further studied through field investigation. It was
revealed that the rock and soil bodies in the two landslide-prone areas of H2 and H3 are
broken and loose, vertical fissures are in development, and such loose accumulations as
fallen rocks and crumbling occur commonly due to sliding and water flow, and there are
plenty of minor, localized slides, crumbling, and flowing in development (Figure 8a,c,d,f).
The results of field exploration are well consistent with the deformation texture characteris-
tics of remote sensing images and the trend of InSAR cumulative deformation variables,
which confirms a greater possibility that these two slopes could develop into landslides.
However, it is worth noting that for the area with such evident landslide characteristics,
most of the cells in the LSM as obtained by SVM show either very low or low susceptibility
(Figure 8b). That is to say, in the original LSM, the two slopes stabilize, and the possibility
of landslides is extremely low. Obviously, the susceptibility class evaluated using the SVM
model underestimates the real susceptibility of the area.

Figure 8. Fieldwork and susceptibility maps before and after correction of typical areas. (c,f) are field
maps of the H2 region, (a,d) are field maps of the H3 region, (b) is the pre-correction susceptibility
map, and (e) is the post-correction susceptibility map.

According to the LSM, as obtained by integrating SBAS-InSAR, the cells within the
slope area are integrated into the dynamic surface deformation information, which im-
proves the susceptibility class significantly. Besides this, the original low and very low
susceptibilities are corrected into high and very high susceptibilities (Figure 8b). Whether it
is from remote sensing images, InSAR deformation rate results, or field survey results, it can
be seen that the corrected susceptibility class is more similar to the landslide characteristics
exhibited by the actual slope, which proves the reliability of the corrected results and
highlights that the landslide prediction accuracy of the integrated SBAS-InSAR generated
LSM is better than that of the original LSM.
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5. Discussions

A comparison between the original and corrected LSM for two specific areas (H2, H3)
revealed that the proposed method in this paper is capable of correcting the susceptibility
class of classification error cells and producing a more reliable LSM. In detail, in the InSAR
deformation results, two typical areas (H2, H3) showed obvious subsidence trends, and
the deformation rate of the slope surface exceeded −32 mm/year (Figure 7b,c), and the
deformation signs of the leading and bake edge were significant, with the maximum
cumulative deformation reached 70 mm and 280 mm, respectively (Figure 7d,e). In the
images, rockfalls, and collapse development, the rock was severely weathered and broken.
The possibility of developing into a landslide under favorable conditions is extremely high,
which is consistent with the corrected susceptibility class, i.e., high landslide probability
corresponds to the high susceptibility class. In addition, through a comparison performed
only by others with the LSMs obtained from the Dongchuan district based on the model,
it was found that in the low susceptibility areas, the LSMs obtained by using the method
proposed in this paper are basically consistent with those obtained by previous studies.
Besides this, the low susceptibility classes are assigned to the town areas such as the flat
terrain of the Redland and the Tuobuka. As for the high susceptibility areas, this paper
integrates the SBAS-InSAR technique to improve the susceptibility class of classification
error cells. Therefore, different results from previous studies are displayed. For example, in
the LSM of the Dongchuan district obtained using RF [29], some high mountain areas on
both sides of the Xiaojiang River basin with severe soil and water loss and large surface
deformation rate (Figure 6b area 3) were assigned a medium susceptibility class; in the
LSM of Dongchuan district obtained based on the combination assignment method [31],
the big and small white mud gullies with frequent geological hazards were assigned a
low susceptibility class. On the contrary, in the LSM obtained by the method proposed
in this paper, these areas belong to very high susceptibility areas, and the susceptibility
class is closer to that of the actual slope surface rock fragmentation and tension fracture
dense state.

Nevertheless, the method shows some shortcomings because not all misclassifications
in the region can be corrected, which depends on the integrity of the InSAR data results. In
other words, the classification errors can be corrected only when valid In-SAR deformation
values can be obtained in the region. As shown in Figure 5a, there are many null regions in
the deformation rate maps as obtained by the SBAS-InSAR technique. This results primarily
from the limitations of the Sentinel-1A sensor itself. In those areas with high vegetation
cover, the C-band wavelength (~5.6 cm) is not capable of penetration, thus leading to the
out-of-coherence phenomena that arise when there are null values in the deformation rate
map. In these regions, the lack of InSAR data results can make it difficult to assess the
susceptibility class in a reasonable way. To address this problem, L-band SAR sensors can
be used due to their wavelength of 30–15 cm, which improves the penetration of the radar.
As a result, the temporal decoherence effect caused by vegetation cover is reduced, which
makes it more suitable for applications in those areas with dense vegetation [60]. However,
because L-band SAR data are expensive to collect and require a longer revisit period relative
to C-band Sentinel-1A data, it is less sensitive to surface deformation. Therefore, it was
discounted from this experiment.

In addition to applying SBAS-InSAR technology, the other methods used to re-
duce misclassification may include manual inspection, light laser detection and ranging
(LiDAR), and unmanned aerial vehicle (UAV) photogrammetry. However, since most
of the Dongchuan district is covered by a high mountain valley, the traditional manual
one-by-one ranking method is rendered ineffective. Although in different ways, LiDAR and
UAV photogrammetry can be relied on to identify a single landslide in a highly accurate
way. In terms of wide-area landslide discrimination, however, there are such disadvan-
tages as it being a lengthy operation, high labor and financial costs, and the difficulty in
popularization. In light of this, it is believed that the weakness of the InSAR technique
in the loss of coherence for those areas with dense vegetation cover is acceptable. This
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is because, in densely vegetated areas, landslides are often less likely to occur due to the
soil consolidation and slope protection of vegetation rhizomes. According to the original
LSM (Figure 6), the areas with dense vegetation cover concentrate in the very low and
low susceptibility zones, and their susceptibility classification is consistent with reality. It
is indicated that the probability of being misclassified is extremely low. From a practical
perspective, it is believed as a relatively feasible solution to correct classification errors and
improve the reliability of LSM by applying InSAR technology. Especially, the free access to
Sentinel-1A data makes this method widely applicable.

6. Conclusions

In order to address the classification error in LSM, this paper proposes to reduce the
classification error and improve the reliability of LSM by constructing the contingency
matrix, which achieves the integration of SBAS-InSAR and LSM. In the experiment, LR
and SVM were used to generate an LSM for the Dongchuan district with a 30 × 30 m cell
resolution, respectively, while the model was evaluated for accuracy by using an ROC curve.
Besides this, the LSM under the optimal model SVM was adopted for integration with
SBAS-InSAR, so as to correct the classification errors in the original LSM. By combining
remote sensing images, InSAR results, and fieldwork, the typical areas with significant
changes before and after correction were demonstrated and analyzed. On this basis, the
following conclusions were drawn:

(1) The LSM as obtained from LR and SVM models was evaluated from both qualitative
and quantitative perspectives. Qualitatively, the spatial distribution of the very high
and very low susceptibility areas is consistent with reality. Besides this, those very
high susceptibility areas are concentrated in the geological hazard-prone areas on both
sides of the Xiaojiang River basin, while the very low susceptibility areas concentrated
in the urban areas with flat topography. Quantitatively, the AUC values under the
two models are 0.84 and 0.91, indicating that the SVM model is more accurate than
the LR model under the same conditions. Therefore, it is more suitable for obtaining
an LSM in the Dongchuan district.

(2) During the period from January 2018 to January 2021, the vertical deformation rates in
the study area ranged from−206.5 to 58.5 mm/year. There were 12 landslide potential
areas identified with obvious subsidence centers, of which 7 potential areas matched
well with the landslide susceptibility class. However, there were 5 potential areas
assigned a lower susceptibility class, which contradicted the reality. It is indicated that
some of the areas were misclassified in the original LSM, which required improvement.

(3) Compared with the original LSM, the susceptibility class of 66,094 classification
error cells (59.48 km2) was corrected in the LSM obtained by integrating the SBAS-
InSAR technique. The areas with large differences in class variation showed obvious
landslide characteristics in remote sensing images, InSAR deformation results, and
field inspection, which is closer to the corrected susceptibility class. It is suggested that
the method is effective in correcting the classification errors, which further enhances
the reliability of the LSM.

In summary, this study is essential for improving the reliability of LSM in detecting
classification errors and correcting them on a large scale. It can be applied to assist the
planning and decision-making departments in correcting the classification errors in LSM
fast and efficiently, thus providing more support for decision-making on regional disaster
prevention and mitigation as well as land use planning.
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