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Abstract: In this paper, angles-only target tracking (AoT) problem is investigated in the non Gaussian
environment. Since the conventional minimum mean square error criterion based estimators tend
to give poor accuracy in the presence of large outliers or impulsive noises in measurement, a
maximum correntropy criterion (MCC) based framework is presented. Accordingly, three new
estimation algorithms are developed for AoT problems based on the conventional sigma point
filters, termed as MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK. Here MC-NSKF-GK represents
the maximum correntropy new sigma point Kalman filter realized using Gaussian kernel and MC-
NSKF-CK represents realization using Cauchy kernel. Similarly, based on the unscented Kalman
filter, MC-UKF-CK has been developed. The performance of all these estimators is evaluated in terms
of root-mean-square error (RMSE) in position and % track loss. The simulations were carried out
for 2D as well as 3D AoT scenarios and it was inferred that, the developed algorithms performed
with improved estimation accuracy than the conventional ones, in the presence of non Gaussian
measurement noise.

Keywords: nonlinear filtering; non Gaussian noise; maximum correntropy criterion; Gaussian kernel;
Cauchy kernel

1. Introduction

In state estimation, Kalman filter (KF) is a recursive solution used in various applica-
tions, such as information fusion, system control, integrated navigation, target tracking,
and GPS solutions [1–4]. Kalman filter gives optimal estimates provided the dynamical
system is linear and the noises assumed are Gaussian. However, it is extended to nonlinear
systems through suitable approximation of the nonlinear functions. Using the Taylor series
to linearize the nonlinear functions, the popular extended Kalman filter (EKF) [5] was
derived. Also various sigma point filters have been proposed in the literature such as
unscented Kalman filter (UKF) [6], cubature Kalman filter (CKF) [7], new sigma point
Kalman filter (NSKF) [8], to obtain improved estimation accuracy than the EKF.

Since these filters are based on minimum mean square error criterion, their perfor-
mance is likely to get deteriorated in the presence of non Gaussian noises such as heavy
tailed and impulsive noises [9]. This makes state estimation a very challenging problem in
the presence of nonlinear models and non Gaussian noise. Other possible solutions that can
provide robust state estimates are Gaussian sum filter (GSF) [10,11], particle filter (PF) [12],
Huber’s KF (HKF, also known as M-estimation) [13], H∞ filter [14] etc.

In order to improve the robustness of nonlinear state estimators in the presence of non
Gaussian noise, a local similarity measure called correntropy [15,16], based filter called
correntropy filter (C-Filter) was first proposed in [17]. Since it was developed by replacing
the minimum mean square error (MMSE) criterion with maximum correntropy criterion
(MCC), it proved beneficial for non Gaussian systems, but only for linear systems [18]. This

Sensors 2022, 22, 5625. https://doi.org/10.3390/s22155625 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5753-751X
https://orcid.org/0000-0001-8561-4412
https://orcid.org/0000-0001-8818-0525
https://doi.org/10.3390/s22155625
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155625?type=check_update&version=1


Sensors 2022, 22, 5625 2 of 21

algorithm made use of least squares and fixed point iteration, but failed to incorporate
covariance estimation. In order to avoid this, a maximum correntropy Kalman filter
(MCKF) involving fixed point iteration and covariance propagation was proposed in [19].
Similar issue was also addressed in [20], which used a cost function consisting of weighted
least square (WLS) and Gaussian kernel function, and hence was named as maximum
correntropy criterion-Kalman filter (MCC-KF).

To deal with nonlinear systems, extensions to the existing conventional algorithms
based on MCC criterion were also developed and were named as maximum correntropy
EKF (MC-EKF) [21], maximum correntropy UKF (MC-UKF) [22] and maximum correntropy
sparse grid Gauss-Hermite quadrature filter (MC-SGHQF) [23]. But in the presence of
large outliers in measurements, these filters incurred analytical problems in calculating
inverse of matrices. Thus, new algorithms involving new cost function, WLS and statistical
linearisation were proposed in [24], which were called as MC-UKF-constant and MC-UKF-
adaptive [25]. In developing the above mentioned estimators, Gaussian kernel played an
important role in suppressing the non Gaussian measurement noise. In target tracking
applications, we may receive measurements which have larger outliers. This could prove
to be a challenging task in successful estimation of states using Gaussian kernel as it may
be difficult to select a proper kernel bandwidth. Hence, Gaussian kernel may not always
prove to be the best choice for a kernel function. To overcome this drawback, a Cauchy
kernel function is constructed which gives reasonable estimation accuracy for a wide range
of kernel bandwidth [26,27].

This paper deals with angles only target tracking problem in 2D and 3D. The literature
presents with many variations of this tracking problem such as when the target is a curvi-
linear manoeuvring target [28,29]. However, as is common in passive sonar target tracking
applications, the objective here is to estimate the states of a moving constant velocity target
with the help of angles-only measurements, but corrupted with non Gaussian noise. The
observer continuously monitors for the signals, that are generated due to the sound radi-
ated by the target. The AoT can also be performed with other measurement sources like
IRST sensor [4], radar [30] and also through video tracking [31]. Any irregularities in these
signals received by the observer can be considered as glint noise. A mixture model of two
zero-mean Gaussian for glint noise has been proposed in [32]. This consists of one Gaussian
density with high probability and small variance while the other has small probability of
occurrence and large variance. Alternatively, it is also modelled in [33] as a mixture of zero
mean with small variance. In this work, the non Gaussian noise in angular measurements
is modelled as a mixture of Gaussian densities plus shot noise.

The main contribution of this paper is the development of three new nonlinear filters
for AoT problem, MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK, and their performance
evaluation in the context of angles-only tracking. Accordingly, conventional filters UKF
and NSKF have been reformulated based on maximum correntropy criterion. MC-UKF and
MC-NSKF based on Gaussian kernel (MC-UKF-GK, MC-NSKF-GK) and Cauchy kernel
(MC-UKF-CK, MC-NSKF-CK) functions have been derived. The performance evaluation
of these estimators are conducted considering RMSE in position and track loss as the
two performance metrics and a comparative discussion is presented. The simulation
results highlight that the existing solutions behave poorly in comparison to the proposed
algorithms.

The rest of the paper is organised as follows. Section 2 describes the problem formula-
tion for AoT in 2D as well as 3D. Section 3 illustrates the correntropy, its properties for two
random variables and MCC. In Section 4, the already existing Gaussian kernel based MC
state estimation framework is revisited. In Section 5, the Cauchy kernel based MC state
estimation framework for nonlinear systems is derived. Section 6 briefly discuss about
the state estimators on which the developed MCC framework is incorporated. Section 7
describes the realization of non Gaussian noise, followed by simulation study in Section 8.
Finally, the concluding remarks are given in Section 9.
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2. Problem Formulation

The aim of the angles only tracking problem is to track the target trajectory using the
noise corrupted angular measurements. The dynamics of the target is assumed to be a
constant velocity motion. The observer motion is deterministic, implying that the position
and velocity of the observer is known to us. The 2D and 3D target observer dynamics is
illustrated below.

2.1. Process Model

The target and observer state vector with position and velocity as its states is given as

Xt
k =

[
xtk ytk ẋtk ẏtk

]′
Xo

k =
[
xok yok ẋok ẏok

]′
.

The discrete time linear process model representing the target motion is given as

Xt
k = FXt

k−1 + wk−1. (1)

Now, the relative state vector dynamics is

Xk = FXk−1 + wk−1 − Xo
k−1 + FXo

k−1. (2)

where Xk, the relative vector is defined as

Xk = Xt
k − Xo

k

=
[
xtk − xok ytk − yok ẋtk − ẋok ẏtk − ẏok

]′
=
[
xk yk ẋk ẏk

]′
.

(3)

F is the state transition matrix and wk−1 is zero mean Gaussian process noise with Q
as the covariance matrix. For problem formulation in the two dimensional space (let n = 2),
F, Q matrices are defined as,

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 and Q =


T3

3 qx 0 T2

2 qx 0
0 T3

3 qy 0 T2

2 qy
T2

2 qx 0 Tqx 0
0 T2

2 qy 0 Tqy

.

The target observer dynamics in 2D for a moderately nonlinear scenario, is shown in
Figure 1. Similarly for n = 3, the state and the associated matrices are

Xt
k =

[
xtk ytk ztk ẋtk ẏtk żtk

]′
Xo =

[
xok yok zok ẋok ẏok żok

]′

Fk−1 =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, Qk−1 =



T3

3 qx 0 0 T2

2 qx 0 0
0 T3

3 qy 0 0 T2

2 qy 0
0 0 T3

3 qz 0 0 T2

2 qz
T2

2 qx 0 0 Tqx 0 0
0 T2

2 qy 0 0 Tqy 0
0 0 T2

2 qz 0 0 Tqz


,

where T is the sampling time interval and qx, qy, qz are the power spectral densities of the
process noise along the X, Y, and Z axes respectively.
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Figure 1. Target Observer Dynamics in 2D.

The 3D target observer trajectory referred in the problem is given by Figure 2.
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Figure 2. Target Observer Dynamics in 3D.

2.2. Measurement Model

2D AoT problem: The only available measurements are the bearing angles through
which the states of the relative state vector can be estimated. The measurement model and
the true angle measurements for the problem can be represented as

zk = h(Xk) + vk h(Xk) = βk = tan−1(xk, yk). (4)

where vk shall be modelled as the non Gaussian noise.
3D AoT problem: Figure 3 represents the target observer dynamics in Cartesian coor-

dinate.
The range vector r is defined as

r =
[
xtk − xok ytk − yok ztk − zok

]′
=
[
xk yk zk

]′
.
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Figure 3. Target Observer in Cartesian Coordinate Frame.

From Figure 3, r can be expressed in terms of bearing (β) and elevation (ε) as

r = [r cos ε sin β r cos ε cos β r sin ε]′,

and the actual range is rk =
√
x2

k + y2
k + z2

k . Here, the nonlinear noise corrupted mea-
surements are bearing (β) and elevation (ε) angles respectively, where β ∈ [0, 2π] and
ε ∈ [−π

2 , π
2 ]. The measurement model involving the bearing and elevation angle is

zk = h(Xk) + vk, (5)

where h(Xk) =

[
βk
εk

]
=

 tan−1(xk, yk)

tan−1
(

zk√
xk

2+yk
2

).

Here, vk is to be modelled as the non Gaussian noise.

3. Correntropy Measure

Correntropy is directly related to the probability of how similar two random variables
are in the joint space controlled by the kernel bandwidth. The kernel bandwidth controls the
window in which the similarity has to be assessed, and hence provides a way to eliminate
the detrimental effect of outliers [16]. If X and Y are random variables, correntropy is
defined as

Vσ(X, Y) = E[kσ(X, Y)] =
∫∫

kσ(x, y)pXY(x, y) dx dy,

where kσ denotes a positive definite kernel function, pXY(.) denotes the joint PDF of X and
Y and E is the expectation operator. Since the joint density is not accessible and if only a
finite number of data points N are available, a sample estimator can be defined as

V̂σ(X, Y) =
1
N

N

∑
i=1

Gσ(xi − yi).
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Here Gσ(·) is the Gaussian kernel, defined as

Gσ(xi − yi) = exp

(
−‖xi − yi‖2

2σ2

)
, (6)

which is bounded, positive and reaches its maximum only when X = Y, leading to
the maximum correntropy criterion (MCC). By taking the Taylor series expansion of the
Gaussian kernel, correntropy can also be expressed as a weighted sum of all even order
moments of (xi − yi), i.e.,

Vσ(X, Y) =
∞

∑
k=0

(−1)k

2kσ2kk!
E[(X−Y)2k].

On the other hand, Cauchy kernel based non-linear state estimators can be developed
using Cauchy kernel instead of Gaussian kernel function. It is defined as [34]

Cδ(xi − yi) =
1

1 +
‖xi − yi‖2

δ

.

Here δ is a positive scalar, representing the Cauchy kernel bandwidth. Similar to the
Gaussian kernel, it can be shown that the Cauchy kernel also incorporates the higher order
moments, given as

Vδ(X, Y) =
∞

∑
k=0

(−1)k

δk

(
N + k− 1

k

)
E
[
(X−Y)2k

]
.

A detailed derivation of the above equation is given in Appendix A.

4. Gaussian Kernel Based Maximum Correntropy Estimation Framework

Let us consider the process model described in Equations (1) and (5). To accommodate
for the large outliers in measurements, the noise vk is considered non-Gaussian. Hence for
MC based estimation framework [24], the Gaussian assumption of vk is relaxed.

In order to deal with the non Gaussian noises in the measurement update step, a
statistical linearisation approach is employed. Consider that the nonlinear function h(·),
operating on vector random variables Xk is evaluated at N-points χk, k = 1, · · · ,N, with
zk = h(χk) + vk. Suppose that the weighted mean of χk is given by X̂k|k−1 = ∑N

k=1 Wkχk,
with ∑N

k=1 Wk = 1. Similarly, ẑk|k−1 = ∑N
k=1 Wkzk. Then the prior and cross covariance

Pk|k−1 and PXz are given as

Pk|k−1 =
N

∑
k=1

Wk

[
(χk − X̂k|k−1)(χk − X̂k|k−1)

′
]

and

PXz =
N

∑
k=1

Wk

[
(χk − X̂k|k−1)(zk − ẑk|k−1)

′
]
.

The nonlinear measurement function is represented in terms of measurement slope
matrix Hk, and a constant term ck as h(Xk) ≈ HkXk + ck. Here Hk and ck are computed by
minimizing the weighted least squares,

arg min
H̄k ,c̄k

Wk‖v̄k‖2, where vk = zk −HkXk − ck.
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Then the solutions are Hk =
(

P−1
k|k−1PXz

)′
and ck = ẑk|k−1 − HkX̂k|k−1. As the

mean of vk is zero, that is E[vk] = ẑk|k−1 −HkX̂k|k−1 − ck = 0, the covariance matrix Rk can
be calculated as

Rk =
N

∑
k=1

Wk[vkv′k]

=
N

∑
k=1

Wk

[
(zk − ẑk|k−1)−Hk(Xk − X̂k|k−1)

][
(zk − ẑk|k−1)−Hk(Xk − X̂k|k−1)

]′
=Pzz −HkPXz − P′XzH′k + HkPk|k−1H′k

=Pzz −HkPk|k−1H′k.

(7)

Thus, the linearised measurement equation is given as

zk = ẑk|k−1 + Hk

(
Xk − X̂k|k−1

)
+ vk with vk ∼ N (0, Rk). (8)

Accordingly, a cost function is formulated with the help of weighted least squares
(WLS) to handle Gaussian process noise. To handle non-Gaussian measurement noise,
statistical linearisation approach was used to define WLS function which in turn is used in
MCC. Hence the cost function can be defined as

J = ℘‖Xk − X̂k|k−1‖
2
P−1

k|k−1
− $ exp

(
− ℵ

′R−1ℵ
2σ2

)
,

where ℵ = zk − ẑk|k−1 −Hk(Xk − X̂k|k−1), ℘ and $ are adjustable weights. In order to find
the optimal estimate of Xk, the cost function has to be minimized i.e.,

X̂k = arg min
Xk

J,

and the solution can be obtained as ∂J
∂Xk

= 0. This implies that

∂J
∂Xk

= ℘P−1
k|k−1(Xk − X̂k|k−1) +

$

2σ2 Gσ(ℵR)H
′
kR−1

k ℵ

= ℘P−1
k|k−1(Xk − X̂k|k−1) +

$LG
k H′kR−1

k
2σ2 ℵ = 0, (9)

where

LG
k = Gσ(ℵR) = exp

(
− ℵ

′R−1ℵ
2σ2

)
. (10)

In order to guarantee the convergence of the algorithm to a corresponding state
estimator that follows a complete Gaussian assumption (when the kernel bandwidth σ
becomes infinity), the values for weights in J are taken as ℘ = 1 and $ = −2σ2. Then
Equation (9) becomes

P−1
k|k−1(Xk − X̂k|k−1) = LG

k H′kR−1
k ℵ.

Rearranging, we get(
P−1

k|k−1 + LG
k H′kR−1

k Hk

)
Xk = LG

k H′kR−1
k

(
zk − ẑk|k−1

)
+
(

LG
k H′kR−1

k Hk + P−1
k|k−1

)
X̂k|k−1. (11)

Since LG
k is related to Xk, Equation (11) represents a fixed point equation that can

be solved using the fixed point iteration algorithm considering Xk equal to X̂k|k−1 in
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Equation (10). But as mentioned in [19,22,24], for a satisfactory estimation performance, a
single iteration is sufficient. Hence, adopting the same approach leads to the modification
of Equation (11) as

X̂k|k = X̂k|k−1 + KG
k

(
zk − ẑk|k−1

)
,

where

KG
k =

(
P−1

k|k−1 + LG
k H′kR−1

k Hk

)−1
LG

k H′kR−1
k and

LG
k = exp

(
−

(zk − ẑk|k−1)
′R−1

k (zk − ẑk|k−1)

2σ2

)
.

A more appropriate form for KG
k , in terms of reduced computational complexity, can

be derived using the matrix inversion lemma (detailed derivation is given in Appendix B) as

KG
k = Pk|k−1LG

k Hk
′(Rk + HkPk|k−1LG

k H′k
)−1

. (12)

Now, the corresponding posterior error covariance matrix is given as

Pk|k =
(

I−KG
k Hk

)
Pk|k−1

(
I−KG

k Hk

)′
+ KG

k RkKG′
k .

5. Cauchy Kernel Based Maximum Correntropy Estimation Framework

In this section, we derive a maximum correntropy estimation framework using Cauchy
kernel for potential improvement in estimation accuracy, in the presence of large multi
dimensional non Gaussian noise. Hence the cost function becomes

JC = ℘C‖Xk − X̂k|k−1‖
2
P−1

k|k−1
− $CCδ

(
ℵR

)
where ℘C and $C are adjustable weights, and

Cδ

(
ℵR

)
=

1

1 +
ℵ′R−1

k ℵ
δ

,

with ℵ being the same as that mentioned in Section 4. To obtain the optimal estimate of Xk,

we equate
∂JC
∂Xk

= 0, giving ℘CP−1
k|k−1

(
Xk − X̂k|k−1

)
−

$CLC
k

δ
H′R−1

k ℵ = 0, where

LC
k = C2

δ(ℵR) = C2
δ

(
‖zk −HkXk − ẑk|k−1 + HkX̂k|k−1‖R−1

k

)
.

We set ℘C = 1 and $C = δ so as to guarantee the convergence of the estimator when
kernel bandwidth δ tends to ∞. Rearranging,(

P−1
k|k−1 + LC

k H′kR−1
k Hk

)
Xk = LC

k H′kR−1
k

(
zk − ẑk|k−1

)
+
(

LC
k H′kR−1

k Hk + P−1
k|k−1

)
X̂k|k−1. (13)

Here also, LC
k is related to Xk and hence Equation (13) is a fixed point equation that is

to be solved using fixed point iteration algorithm, considering Xk equal to X̂k|k−1. Using
the same justification that was adopted in Gaussian kernel case that only a single iteration
is required, the expression for posterior mean is obtained as

X̂k|k = X̂k|k−1 + KC
k

(
zk − ẑk|k−1

)
,
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where

KC
k =

(
P−1

k|k−1 + LC
k H′kR−1

k Hk

)−1
LC

k H′kR−1
k and LC

k = C2
δ

(
‖zk − ẑk|k−1‖R−1

k

)
.

As per the proof given in Appendix B, Kalman gain can be modified as

KC
k = Pk|k−1LC

k H′k
(

Rk + HkPk|k−1LC
k H′k

)−1
. (14)

Then the posterior error covariance matrix shall be calculated as

Pk|k =
(

I−KC
k Hk

)
Pk|k−1

(
I−KC

k Hk

)′
+ KC

k RkKC′
k . (15)

Theorem 1. As the kernel bandwidth δ→ ∞, the Cauchy kernel based MC estimator reduces to
the standard nonlinear state estimation algorithm.

Proof. As the time update is the same for the developed algorithms with respect to the
standard nonlinear state estimators, the prior mean and covariance is unchanged. Hence
the focus shall be on the posterior mean and covariance. This implies that the Kalman gain
equation has to be revisited. When δ→ ∞,

lim
δ→∞

LC
k = lim

δ→∞
C2

δ

(
‖zk − ẑk|k−1‖R−1

k

)
= lim

δ→∞

1(
1 +
ℵ′R−1

k ℵ
δ

)2 = 1. (16)

Substituting the Equations (7) and (16) and Hk in KC
k , we have

KC
k = Pk|k−1(P

−1
k|k−1PXz)(Pzz −HkPk|k−1H′k + HkPk|k−1H′k)

−1 = PXzPzz
−1.

Since the expression of KC
k is similar to the Kalman gain of standard nonlinear state

estimator, posterior mean is also the same.
Now, for the posterior covariance Pk|k, consider Equation (15),

Pk|k = Pk|k−1 − Pk|k−1H′kKC′
k −KC

k HkPk|k−1 + KC
k

(
Rk + HkPk|k−1LC

k H′k
)

KC′
k . (17)

Post multiplying Equation (14) by (Rk + HkPk|k−1LC
k H′k) on both sides give

KC
k (Rk + HkPk|k−1LC

k H′k) = Pk|k−1LC
k H′k. (18)

Using Equations (16) and (18)

Pk|k = Pk|k−1 − Pk|k−1H′kKC′
k −KC

k HkPk|k−1 + Pk|k−1H′kKC′
k = Pk|k−1 −KC

k HkPk|k−1.

Substituting Hk, we get Pk|k = Pk|k−1 − KC
k P′Xz. For the given condition, KC

k =

PXzPzz
−1, then P′Xz = Pzz

′KC′
k . Thus Pk|k will become Pk|k = Pk|k−1 −KC

k Pzz
′KC′

k , which
matches with the posterior error covariance of standard nonlinear estimator.

Remark 1. For systems with non-Gaussian noise with large probability of abnormal noise, small
value of δ is likely to provide more robustness. If the occurrence of abnormal noise is less, large value
of δ could be considered.
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Remark 2. Cauchy kernel based nonlinear estimator with different δ performs with more estimation
accuracy than Gaussian kernel based nonlinear estimator with different σ. Hence it is easier to select
a value for δ that can provide accurate and robust estimates in the presence of abnormal noise.

6. Nonlinear State Estimators

This section deals with the nonlinear state estimators UKF and NSKF with a general-
ized algorithm for kernel based MC estimator.

6.1. Unscented Kalman Filter (UKF)

In the Bayesian framework, when the functions are nonlinear, the integrals encoun-
tered are intractable in nature and has to be evaluated using suitable numerical approx-
imation methods. The UKF, through its unscented transformation, provides a way to
numerically evaluate these integrals. Assuming that the integral to be approximated is

I(X) =
∫

h(X)pX(X)dX,

and X ∼ N (X̂, P), the unscented transformation defines a set of sigma points (X̂i) and
weights (Wi) such that [35]

I(X) u
N

∑
i=1

Wih(X̂i), where n is the dimension of the state space and N = 2n + 1.

The sigma points and weights are defined as

X̂1 = X̂, W1 =
κ

n + κ
,

X̂i = X̂+
(√

(n + κ)P
)

i
Wi =

1
2(n + κ)

, i = 1, · · · , n

X̂i = X̂−
(√

(n + κ)P
)

i
Wi =

1
2(n + κ)

, i = 1, · · · , n,

(19)

with κ being the tuning parameter and X̂ is the mean.

6.2. New Sigma Point Kalman Filter (NSKF)

From Equation (19), it can observed that in the unscented transformation, the maxi-
mum weight is assigned to the mean value. All the other sigma points are assigned equal
weights, i.e., same probability of occurrence. In NSKF, a new approach was considered
such that the sigma points closer to the mean will have more probability of occurrence.
To realize this, a new method was formulated for defining the sigma points and weights,
stated as [8]

X̂1 = X̂, W1 = 1− ∑n
i=1 αi

2(∑n
i=1 αi + b)

X̂i+1 = X̂+

√
∑n

i=1 αi + b
mαi

Si, Wi+1 =
mαi

4(∑n
i=1 αi + b)

, i = 1, · · · , n

X̂i+1 = X̂−

√
∑n

i=1 αi + b
mαi−n

Si−n, Wi+1 =
mαi−n

4(∑n
i=1 αi + b)

, i = n + 1, · · · , 2n

X̂i+1 = X̂+

√
∑n

i=1 αi + b
(1−m)αi−2n

Si−2n, Wi+1 =
(1−m)αi−2n

4(∑n
i=1 αi + b)

, i = 2n + 1, · · · , 3n

X̂i+1 = X̂−

√
∑n

i=1 αi + b
(1−m)αi−3n

Si−3n, Wi+1 =
(1−m)αi−3n

4(∑n
i=1 αi + b)

, i = 3n + 1, · · · , 4n.

(20)
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Now the total number of sigma points N = 4n + 1, Pi and Si denote the ith column of
P and S respectively, and SS′ = P. The scalar variables are defined as b > { 1

4 max(mαi)−
1
2 ∑n

i=1 αi}, m ∈ (0.5, 1) and αi =
|<X̂,Pi>|
‖X̂‖2‖Pi‖2

.
The Algorithm 1 for the developed estimators, both Gaussian kernel and Cauchy

kernel based is given below. In this algorithm, Kk and Lk can be defined as per the chosen
kernel function. Rk is the noise covariance matrix which is assumed to be known in case
there are no measurement outliers.

Algorithm 1: For MC-UKF-CK and MC-NSKF-CK

Initialise X̂k−1|k−1 and Pk−1|k−1

X̂k|k−1 = Fk−1X̂k−1|k−1 − Xo
k + Fk−1Xo

k−1

Pk|k−1 = Fk−1Pk−1|k−1F′k−1 + Q

Calculate X̂i and Wi using (19) or (20), i = 1, · · · , N

Zi,k|k−1 = h(X̂i)

ẑk = ∑N
i=1 WiZi,k|k−1

Pzz = ∑N
i=1 Wi[Zi,k|k−1 − ẑk][Zi,k|k−1 − ẑk]

′ + Rk

PXz = ∑N
i=1 Wi[X̂i,k|k−1 − X̂k|k−1][Zi,k|k−1 − ẑk]

′

Hk = (P−1
k|k−1PXz)

′

Rk = Pzz −HkPk|k−1H′k

Kk = Pk|k−1LkH′k(Rk + HkPk|k−1LkH′k)−1.

Posterior mean: X̂k|k = X̂k|k−1 + Kk

(
zk − ẑk

)
.

Posterior covariance: Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
′ + KkRkK′k.

7. Modelling of Non Gaussian Noise in Angular Measurements

As mentioned in [36], a suitable way of modelling glint noise is to assume a Gaussian
mixture. It is observed that the glint is more like Gaussian around the mean but has a
non-Gaussian nature towards the tail region. The tail region represents the outliers, termed
as glint spikes [32]. But shot noise, on the other hand, is modelled as an impulse with
fixed amplitude at specific time steps. The mixture density of glint noise is modelled as
f (x) = (1− µ) fg1(x) + µ fg2(x), where µ is the glint probability and fg1(x) ∼ N (0, σ2

1 ),
fg2(x) ∼ N (0, σ2

2 ) with σ1 6= σ2. The non Gaussian noises for angular measurements have
been modelled by taking appropriate values for µ, σ1 and σ2.

8. Simulation Results

The scenario for angles-only tracking problem in 2D as well as 3D Cartesian coordinate
frame is considered in this section. The parameters required for generating the target-
observer dynamics, and simulation results are discussed. For simulations, moderately
nonlinear tracking scenario for 2D as well as for 3D is considered. The simulation is carried
for 1000 Monte Carlo runs with sampling time interval denoted as T. The entire tracking
scenario is implemented and simulated in MATLAB software.
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8.1. 2D Scenario and Filter Initialisation

Figure 4 shows the tracking performance of MC-NSKF-CK, where the estimated target
path is plotted along with the truth target path, and the observer path for a single Monte
Carlo run. It should be noted that for each run, observer path remains the same where
as the target path varies due to the process noise. Further, the filter initialisation is also
changing because of the randomness introduced in each run, as mentioned in Equation (21).

The filter is initialised as given in [10]. It is to be noted that for filter initialisation,
we need an initial guess for speed, initial course and range of the target. Considering the
problem at hand, these estimates have to be obtained from the initial angle measurement
received. From these initial guess for parameters, the initial estimate for the states are
obtained which are the positions and velocities. Accordingly, the initial range, target
course and speed values are considered and mentioned in the Table 1. They are defined
as s = N (s, σ2

s ), cr = N (cr, σ2
c ) and r = N (r, σ2

r ) where cr can be defined as cr = z0 + π
with z0 as the first bearing measurement. Finally the initial state vector X̂0|0 and the initial
covariance P0|0 is calculated as

X̂0|0 =


r sin(z0)
r cos(z0)

s sin(cr)− ẋo0
s cos(cr)− ẏo0

 P0|0 =


Pxx Pxy 0 0
Pyx Pyy 0 0
0 0 Pẋẋ Pẋẏ
0 0 Pẏẋ Pẏẏ

 (21)

where

Pxx = r2σ2
β cos2(z0) + σ2

r sin2(z0) Pyy = r2σ2
β sin2(z0) + σ2

r cos2(z0)

Pxy = Pyx = (σ2
r − r2σ2

β) sin(z0) cos(z0) Pẋẋ = s2σ2
c cos2(cr) + σ2

s sin2(cr)

Pẏẏ = s2σ2
c sin2(cr) + σ2

s cos2(cr) Pẋẏ = Pẏẋ = (σ2
s − s2σ2

c ) sin(cr) cos(cr).

Table 1. Tracking parameters for 2D scenario.

Parameters Values

Initial Target Position
[
4.9286 0.8420

]
(km)

Initial Observer Position
[
0 0

]
(km)

Initial Target Speed (s) 4 (knots)
Initial Observer Speed 5 (knots)

Target Course −135.4◦

Observer manoeuvre From 780 to 1020 (s)
Initial Range (r) 5 (km)

Observation time 1800 (s)
qx, qy 9 ×10−12 (km2/s3)

σβ 1.5◦

σr 2 (km)
σs 2 (knots)

Sampling time T = 10 (s)
Initial Observer Course 140◦

Final Observer Course 20◦

σc π/
√

12
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Figure 4. Target truth and estimated path obtained from MC-NSKF-CK.

8.2. 3D Scenario and Filter Initialisation

Figure 5 shows the estimated target path obtained from MC-NSKF-CK and truth target
path with observer trajectory. The initial parameter values required for generating the 3D
scenario is given in the Table 2. Assuming that there are no outliers in the measurement,
Rk is defined as Rk = diag(σβ, σε). The bearing angle β is calculated with reference to the
true North.

Table 2. Target & Observer Initial Parameters.

Parameters Values

Initial Target Position
[
138/

√
2 138/

√
2 9

]
(km)

Initial Observer Position
[
0 0 10

]
(km)

Initial Target Speed (s) 0.297 (km/s)
Initial Observer Speed (s) 0.297 (km/s)

Target Course −135◦

Observer manoeuvre From 70 to 370 (s)
Initial Range (r) 150 (km)

Observation time 420 (s)
qx, qy 10−8 km2/s3

qz 10−10 km2/s3

σβ, σε 0.057◦

σr 13.6 (km)
σs 41.6 (m/s)

Elevation Angle 0.415◦

Sampling time T = 10 (s)

For each Monte Carlo run, according to the new measurement received, initial range r
and speed of the target s is assumed as mentioned in Table 2. According to these values,
the relative state is initialised using the range estimate r ∼ N (r, σr

2), initial bearing and
elevation estimate β̂1 and ε̂1 with headings α1 = β1 + π rad/s and γ1 = 0 rad/s, and
the initial speed estimate s ∼ N (s, σs

2) with s as 0.258 km/s. The σα1 = π/
√

12 and
σγ1

= π/60 respectively [37].
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Figure 5. Target truth and estimated path obtained from MC-NSKF-CK.

The initial relative state vector X̂0|0 is given as [38]

X̂0|0 =



r ζ1,0(ε̂1, σε
2) ζ0,1(β̂1, σβ

2)

r ζ1,0(ε̂1, σε
2) ζ1,0(β̂1, σβ

2)

r ζ0,1(ε̂1, σε
2)

s ζ1,0(γ1, σγ
2) ζ0,1(α1, σα

2)− ẋo1

s ζ1,0(γ1, σγ
2) ζ1,0(α1, σα

2)− ẏo1

s ζ0,1(γ1, σγ
2)− żo1


,

where ζ1,0(µ, σ2) = cos µ exp(−σ2/2) and ζ0,1(µ, σ2) = sin µ exp(−σ2/2).
The initial covariance matrix P0|0, whose entries are considered as mentioned in [38],

is defined as

P0|0 =



Pxx Pxy Pxz 0 0 0
Pxy Pyy Pyz 0 0 0
Pxz Pyz Pzz 0 0 0
0 0 0 Pẋẋ Pẋẏ Pẋż
0 0 0 Pẋẏ Pẏẏ Pẏż
0 0 0 Pẋż Pẏż Pżż


.

8.3. Performance Metrics

Performance analysis of the estimators formulated is evaluated by considering the
below mentioned error statistics.

1. RMSE: Root-mean-square error in resultant target position is computed as follows

RMSEk =

√√√√ 1
M

M

∑
j=1

[(xtj,k − x̂tj,k)
2 + (ytj,k − ŷtj,k)

2]

n=2

RMSEk =

√√√√ 1
M

M

∑
j=1

[(xtj,k − x̂tj,k)
2 + (ytj,k − ŷtj,k)

2 + (ztj,k − ẑtj,k)
2]

n=3

where k denotes the time steps and M the total number of Monte Carlo runs.
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2. Track Divergence: In order to identify if a track is divergent or not, a certain threshold
value (Tb) is set according to the position error computed at the final time instant of
observation (kmax) as

poserr =
√
(xtj,kmax

− x̂tj,kmax
)2 + (ytj,kmax

− ŷtj,kmax
)2

n=2

poserr =
√
(xtj,kmax

− x̂tj,kmax
)2 + (ytj,kmax

− ŷtj,kmax
)2 + (ztj,kmax

− ẑtj,kmax
)2

n=3

for j = 1, 2, · · · , M.

So, if the difference between estimated and truth target position is more than the
threshold value (Tb), then we can say that the estimated path is moving away from the
truth path. Thus, the track is considered to be divergent, and the number of such tracks are
counted over M Monte Carlo runs.

8.4. Performance Analysis

The performance analysis of the developed filters is evaluated in the presence of glint
plus shot noise in angle measurements. The accuracy of the estimators are evaluated by
computing root mean square error (RMSE) in position at the end of the simulation period
by imposing a track loss condition of 1 km.

vk =

0.2N (0, σθ1
2) + 0.8N (0, σθ2

2) + 10◦, when k = 1200 and 900 s
0.2N (0, σθ1

2) + 0.8N (0, σθ2
2), otherwise.

(22)

The measurement noise vk for both the scenarios are given in Equations (22) and
(23), respectively. Here, σθ1 = 0.5◦, σθ2 = 5◦, (σβ1 , σε1) as 0.0001 rad and (σβ2 , σε2) as
0.01 rad. The noise corrupted angle measurement for 2D is plotted as Figure 6. For
3D, the noise corrupted bearing and elevation angle are as shown in Figures 7 and 8
respectively. For illustration, in the figures, we have also plotted the angle measurements
with Gaussian noise.

vk =


0.8N (0, diag([σβ1

2 σε1
2])) + 0.2N (0, diag([σβ2

2 σε2
2])) + [10◦ 1◦]T ,

when k = 270 and 390 s
0.8N (0, diag([σβ1

2 σε1
2])) + 0.2N (0, diag([σβ2

2 σε2
2])), otherwise.

(23)
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Figure 6. 2D: Angle measurement with glint plus shot noise.
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Figure 7. 3D: Bearing angle measurement with glint plus shot noise.
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Figure 8. 3D: Elevation angle measurement with glint plus shot noise.

With track loss condition of less than 1 km, the observed RMSE in position at the last
time instant and percentage track loss for 2D as well as 3D is given in the Tables 3 and 4
respectively. Also, RMSE in resultant position (after excluding the diverged tracks) is
evaluated and plotted in Figures 9 and 10. From these figures it can be inferred that in
the presence of non Gaussian noise the estimation accuracy of UKF deteriorates, whereas
filters based on MC framework performed with superior estimation accuracy. From the
tabulation results it is evident that the Cauchy kernel based MC-UKF and MC-NSKF gives
108.9 m, 108.8 m RMSE and 1.1 and 0.5% track loss which is much less than that of the
conventional UKF and NSKF which gives 152.8 m and 151.1 m RMSE with 4.4 and 2.8%
track loss in 2D scenario. Similar observations can be made with respect to Gaussian kernel
based MC-UKF and MC-NSKF giving much better accuracy but slightly less than Cauchy
kernel MC framework. However, in 3D scenario, the MC based filters gave even superior
estimation efficiency than that of the 2D scenario. UKF and NSKF in 3D with non Gaussian
noise resulted in 100% track loss. Hence it can be inferred that for the given problem set up
and noise statistics, UKF and NSKF failed to give estimates that met the track loss condition
set, where as the Gaussian and Cauchy kernel based maximum correntropy filters gave
more robust and accurate estimates. This can be inferred from the simulation results where
the developed filters incurred only 13 to 14% track loss, with a final error in range of around
500 m. All these simulations are carried out by assuming the bandwidth (σ, δ) for 2D
as (9,70) and for 3D as (11,75) such that the estimators can achieve maximum estimation
accuracy. Also, the tuning parameter value of NSKF, m = 0.6 is assumed for simulation.
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Figure 9. 2D: RMSE in position.

Table 3. 2D: RMSE in position and % Track Loss.

Filters % Track Loss RMSE (m)

UKF 4.4 152.8
MC-UKF-GK 1.1 111.0
MC-UKF-CK 1.1 108.9

NSKF 2.8 151.1
MC-NSKF-GK 1.2 109.6
MC-NSKF-CK 0.5 108.8

Table 4. 3D: RMSE in position and % Track Loss.

Filters % Track Loss RMSE (m)

UKF 100 -
MC-UKF-GK 14 496.1
MC-UKF-CK 13.5 499.8

NSKF 100 -
MC-NSKF-GK 14 496.8
MC-NSKF-CK 13.5 498.9
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Figure 10. 3D: RMSE in position.
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9. Conclusions

Since, measurements obtained in target tracking scenarios are corrupted with non
Gaussian noise, this paper presents a maximum correntropy framework for 2D as well as
3D angles-only target tracking problem. The reformulation of UKF and NSKF in terms of
Gaussian and Cauchy kernel based MC framework was realized. The non Gaussian noise is
modelled as a Gaussian mixture (glint noise) plus shot noise. Finally, the performance of the
estimators were evaluated and a comparative analysis is presented on the basis of RMSE
in position and % track loss. From the comparative analysis, it can be concluded that the
Gaussian and Cauchy kernel based MC framework provides improved estimation accuracy
than UKF and NSKF in non Gaussian noise environments. Thus, it can be inferred that
MC based estimators have the potential to give accurate and robust state estimates in the
presence of non Gaussian noises in angle measurements. As a future work, the proposed
estimation framework can be extended to track a manoeuvring target in the presence of
angles-only measurements corrupted with non Gaussian noise.
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Abbreviations
The following abbreviations are used in this manuscript:

Xt
k Target state vector at sample k

Xo
k Observer state vector at sample k

Xk Relative state vector at sample k
w Zero mean Gaussian process noise
Q Process covariance
F State transition matrix
T Sampling time
qx, qy, qz Power spectral densities of the process noise along the X, Y, and Z axes
zk Measurement vector at sample k
vk Non Gaussian measurement noise at sample k
r Range vector
β and ε Bearing and Elevation angle measurement
Rk Measurement noise covariance matrix at sample k
σβ and σε Standard deviations of error in bearing and elevation angles
kσ Kernel function
Gσ and σ Gaussian kernel and Gaussian bandwidth
Cδ and δ Cauchy kernel and Cauchy bandwidth
Xk|k−1 Prior mean at sample k
Pk|k−1 Prior covariance at sample k
Wk Weights at sample k
Hk Measurement slope matrix
PXz Cross covariance
Pzz Measurement covariance
J Cost function
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℘ and $ Adjustable weights
LG

i Gaussian scalar term
KG

i Gaussian Kalman gain
Xk|k Posterior mean at sample k
Pk|k Posterior covariance at sample k
cr Initial course estimate
β̂1 and ε̂1 True initial bearing and elevation measurement estimate
α1 and γ1 Bearing and Elevation angle heading
Tb Threshold
RMSE Root Mean Square Error
MMSE Minimum Mean Square Error
MC-UKF-GK Maximum correntropy unscented Kalman filter Gaussian kernel
MC-UKF-CK Maximum correntropy unscented Kalman filter Cauchy kernel
MC-NSKF-GK Maximum correntropy new sigma point Kalman filter Gaussian kernel
MC-NSKF-CK Maximum correntropy new sigma point Kalman filter Cauchy kernel

Appendix A. Power Series Expansion of Cauchy Kernel Function

The binomial expansion of (1 + x)−N for negative integer −N is given as follows:(
1 + x

)−N
= 1 + (−N)x +

(−N)(−N − 1)
2!

x2 +
(−N)(−N − 1)(−N − 2)

3!
x3 + · · · ,

=
∞

∑
k=0

(−1)k
(

N + k− 1
k

)
xk, for |x| < 1.

Now the correntropy measure, by taking the binomial series expansion of Cauchy

kernel with x = (X−Y)2

δ is

Vδ(X, Y) =
∞

∑
k=0

(−1)k
(

N + k− 1
k

)(
(X−Y)2

δ

)k

=
∞

∑
k=0

(−1)k

δk

(
N + k− 1

k

)
E
[
(X−Y)2k

]
, for

∣∣∣∣∣ (X−Y)2

δ

∣∣∣∣∣ < 1.

Appendix B. Derivation of Kalman Gain

The Kalman gain for Gaussian kernel based nonlinear estimator is KG
k with LG

k as a
scalar term. Similarly, for Cauchy kernel, it is KC

k and LC
k respectively. A general expression

for Kalman gain is given as Kk = (P−1
k|k−1 + LkH′R−1

k H)−1LkH′R−1
k . Applying matrix

inversion lemma

Kk =
(

Pk|k−1 − Pk|k−1LkH′(Rk + HPk|k−1LkH′)−1HPk|k−1

)
LkH′R−1

k

= Pk|k−1LkH′R−1
k − Pk|k−1LkH′(Rk + HPk|k−1LkH′)−1HPk|k−1LkH′R−1

k

= Pk|k−1LkH′
(

R−1
k − (Rk + HPk|k−1LkH′)−1HPk|k−1LkH′R−1

k

)
= Pk|k−1LkH′

(
I− (Rk + HPk|k−1LkH′)−1HPk|k−1LkH′

)
R−1

k .

After certain algebraic manipulations, we get

Kk = Pk|k−1LkH′(I + R−1
k HPk|k−1LkH′)−1R−1

k = Pk|k−1LkH′k(Rk + HkPk|k−1LkH′k)
−1. (A1)

From the above equation, KG
k and KC

k can be defined by making necessary substitution
for LG

k and LC
k .
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