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Abstract: Lane detection plays a vital role in making the idea of the autonomous car a reality. Tradi-
tional lane detection methods need extensive hand-crafted features and post-processing techniques,
which make the models specific feature-oriented, and susceptible to instability for the variations on
road scenes. In recent years, Deep Learning (DL) models, especially Convolutional Neural Network
(CNN) models have been proposed and utilized to perform pixel-level lane segmentation. However,
most of the methods focus on achieving high accuracy while considering structured roads and good
weather conditions and do not put emphasis on testing their models on defected roads, especially
ones with blurry lane lines, no lane lines, and cracked pavements, which are predominant in the real
world. Moreover, many of these CNN-based models have complex structures and require high-end
systems to operate, which makes them quite unsuitable for being implemented in embedded devices.
Considering these shortcomings, in this paper, we have introduced a novel CNN model named
LLDNet based on an encoder–decoder architecture that is lightweight and has been tested in adverse
weather as well as road conditions. A channel attention and spatial attention module are integrated
into the designed architecture to refine the feature maps for achieving outstanding results with a
lower number of parameters. We have used a hybrid dataset to train our model, which was created by
combining two separate datasets, and have compared the model with a few state-of-the-art encoder–
decoder architectures. Numerical results on the utilized dataset show that our model surpasses
the compared methods in terms of dice coefficient, IoU, and the size of the models. Moreover, we
carried out extensive experiments on the videos of different roads in Bangladesh. The visualization
results exhibit that our model can detect the lanes accurately in both structured and defected roads
and adverse weather conditions. Experimental results elicit that our designed method is capable of
detecting lanes accurately and is ready for practical implementation.

Keywords: autonomous cars; convolutional neural network; deep learning; lane detection;
semantic segmentation

1. Introduction

Road accidents have become one of the most common causes of death globally. Reasons
such as reckless driving or even poor design and structure of the road have made road accidents
more frequent. According to the World Health Organization (WHO), approximately 1.35 million
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accidental deaths occur annually worldwide [1]. Statistics show that traffic accident fatalities in
developing and under-developed countries such as Bangladesh are 10 to 60 times more than in
developed countries [2]. For example, the number of reported fatalities due to road accidents
was 2376 in Bangladesh [1]. WHO estimated the actual number of fatalities to be as high as
21,316 [1]. From an economic standpoint, the cost of road accidents is estimated to be more than
USD 4 billion, which is 1.3% of the total national GDP of Bangladesh [3]. Usage of autonomous
vehicles instead of manual ones can reduce this rate by a large amount. The study shows that the
hands-on implementation of an autonomous electric vehicle can be researched using a budget
of around EUR 17,900 [4]. Thus, autonomous cars can be an important scheme in preventing
road accidents. Autonomous cars often combine various modules, including adaptive cruise
control (ACC), lane detection, driver awareness monitoring, etc. Among the different modules,
lane detection is a vital aspect as it is used to develop lane-keeping assistance systems and
lane departure warning systems. Literature shows that computer vision (CV) techniques have
gained popularity among researchers for detecting lanes due to the availability of onboard
visual sensors. Many methods are available for lane detection, both with and without including
DL algorithms. Conventional feature-based methods that were applied in the earlier days
of lane detection include different methods and algorithms such as the Canny algorithm [5]
and the Hough Transformation method [6] to detect lanes. However, these methods fail to
deliver a satisfactory performance when dealing with difficult road curvature, blurred lane
lines, complex road patterns, etc. [7,8]. Researchers also applied model-based methods such
as dynamic programming [9], Support Vector Machine (SVM) [10], B-Snake model [11], etc.
These model-based methods leverage geometric parameters such as linear lines, quadratic
curves, or cubic curves for lane detection. Though they have solved the problems partially, their
performance is still not satisfactory for detecting lanes. Moreover, these methods need manual
feature extraction, so these algorithms are faced with high computational and time complexity.

Among several DL methods, in recent years, CNN has been widely used in CV prob-
lems because of its ability to accurately perform image classification and segmentation tasks.
CNN models do not require hand-crafted features; they can automatically extract mean-
ingful features from input data. Several research papers have already focused on utilizing
the above-mentioned CNN properties to learn robust feature representation and detect
lanes even in complex scenarios. Though numerous methods have been demonstrated to
be successful in lane estimation [12,13], it is challenging to deploy these methods in real-life
applications. These methods only focus on delivering higher accuracy while detecting the
lanes in the simulation environment. However, the system must be lightweight and capa-
ble of providing useful information with low render time to make it possible for real-life
applications. Keeping this in mind, researchers have shown interest in developing different
lightweight CNN methods for detecting lanes in real-time. In [14], Hou et al. proposed
“E-Net”, an encoder–decoder structure-based model. The design of the encoder-decoder
structure incorporated self-attention distillation and dilated convolution to make the model
lightweight and achieve a lower render time. In another work [15], Lee et al. presented
“DSUNet,” a novel fast, lightweight design for lane detection.

Despite the advantages, most CNN methods are trained with the data of good road
conditions, i.e., roads with good pavements and roads without cracks. To date, researchers
have not considered terrible road conditions that may severely affect the model’s perfor-
mance and the autonomous vehicle’s performance. However, most developing countries,
such as Bangladesh, lack proper infrastructure planning. The regular maintenance of
communication pathways and the development of perfect road networks for deploying
existing lane detection networks to introduce autonomous vehicles in these countries is
tough to achieve within a short time due to financial limitations. So, this has become a
conundrum for low-income countries, as very few related studies focus on solving these
issues. Considering this colossal research scope, in this paper, we go beyond the limitations
mentioned above and propose a lightweight CNN model named LLDNet, which can esti-
mate lanes in both structured and defected road conditions as well as in adverse conditions.
The following are the primary contributions of this research study:
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• Developing a lightweight, accurate CNN model for lane detection.
• Assessing the numerical results of the proposed model and comparing them with

other state-of-the-art methods.
• Testing the model’s performance in real-life scenarios considering Bangladesh’s struc-

tured and defected roads.

The remainder of this research is arranged as follows: The existing lane detection techniques
are briefly discussed in Section 2. Section 3 provides a concise overview of the methodology of
this work. Section 4 shows and discusses the experimental procedure and evaluation results of
lane detection in various scenarios. Finally, Section 5 brings the paper to a conclusion.

2. Literature Review

Researchers from all over the world are devoting their efforts to developing methods
for lane detection on roads. As a result, many methodologies have already been published
in technical papers. Literature shows that computer vision-based methods have been
widely utilized to solve lane detection tasks. These machine vision-based methods can be
generally categorized into traditional and DL-based methods.

2.1. Traditional Methods

In the traditional methods, some basic features such as texture, gradient, geometric
patterns, and colors are used to detect and fit lane lines on the road images. Aly et al.
utilized the top view of the road images to extract necessary features using a Gaussian filter
and employed the RANSAC algorithm to fit the lane lines [16]. Kamble et al. employed a
canny edge detection algorithm to detect the boundary of the roads and expurgated the
boundaries by Hough transformation [17]. Wennan et al. considered complex road envi-
ronments, including colored lane lines, and traffic marking on the road, and successfully
detected lanes under these conditions using a hyperbola model [18]. Hu et al. employed
the Dynamic Region of Interest (DROI) technique for lane detection. The authors extracted
the DROI points using interpolation [19]. Gao et al. proposed a fast and real-time lane
detection framework based on the Gabor filter for detecting lanes on structured roads with
multi-lanes and multi-scenes [20]. Wei et al. replaced the Canny edge detector with Robert
operator and fused it to the hough transformation for improving the real-time performance
of lane detection [21]. Andrei et al. improved the run time of an existing lane detection
method by around 30%. They replaced the original hough transformation using the proba-
bilistic transformation. They also used the parallelogram ROI instead of the trapezoidal
one [22]. Wang et al. proposed a lane detection method based on the Catmull–Rom Spline,
which can detect lanes in noisy environments by extracting the lane structures using control
points [23]. Guotian et al. considered the problems of illumination changes and shadow
effects during lane detection in real-time. The authors developed a top-hat transformation-
based method to strain out the interruption of non-lane objects. They also utilized hough
transformation and Kalman filter for lane fitting and correcting lane lines. Experimental
results showed that their method was 95.63% accurate [24]. Li et al. considered the problem
of broken boundary lines during lane detection tasks. They proposed a novel approach
named parallel-snake (extension of active contour model) for solving this problem [25].
Yoo et al. proposed a vanishing point estimation method based on a probabilistic voting
procedure for detecting lanes in complex road environments [26]. Though these methods
can detect lanes in good condition, their performance is unsatisfactory in various scenarios,
including curved roads, rainy days, changing illumination conditions, blurry lane lines,
and others [7,8].

2.2. Deep Learning-Based Methods

Recently, among the DL models, CNN methods have shown mesmerizing performance
in various computer vision tasks. The advantages of the CNN methods over the traditional
methods are that they do not need hand-crafted features, and that the methods can extract
the necessary features automatically and extract both local and global features for solving
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computer vision problems. Due to their advantages, CNN methods have already been
adopted to solve the lane detection problems in numerous papers, which have pulled lane
detection research to a new stage.

Kim et al. developed an end-to-end ego lane detection method by leveraging a transfer
learning framework trained on the ImageNet dataset. The method was developed based on
SegNet architecture and successfully detected the lanes without any post-processing [27].
In [28], SegNet was also used as the backbone network for developing a lane detection
method named LaneNet. LaneNet considered the lane detection task as an instance segmen-
tation to detect multiple lanes and handle the issue of lane changes. Bruls et al. utilized a
conditional random field (CRF)-based method to create a label in a weakly-supervised way
from multimodal sensor data instead of manually annotating the data. These images were
later used in a U-shaped network for accurate lane detection [29]. Khan et al. employed a
fully convolutional network (FCN) architecture incorporating a secondary layer protection
scheme for detecting the lanes as well as ensuring their prototype vehicle is always kept
inside the track [30]. Chng et al. improved a lane detection method named RONELD by
making it more robust to detect lane changes. Their advanced method named RONELDV2
detected lane point variance for finding more accurate lane parameters, which accelerated
their method’s performance [31]. Lee et al. proposed a novel lightweight lane detection
method named DSUNet for detecting the lanes in real-time. The model outperformed the
original U-net model in terms of both model size and inference time [15].

Furthermore, after implementing the model on the actual car, it outperformed the
U-net model in terms of lateral error while navigating on a real road [15]. Zhang et al.
introduced a novel method named RS-Lane for detecting multiple lanes in challenging
scenarios. The method was developed based on LaneNet, and the split attention concept of
the RSNet was also employed [12]. Zou et al. utilized multiple frames from a continuous
driving scene instead of a single frame to predict the lanes on the road. The proposed
method was a hybrid architecture, i.e., the combination of CNN and RNN. The CNN block
extracted features from multiple images and made time-series data, while the RNN block
predicted the lanes using the passed time-series data [13]. Chng et al. developed a method
for predicting the lane marking using the point cloud data extracted from light detection
and ranging (LiDAR). The proposed system can also estimate the lane width as well as can
report the location of the lane marking gaps [32]. Li et al. developed a novel method named
ZF-VPGNet for detecting lanes on the road. The model was developed for multi-task
learning. Another version of the method is CZF-VPGNet which can be easily implemented
in the embedded devices without affecting accuracy [33]. Chen et al. designed a Spatio-
temporal attention module (STAM) to integrate into a VGG-16-based FCN network for
predicting lanes from multiple consecutive input frames. The method solved the problems
of occluded lanes by using the history of the previous frames [34]. Lee et al. presented a
multi-task deep learning architecture for detecting potential drivable areas and lane line
segmentation. The MobileNetV2 architecture was used as the backbone of the encoder
part, while three decoder sections were utilized for the multi-task learning [35]. Perng et
al. proposed a hybrid model by combining an autoencoder named CAE and a hyperbolic
model for detecting lanes in structured and unstructured roads. The models extracted
the feature points of the lane using the CAE and later fit the lane lines by utilizing the
hyperbolic model. The model was implemented on an Nvidia Jetson Tx and tested on
three different scenarios [36]. Tabeleni et al. proposed a novel lightweight deep learning
network named PolyNet based on the deep polynomial regression for detecting lanes.
The proposed model is not only accurate but also efficient enough to maintain 115 FPS
in TuSimple dataset [37]. Munir et al. utilized an event-based vision sensor instead of
the RGB camera to solve illumination variance and motion blur. They developed a deep
learning model named LDNet comprising an encoder, ASPP block, and an attention-guided
decoder block. The model utilized the images from the event-based vision sensor and can
detect the lanes accurately [38]. In the most recent years, Tabelini et al. proposed a CNN
model named LaneATT for detecting lanes with more efficacy and efficiency. The proposed
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model considered global information as crucial and used an anchor-based attention module
for detecting lanes in case of occlusion and missing lane markings. The authors claimed
that their model achieved FPS up to 250 [39]. Ko et al. developed a lightweight CNN
model named point Instance Network (PINet) for handling the problems of multiple lines
and limitation of computing power during detecting lanes in real-time. The proposed
model contains several stacked hourglass networks where the number of the hourglass
networks can be clipped based on the power of the onboard device [40]. Haris et al.
considered the necessity of including a decoder module which is ignored in many existing
methods for predicting lanes in real-time. Consequently, the authors designed a novel
framework based on object feature distillation which can be applied to any CNN-based
lane segmentation network and can produce promising results with no additional cost [41].
In another work, Haris et al. proposed a CNN model for handling the issue of the narrow
line at the vanishing point of lanes. The authors designed a lane detection network, as well
as a lane offset estimation algorithm in the decoder part of their model for improving the
model’s performance [42]. Li et al. utilized the Mask R-CNN model for detecting lanes using
the point-cloud data from a 3D LiDAR. For reducing the computational power the authors
aggregate the point cloud data into a 2D-image space before using the affine transformation.
Experimental results displayed their model’s efficacy during detecting lanes [43]. Haris et al.
proposed an asymmetric kernel convolution (AK-CNN) for detecting lanes under complex
traffic conditions. The authors included a weight-sharing function on the CNN to make the
model lightweight. Consequently, their method achieved FPS up to 84.5 [44].

The literature shows that CNN methods have already been improved for detecting
lanes in numerous scenarios. However, very few research works have focused on devel-
oping lightweight CNN methods that can estimate lanes accurately in adverse weather
conditions and on bad and unstructured roads due to the lack of training data on roads
of poor quality. So, in this study, we have developed a lightweight CNN model which is
trained on a mixed dataset (one of the datasets, named Cracks and Potholes in Road Images
Dataset [45], contains images with cracked pavements) for detecting lanes and tested them
in different weather and road conditions.

3. Proposed Model

Lane detection can be considered a semantic which classifies “Lane” and “Non Lane”
pixels into two groups. In this work, we proposed attention-based encoder-decoder archi-
tecture, namely LLDNet, for detecting road lanes in real-time. The Deep Learning model
was trained to preserve the necessary spatial information for good prediction. The overall
structure of our proposed LLDNet is illustrated in Figure 1.

As shown in Figure 1, the framework of the LLDNet was composed of three parts,
including the feature extraction phase, Convolutional Attention Block Module (CBAM) [46]
part, and the Decoder part. The feature extraction phase or the encoder branch of our
model extracts the necessary features and generates low-level to high-level feature maps
from the RGB images of size 80 × 160 pixels. Later, the features generated from the encoder
part are passed through the attention module block for obtaining the advanced features.
The primary purpose of the attention mechanism in our model is to focus more on the road
portion of the images and ignore the other objects in the images (e.g., sky, trees, pedestrians,
and others), which will accelerate the model’s performance and save processing time.
Finally, the decoder part of our model reconstructs the feature maps extracted from both
the encoder and the attention module to produce the predicted images with the exact
resolution of input images. The design of each branch of our model is discussed briefly in
the following subsections.
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Figure 1. Structure of the Proposed LLDNet architecture. Our code is available at https://github.
com/Masrur02/LLDNet (accessed on 21 June 2022).

3.1. Encoder Module

The encoder module of our network composes of four residual blocks, each of which
is followed by a 2 × 2 max-pooling layer. The residual blocks help to build a deeper
convolutional neural network without having the issue of vanishing gradient problems.
Furthermore, it enhances the channel inter-dependencies while also alleviating the compu-
tational cost of the model. Figure 2 demonstrates the architecture of the residual blocks.

Figure 2. Structure of the residual block.

Each residual block consists of two convolution blocks, where the convolutional blocks
consist of a 3× 3 convolutional layer with the same number of filters (from 8 to 64) followed
by a Rectified Linear Unit (ReLU) activation function and a batch normalization layer. A
skip connection followed by a 1 × 1 convolution layer has been employed, which adds the

https://github.com/Masrur02/LLDNet 
https://github.com/Masrur02/LLDNet 
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input of the residual block directly before the last ReLU layer. This skip connection helps
the deep learning model for solving the vanishing gradient problem by adding the feature
map of the lth layer to the (l + 2)th layer of the model. Finally, the output of the resblock
goes through the max-pooling layer and downsamples the input feature map by two times.
The first encoder block of our LLDNet gets the input of size H ×W × C. Here, C is the
input channel that equals 3 for RGB images. So, after the first encoder block, the output
feature size becomes H/2 ×W/2 × C. Here, C equals the number of filters used in the
corresponding encoder block. Finally, at the last encoder block, we obtain the feature map
of size H/16 ×W/16 × C.

3.2. Attention Mechanism

From the different stages of the encoder module we obtained activation maps of size
40 × 80 × 8, 20 × 40 × 16, 10 × 20 × 32, and 5 × 10 × 64, respectively. Later, we passed
these activation maps through four (one for each activation map) Convolutional Block
Attention modules (CBAMs) [46] in order to obtain the advanced features. The structure of
the CBAM blocks is illustrated in Figure 3.

Intermediate 
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Figure 3. Structure of the CBAM module.

The figure displays that each CBAM block is incorporated with the Channel Atten-
tion Module (CAM) and the Spatial Attention Module (SAM). The CBAM module finds
the important channels from the intermediate feature map A by applying a 1D CAM
FCAM ∈ RC×1×1 and produces a channel refined feature map B. Mathematically,

B = FCAM(A)⊗ A (1)

Later the CBAM module applies a 2D SAM, FSAM ∈ R1×H×W on the feature map B
and finally generates a spatial attention map.

C = FSAM(B)⊗ B (2)

3.2.1. Channel Attention Module

In the CAM, the intermediate feature map A goes through a Global average pooling
gap and Global maxpooling gmp layer. Thus the CAM generates two descriptor features,
Pap, Pmp. Mathematically,

Pap = gap(A)

Pmp = gmp(A)
(3)

Later, both the Pap and Pmp produce output features by sharing a multi-layer percep-
tron (MLP). After that, the outputs were added by using an element-wise summation, and
finally, the merged output passed through a sigmoid (σ) for generating the output feature
FCAM(A). Mathematically,
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FCAM(A) = σ{MLP[Pap]⊗MLP[Pmp]} (4)

For the MLP, the number of hidden layers is selected as RC/r×1×1 to reduce the
computational cost, where r is the reduction ratio. If the shared weights of Pap and Pmp are
w0 ∈ RC/r×C, w1 ∈ RC×C/r then Equation (5) can be expressed as,

FCAM(A) = σ{w1[w0(Pap)]⊗ w1[w0(Pmp)]} (5)

Now according to Equation (1), this FCAM(A) will be element-wise multiplied by the
intermediate feature A and produce a channel refined feature B, which will be the input of
the SAM.

3.2.2. Spatial Attention Module

The SAM takes the output o the CAM and sends the feature map B through a max-
pooling mp and an average pooling ap layer, and we obtain

Qap = ap(B)

Qmp = mp(B)
(6)

Then both of the two dimensional outputs Qap ∈ R1×H×W and Qmp ∈ R1×H×W were
concatenated as

Q = (Qap, Qmp) (7)

Later, the concatenated activation map Q is passed through the 7 × 7 convolutional
layer. Then the map is followed by a sigmoid function (σ) to produce the output feature
FSAM(B). Mathematically,

FSAM(B) = σ{conv7×7[Q]} (8)

Finally, according to Equation (2), this FSAM(B) will be element-wise multiplied by
the channel-refined feature B and produce a spatial refined feature C, which is the final
output of the CBAM block.

So, by using the CBAM blocks after the encoder stages, we obtained four refined
activation maps that focus more on the road portions of the images. The size of the
refined activation maps is the same as the intermediate activation maps extracted from the
encoder stages.

3.3. Decoder Module

In the decoder module, first, we take the outputs of the blocks named CBAM-1,
CBAM-2, CBAM-3, CBAM-4, and pool4. The size of the feature maps of these blocks are
40 × 80 × 8, 20 × 40 × 16, 10 × 20 × 32, and 5 × 10 × 64, respectively. Later we produced
two activation maps named C1 and C2 by concatenating CBAM-1 & CBAM-2 and CBAM-3
& CBAM-3. Concatenation of all the activation maps together from the attention blocks
may lose some necessary features, so we merged them pair-by-pair for combining the
low-level features (CBAM-1 & CBAM-2) and high-level features (CBAM-3 & CBAM-4).
However, before concatenating, we conducted 2 × 2 upsampling both on the CBAM-2 and
CBAM-4 for converting them in the same shape as CBAM-1 and CBAM-3. After that, we
utilized three parallel deconvolutional blocks (D-1, D-2, D-3). The inputs of these three
deconvolutional blocks are CBAM-1, CBAM-2, and Maxpooling 4. The purpose of using the
activation map of pool4 is that this activation map contains the original features extracted
by all the encoder blocks. However, we applied 2 × 2, 4 × 4, 16 × 16 upsampling to the
inputs of the deconvolutional blocks, respectively, for converting them into the same shape
as the input images. The deconvolutional blocks consist of two 3 × 3 conv2Dtranspose
layers [47] with the same number of filters from (32 to 8), followed by a batch normalization
layer. After the deconvolutional blocks we obtain three activation functions with the
shape of 80 × 160 × 32, 80 × 160 × 16, and 80 × 160 × 8. Later, we concatenate all the
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three feature maps to combine all features (low level, high level, refined) in a single map.
After the concatenation, the shape of the feature map becomes 80 × 160 × 56. Finally, we
utilized a 1 × 1 convolution with one filter and obtained the predicted image with shape
80 × 160 × 1.

4. Experiments and Results

In this section, we carried out a few experiments to evaluate the outcomes and robust-
ness of the proposed model. We evaluated our model’s performance by considering several
numerical results and predicting lanes from road images in various scenarios.

4.1. Dataset

In this work, we constructed a mixed dataset by combining the “Udacity Machine
Learning Nanodegree Project Dataset” [48] and the “Cracks and Potholes in Road Images
Dataset” [45]. The first dataset was collected by a smartphone and contained 12,764 training
images. The images were extracted from 12 different videos filmed at 30 fps. Though the
images’ original size was 1280× 780 pixels, the images were later resized to 80× 160 pixels.
For labeling the images, the images were first calibrated using OpenCV for correcting the
camera’s inherent distortion. Later, the perspective transformation was used to put the
road lines on a flat plane. Finally, this process produced ground truth images where the
white pixels denote the lane areas and the black pixels denote the non-lane areas. The
original images and the labeled images were then converted into two different pickle files
and uploaded to Mr. Michael Vigro’s GitHub page [48]. After downloading the pickle files,
this work converted them into NumPy files. The speciality of this dataset is that it contains
images of different weather conditions, different road curvatures, and different lighting
conditions. The other dataset of our work collected images by using a Highway Diagnostic
Vehicle (DHV). This dataset contains 2235 images which were extracted from a few videos
filmed at 30 fps with a resolution of 1280 × 729 pixels. The speciality of this dataset is
that most of the images in this dataset contain images with cracks and holes on the road.
However, the roads on the images are not heavily damaged; rather, the images contain
roads with minor damage. Each image of this dataset contains three mask images, including
lane marking, hole marking, and crack marking masks. However, we only consider the lane
marking masks images of this dataset. The mask images were produced in a way where
the white pixels denote the lane areas and the black pixels denote the non-lane areas. The
original images of this dataset were uploaded in jpg format and the labeled images were
uploaded in png format. The primary purpose of mixing these two datasets in our work
is that we want to develop a robust system. The system can detect the lanes in adverse
weather or lighting conditions, even if the roads are defective and unstructured. We resized
the second dataset in the same size as the first dataset for mixing the two datasets. After that,
the original and labeled images were imported as NumPy arrays and stored in two different
Numpy files. And these two NumPy files were merged with the Numpy files of the previous
dataset for generating a mixed dataset. The mixed dataset utilized in this work can be
found https://drive.google.com/file/d/1S23Ac0_hbOktV0rE2q0IkQWpQjUfkMTB/view?
usp=sharing and https://drive.google.com/file/d/1I264WVBL3Dyp_4PTfEYkVIDkg_
Yn5gJJ/view?usp=sharing (Accessed on 21 June 2022). Finally, the mixed dataset contains
14999 images where the shapes of the original images are 80 × 160 × 3, and the shape of
the labels are 80 × 160 × 1. Later, we split the entire dataset into a 7:3 ratio using the train
_test _split function of the scikit-learn library to separate the training and test sets.

4.2. Implementation Details

For USA or Canadian companies, please provide the company, city, abbreviated state
name, USA/Canada). Please check and confirm throughout the paper. We used python
version 3.6.13 as the development language and Keras version 2.6.0 as the Deep Learning
framework. In the training of our model, we used Adam optimizer, dice coefficient loss
function, a batch size of 64, the learning rate of 1e−4, and the number of epochs was 100. We

https://drive.google.com/file/d/1S23Ac0_hbOktV0rE2q0IkQWpQjUfkMTB/view?usp=sharing
https://drive.google.com/file/d/1S23Ac0_hbOktV0rE2q0IkQWpQjUfkMTB/view?usp=sharing
https://drive.google.com/file/d/1I264WVBL3Dyp_4PTfEYkVIDkg_Yn5gJJ/view?usp=sharing
https://drive.google.com/file/d/1I264WVBL3Dyp_4PTfEYkVIDkg_Yn5gJJ/view?usp=sharing
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trained the model and conducted our experiments in a computer configured with Windows
10 operating system, 32 GB RAM, Intel core i9-11900k @ 3.50 GHz CPU processor, and
NVIDIA Geforce RTX 3080Ti graphics card.

4.3. Performance & Robustness of the Model
4.3.1. Quantitative Results

Verifying the performance of our model in terms of the mixed dataset and comparing
it with other benchmark models is one of the ways to evaluate our model’s accuracy and
robustness. As the target of our model is to classify the “Lane” and “Non-Lane” pixels, we
employed a few metrics to appraise our model, including pixels’ accuracy, Dice-coefficient,
and Intersection over Union (IOU). The pixel accuracy is considered as the percentage of
correctly classified pixels in the case of a binary segmentation task. However, pixel accuracy
is not the optimal criterion to assess the segmentation task because of the class imbalance
problem. In the case of lane detection, the images in the dataset are highly imbalanced for
the lion’s share of the Non-lane pixels. On the other hand, the Dice coefficient and the IOU
are considered more effective metrics as they depend on the overlapping area between the
ground truth image and the predicted image. The following mathematical equation can
express the metrics.

Dice Coefficient =
2 ∑ YpYt

∑ Yp + ∑ Yt

IoU =
∑ YpYt

(∑ Yp + ∑ Yt)− (∑ YpYg)

(9)

The equation shows that the Dice coefficient illustrates the two overlapping areas
divided by the total of pixels. At the same time, the IOU represents the overlapping area
divided by the union area between the ground truth and the predicted images. Figure 4
shows the loss, Dice coefficient, and IoU trend over the epochs of both training and test sets
for our as well as other state-of-the-art models. The models we have chosen to compare
with our work are PSPNet, FCN, and U-net respectively. We have chosen these models as
benchmarks as they are popular as well as widely used CNN architectures for performing
semantic segmentation tasks and show promising results in benchmark datasets [49]. It can
be seen from Figure 4 that the test curves of the PSPNet were not good. The curves keep
fluctuating abnormally throughout all the epochs. The numerical results started at a low
level and did not reach even closer to the other models at the 100th epoch in terms of all
metrics.

On the other hand, the FCN and the U-net model were trained well. There is no
fluctuation on the curve throughout the training and test, and it becomes stable after a few
epochs. Furthermore, there is not much difference between the training and test results,
indicating that the models did not overfit or underfit. However, it is apparent from the
picture that, though there is a little fluctuation in the test Dice coefficient and test IoU curve
of our proposed model, our model outperformed the other models in terms of both Dice
coefficient and IoU. The Dice coefficient and IoU curves of our model started rising rapidly
from the first to around fifth epoch. After the 5th epoch, it raised slowly and started to
become stable; but, around the 25th, 40th, 79th, and 95th, four little fluctuations of different
degrees were experienced. However, our model was able to cope with this fluctuation, and
from the very next epochs, the curves became stable again. Finally, our model obtained
better results than the other models.
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Figure 4. Curves of loss, dice coefficient, and IoU while training and testing the models at 100 epochs.

Table 1 presents the comparison of our developed model with the other models in the
perspective of the previously mentioned metrics on the test set. Moreover, we also included
the total number of parameters and the weight file size on the comparison table to better
understand the model’s performance and robustness. According to Table 1, our developed
model outsails all the other compared models in terms of all metrics. Let us analyze the Dice
coefficient result, as the Dice coefficient is the most critical metric for the segmentation task.
It can be seen from the table that our model obtained 2.77%, 0.16%, 0.05% Dice coefficient
than the other models respectively. The segmentation metrics of the U-net, FCN and our
proposed model do not differ significantly from each other. However, the total number
of parameters and the size of our model’s weight file are significantly lower compared
to those of the other models. The FCN and the U-net produced competitive results with
our model. However, the number of parameters of these models is 5.26 times and 7.46
times greater, respectively, than our model, which indicates that our model needs lower
computational complexity to obtain better results than the other models. Furthermore,
the weight file size of our model is 8.70 times and 12.21 times smaller than the weight file
of the FCN and U-net model, respectively. This indicates that our model will have better
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adaptivity and applicability on embedded devices to implement a real-life robotic vehicle
that detects lanes in real-time. So, from Table 1, it can be concluded that our proposed
model is lightweight and can produce more accurate results.

Table 1. Model Performance Comparison with other State-of-the-art models

Model Accuracy
(%)

Dice
Coefficient

(%)
IoU (%) Dice

Loss(%)

Number of
Parameters
(Million)

File Size
(Mb)

PSPNet 95.89 95.46 94.82 5.01 0.33 4.08
U-net 96.27 98.02 96.98 1.98 1.94 22.97
FCN 96.30 98.13 97.19 1.87 1.37 16.35
Ours 96.31 98.18 97.33 1.82 0.26 1.88

4.3.2. Qualitative Results

In this subsection, we will present some visualization results obtained by our proposed
model. To check our model’s robustness, we feed some videos of Bangladeshi roads to the
model. The videos were collected from Youtube considering several conditions, and we
predicted the lanes by our model. The experimental conditions we choose in our work for
proving the robustness of our model include

• Perfect road with normal weather condition;
• Curvy road condition;
• Rainy condition;
• Night condition;
• Defected pavement and occluded lane line condition.

The location of the experimented scenarios, experimental setup, and the obtained
results in each condition are presented below.

Perfect Road with Normal Weather Condition

We have executed our first experiments on perfect road and weather conditions. For
this experiment, we considered different highways in Bangladesh, including the Dhaka–
Chittagong Highway, Mawa Express Highway, and the Jamuna Bridge (connecting bridge
of the capital city and northern districts of Bangladesh). The lanes on these roads are well
marked, and the pavement condition is also good. We considered perfect weather and
illumination conditions as well for this experiment. The videos were collected from the
Youtube channel of a Bangladeshi travel blogger who collected these videos while driving a
car [50–52]. Figure 5a,c,e show the original frames collected from Dhaka–Chittagong road,
Jamuna Bridge, and Mawa road, respectively, and Figure 5b,d,f illustrate the predicted
images of the corresponding frames. From the figure, it can be seen that our model
predicted the lanes correctly in almost all cases. However, if we look closely, the left lane
of Figure 5b exceeded a tiny portion. This issue might result from the long break of the
lane lines. Furthermore, one potential cause is that as the videos were collected randomly
(without the intention of research), the camera angle may become distorted when very
close to the lane line which finally result in such a situation.
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(a) frame 1 (b) detected frame 1

(c) frame 2 (d) detected frame 2

(e) frame 3 (f) detected frame 3

Figure 5. Visualization of lane detection in perfect road and weather conditions.

Curvy Road Condition

For our second experiment, we chose the curvy road condition, as it is one of the most
challenging assignments for the CNN models to detect cracks accurately in a curvy road. In
this case study, we collected videos by ourselves from a road named “Daulatpur –Tangail
Rd” located in a city of Bangladesh named Tangail. The videos were collected by a Techno
spark 7 smartphone with a resolution of 1920 × 1080 pixels at 30 FPS while traveling by
motorcycle at approximately 30 km/h. Figure 6 illustrates the original frames and the
corresponding predicted frames with lanes marked in green color at the different locations
of the road mentioned above. From Figure 6, it can be observed that detected frame 2 and
detected frame 3 are perfect. Even though in detected frame 2 there was another vehicle in
front of our motorcycle, our model still detected the lane accurately. However, in detected
frame 1, our model mistakenly predicted a tiny scattered portion of the road as a detected
lane. As our model is a lightweight model with lesser parameters, we neglected this little
mistake and considered this frame a good result.
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(a) frame 1 (b) detected frame 1

(c) frame 2 (d) detected frame 2

(e) frame 3 (f) detected frame 3

Figure 6. Visualization of lane detection on curvy road condition.

Rainy Weather Condition

We also considered rainy weather conditions as one of the experimental cases of our
study. We considered the Dhaka–Chittagong Highway and the Magura district road, as
the location of this experimental case study. For this experiment, we collected videos
from Youtube [53,54], filmed during light and heavy rain. Figure 7 illustrates the original
and predicted images in rainy weather conditions. In Figure 7 frame 1 and frame 2 are
from Dhaka–Chittagong highway during light rain, and frame 3 is from Magura district
road after heavy rain. From Figure 7, it can be seen that all of the frames were predicted
accurately by our model. However, if we look closely, it can be seen that the lane prediction
in detected frame 3 was a bit distorted at the bottom part of the image. The camera was
set up on the biker’s helmet, and as it captured a portion of the bike, our model was a
little confused. If the camera captured only the road portion, the entire image would be
predicted well, just like the other portion of detected frame 3.
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(a) frame 1 (b) detected frame 1

(c) frame 2 (d) detected frame 2

(e) frame 3 (f) detected frame 3

Figure 7. Visualization of lane detection in rainy weather condition.

Night Condition

CNN models may find it challenging to predict lanes in low-illumination conditions.
So, for evaluating our model, we have chosen to use the night time condition when
predicting lanes. Like the first and third experimental case studies, we also collected the
videos from Youtube for this experiment [55–57], filmed at the Dhaka–Chittagong highway
and Mawa expresses highway at night time. Figure 8 shows the original frames as well as
the predicted frames at night time. Figure 8a is from the Dhaka–Chittagong highway, and
the other two images are from the Mawa express highway. We can observe at Figure 8 that
our model predicted the lanes accurately even at night time. However, in detected frame
3, our model predicted a portion of the car’s dashboard and the lane. This problem most
likely occurred due to the adjacent continuous frames.
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(a) frame 1 (b) detected frame 1

(c) frame 2 (d) detected frame 2

(e) frame 3 (f) detected frame 3

Figure 8. Visualization of lane detection on night condition.

Defected Pavement and Occuladed Lane Line Condition

In Bangladesh, there are many roads where the pavement condition is not good.
Sometimes, there are many cracks and big holes on the road. Moreover, the lane marking
is not clear; sometimes, it vanishes. So, in this experimental study, we have considered
the scenario mentioned above and challenged our model to predict the lanes in such
adverse scenarios. For this experiment, we collected videos from the Daulatpur–Tangail
road located in Bangladesh in Tangail using the same setup described in the curvy road
condition. Figure 9 displays the real and predicted frames by our model in defective
pavement conditions. From frame 1, it can be seen that though there are many cracks on the
pavement, our model still predicted the lane accurately except for a bit of discontinuity in
the prediction. In the case of frame 2, it can be observed that our model predicted the lane
boundary accurately despite the unclear and occluded right lane line. Finally, in frame 3,
we have chosen a road with many cracks and holes in the pavement. Even the lane marking
in the road has totally vanished. Despite all this adversity, our model accurately predicted
the lane. Though there is an unpredicted portion on the edges of the image, the prediction
does not exceed the road boundary, which is good enough for a vehicle to navigate safely
even in this awful road condition.
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(a) frame 1 (b) detected frame 1

(c) frame 2 (d) detected frame 2

(e) frame 3 (f) detected frame 3

Figure 9. Visualization of lane detection on defected road condition.

5. Conclusions

In this paper, we have proposed a novel lightweight CNN model for accurate lane
detection. With refined information extracted by the attention modules, our proposed
method accomplished robust and reliable lane detection even in adverse conditions. The
assessment showed that our method was capable of achieving state-of-the-art performance,
with higher Dice scores and fewer parameters when compared state-of-the-art algorithms.
Furthermore, the suggested method showed outstanding qualitative results in various
difficulty settings, demonstrating its robustness. Though our method works on both
structured and unstructured roads, the performance on unstructured roads suffers slightly
when the road is extensively damaged and there are no lane markings. In our future work,
we intend to study how to improve lane detection on unstructured and defected roads.
Moreover, we want to develop a robotic vehicle and implement our model to test the
robustness of our model in real-life scenarios by measuring the performance of the robot.
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