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Abstract: Uneven illumination and space radiation can cause inhomogeneous grayscale distribution,
low contrast, and noisy images in in-orbit cameras. A binarization algorithm based on morphological
classification is proposed to solve the problem of inaccurate image binarization caused by space
image degradation. Traditional local binarization algorithms generally calculate thresholds based on
statistical information of gray dimensions within the local window, often ignoring the morphological
distribution information, leading to poor results in degraded images. The algorithm presented in
this paper demonstrates the property of the side window filtering (SWF) kernel on morphological
clustering. First, the eight-dimensional SWF convolution kernel is used to describe the morphological
properties of the pixels. Then, the positive and negative types of each pixel in the local window
are identified, and the local threshold is calculated according to the difference between the two
types. Finally, the positive pixel is used to filter the threshold of each pixel, with the binarization
threshold satisfying the morphologically smooth and continuous property. A self-built dataset is
used to evaluate the algorithm quantitatively and the results are compared with the three existing
classical techniques using the quantitative measures FM, PSNR, and DRD. The experimental results
show that the algorithm in this paper yields good binarization results for different degraded images,
outperforms the comparison algorithm in terms of accuracy and robustness, and is insensitive
to noise.

Keywords: adaptive binarization; uneven illumination; side window filter; in-orbit image processing

1. Introduction

The visual-perception camera is a fairly common piece of aerospace pose-measurement
equipment, and is characterized by high accuracy, noncontact use, and low power con-
sumption. It is widely used in tasks such as spacecraft rendezvous, care and maintenance
of on-orbit load of space manipulators, and cleanup of space debris or abandoned satel-
lites [1–4]. The visual-measurement camera uses the visual-positioning marker as the
observed target, the relationship of the target feature in the image as a reference, and
image preprocessing, target recognition, and attitude calculation to determine the position
and attitude of the target. The visual-positioning markers are generally designed to be
easily recognizable, high-contrast pattern features [5]. The general visual measurement
framework is presented in Figure 1.

After image preprocessing, the binarized image can strengthen the target features and
is a crucial part of identification and positioning. The binarization algorithm of the image
can be expressed as:

I′(x, y) =
{

1, I(x, y) ≥ T
0, I(x, y) < T

(1)
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of the space environment: 

Challenge 1: The light shifts rapidly when working on-orbit, and there is no atmos-
phere or other media to reflect sunlight, resulting in a considerable difference in the 
brightness of the direct sunlight and shadow regions. Consequently, the target grayscale 
seen in the image will have an uneven grayscale distribution. The target identification and 
localization of such uneven lighting and contrast images is a difficult task in in-orbit image 
processing (Figure 2b). Solving this problem can enable the camera to work continuously 
without the influence of ambient lighting, and can also reduce the constraints of in-orbit 
mission scheduling. 
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Challenge 2: The space camera must function in orbit for an extended time period 
and is exposed to electromagnetic radiation and multiple energy particles [6]. This causes 
rapid deterioration of the device, compared to the ground environment, increase in the 
detector background noise, and decrease in the imaging dynamic range. Figure 3 shows 

Figure 1. Visual measurement system working frame.

The main factor affecting the binarization is the calculation of threshold T. Inappropri-
ate values lead to incorrect segmentation of the foreground and background of the image,
resulting in incomplete or deviated features, directly affecting the accuracy of the pose
solution. In-orbit image binarization faces the following three challenges as a result of the
space environment:

Challenge 1: The light shifts rapidly when working on-orbit, and there is no atmo-
sphere or other media to reflect sunlight, resulting in a considerable difference in the
brightness of the direct sunlight and shadow regions. Consequently, the target grayscale
seen in the image will have an uneven grayscale distribution. The target identification and
localization of such uneven lighting and contrast images is a difficult task in in-orbit image
processing (Figure 2b). Solving this problem can enable the camera to work continuously
without the influence of ambient lighting, and can also reduce the constraints of in-orbit
mission scheduling.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18 
 

 

𝐼′(𝑥, 𝑦) = ൜1, 𝐼(𝑥, 𝑦) ≥ 𝑇0, 𝐼(𝑥, 𝑦) < 𝑇 (1) 

 
Figure 1. Visual measurement system working frame. 

The main factor affecting the binarization is the calculation of threshold 𝑇. Inappro-
priate values lead to incorrect segmentation of the foreground and background of the im-
age, resulting in incomplete or deviated features, directly affecting the accuracy of the 
pose solution. In-orbit image binarization faces the following three challenges as a result 
of the space environment: 

Challenge 1: The light shifts rapidly when working on-orbit, and there is no atmos-
phere or other media to reflect sunlight, resulting in a considerable difference in the 
brightness of the direct sunlight and shadow regions. Consequently, the target grayscale 
seen in the image will have an uneven grayscale distribution. The target identification and 
localization of such uneven lighting and contrast images is a difficult task in in-orbit image 
processing (Figure 2b). Solving this problem can enable the camera to work continuously 
without the influence of ambient lighting, and can also reduce the constraints of in-orbit 
mission scheduling. 

 
Figure 2. Shenzhou spacecraft docking visual-positioning marker (a) uniform lighting conditions 
(b) nonuniform lighting conditions. 

Challenge 2: The space camera must function in orbit for an extended time period 
and is exposed to electromagnetic radiation and multiple energy particles [6]. This causes 
rapid deterioration of the device, compared to the ground environment, increase in the 
detector background noise, and decrease in the imaging dynamic range. Figure 3 shows 

Figure 2. Shenzhou spacecraft docking visual-positioning marker (a) uniform lighting conditions
(b) nonuniform lighting conditions.

Challenge 2: The space camera must function in orbit for an extended time period
and is exposed to electromagnetic radiation and multiple energy particles [6]. This causes
rapid deterioration of the device, compared to the ground environment, increase in the
detector background noise, and decrease in the imaging dynamic range. Figure 3 shows
considerable decrease in the image contrast of the Solar Dynamics Observatory (SDO) over
more than ten years in orbit [7].
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Figure 3. Sun photographed at 304 Å by SDO. Each image was taken on June 1 of the correspond-
ing year.

Challenge 3: The impact of radiation particles on the detector [8], as well as the intense
temperature variation, can cause random noise in images. Figure 4 shows an image taken
by star-sensitive instrument operating in orbit, containing random noise.
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Extensive research has been conducted to increase the accuracy and robustness of
the binarization algorithm. There are global and local image-binarization methods. The
global method takes the full-image pixel statistical information as the reference and uses
a single threshold to segment the image into the foreground and background. The most
representative algorithm is the Otsu algorithm [9], which traverses each gray level of
the image grayscale histogram and selects the gray level that creates the largest variance
between the foreground and background classes as the segmentation threshold. Other
representative global-threshold binarization methods include the Kapur method [10] and
Kittler method [11]. The segmentation results from these methods are good when the
image grayscale distribution shows obvious bimodal peaks. However, when the scene
lighting is uneven, a lot of information will be lost. The local binarization method sets
a threshold based on the grayscale relationship between each pixel and its neighboring
pixels to binarize the image pixel by pixel, with representative algorithms being the Sauvola
method [12], Niblack method [13], etc. Jia et al. incorporated the structural symmetric pixels
(SSPs) to calculate the local threshold in the neighborhood and the vote result of multiple
thresholds [14]. Vo et al. presented a Gaussian Mixture Markov Random Field (GMMRF)
model that is effective for the binarization of images with complex backgrounds [15]. These
algorithms and their improved versions can retain local feature information, achieving bet-
ter results in the industry-recognized DIBCO text-binarization recognition competition [16].
However, the current local binarization algorithms have a high degree of dependence
on hyperparameters, and generally consider the distribution of the grayscale dimension,
such as grayscale mean, variance, and entropy, without considering the morphological
distribution. Deep-learning-based binarization techniques have advanced significantly in
recent years. Zhao et al. formulated binarization as an image-to-image generation task
and introduced the conditional generative adversarial networks (cGANs) to solve the core
problem of multiscale information combination in the binarization task [17]. Westphal
et al. proposed a recurrent neural network-based algorithm using Grid Long Short-Term
Memory cells for image binarization, and a pseudo F-Measure-based weighted loss func-
tion [18]. In particular, the algorithm that won the first place in DIBCO2017 selected the
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U-Net neural-network framework and achieved a better segmentation effect using the data-
expansion strategy [19]. Although the neural-network-based binarization method achieved
excellent results in the competition, serious limitations such as computing resources and
dataset coverage remain unsolved in the space-application environment. There are still no
neural-network-based binarization methods applied to in-orbit tasks.

To solve the binarization problem of in-orbit degraded images, a binarization algorithm
based on side window filtering (SWF) multidimensional convolutional classification is
proposed in this paper. SWF was proposed in 2019 in Hui Yin et al. [20]. The proposal
of SWF aimed to perform edge-preserving and denoising filtering on images. SWF is an
innovative image-processing theory, and the team of Hui Yin et al. has further shown
that the SWF principle can be extended to other computer vision problems that involve a
local operation window and a linear combination of the neighbors in this window, such as
colorization by optimization. Chen et al. employed SWF for image-dehazing optimization,
ensuring that texture and edge information was preserved [21]. Lu et al. suggested an
improved SWF algorithm for edge-preserving denoising filtering of star maps collected
by in-orbit star-sensitive sensors to improve the star point localization accuracy [22]. The
above-mentioned related studies revealed that SWF has both morphological and grayscale
statistical properties, so it was used as an operator for morphological clustering of local
pixels, allowing the hereby proposed binarization algorithm to consider both local grayscale
distribution information and morphological information.

The contributions of this paper are:

1. The local binarization problem was transformed into a clustering problem. Addition-
ally, images binarized by the SWF framework-based method were demonstrated to
have higher local information than traditional methods.

2. An SWF-based binarization algorithm was designed for space images with uneven
illumination, low contrast, and noise. The results showed the effectiveness of the
method for degraded images.

3. A ground-test environment was designed using real cooperative targets and a test
set was generated by changing illumination, shadows, and noise. The test set was
then used to quantitatively evaluate the effect of binarization. The test set is openly
available for further algorithm research.

The remainder of this paper is organized as follows: The motivation of the proposed
work is discussed in Section 2. The implementation of the proposed method is described in
Section 3. The experimental results are presented in Section 4. Finally, Section 5 includes
the conclusions.

2. Motivation of the Proposed Method

The previous analysis of in-orbit image characteristics revealed the most important
impact to be contrast reduction. Figure 5 depicts the histograms of a high-contrast image
and a low-contrast image in the same scene. The difference between the foreground and
background of the high-contrast image is large, and the binarization threshold is more
tolerant of errors. Conversely, the difference is less than 20 in the low-contrast image,
and a small threshold fluctuation can lead to segmentation errors. In this section, the im-
provement of the binarization accuracy by adding morphological-dimensional information
is analyzed.

In a local window containing foreground and background, it is assumed that the
binarization algorithm has the following properties:

1. If the local window contains both foreground and background information, then the
current pixel must belong to one of the two categories, and conversely, the pixel that
differs significantly from the current pixel belongs to the other category.

2. Except for single-point noise, each pixel in the local window, including foreground
and background, should be locally continuous, smooth, and have a threshold approxi-
mation to pixels of the same category.



Sensors 2022, 22, 5640 5 of 16
Sensors 2022, 22, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 5. Image grayscale histogram. (a) High-contrast image; (b) low-contrast image. 

In a local window containing foreground and background, it is assumed that the bi-
narization algorithm has the following properties: 
1 If the local window contains both foreground and background information, then the 

current pixel must belong to one of the two categories, and conversely, the pixel that 
differs significantly from the current pixel belongs to the other category. 

2 Except for single-point noise, each pixel in the local window, including foreground 
and background, should be locally continuous, smooth, and have a threshold approx-
imation to pixels of the same category. 
According to the above properties, the local binarization problem can be transformed 

into a clustering problem based on the current pixel. According to property (1), the current 
pixel is clustered as the benchmark in the local window, the class consistent with the cur-
rent pixel in the window and the largest difference class are determined, and the charac-
teristics of the continuity of the same pixel are considered according to property (2). 

A local window containing both foreground and background can also be considered 
to contain a large grayscale variation. To facilitate the analysis, a typical step edge was 
used for the analysis, and the 2D grayscale distribution is shown in Figure 6. 

 
Figure 6. Step edge grayscale distribution map; pixel “a” and “b” are on the edge. 

Points “a” and “b” in Figure 6 are the step points of grayscale at the edge. Symbols 
“a+” and “a−” were used to describe the left (𝑥 −  𝜀, 𝑦) and right limits (𝑥 ൅  𝜀, 𝑦) of 
point “a”, respectively. The following conditions are true due to the grayscale step, 𝑓(𝑥 −  𝜀, 𝑦)  ്  𝑓(𝑥 ൅  𝜀, 𝑦) and 𝑓ᇱ(𝑥 −  𝜀, 𝑦)  ്  𝑓′(𝑥 ൅  𝜀, 𝑦). The functions are analyzed 
through Taylor expansion as follows: 𝑓(𝑥, 𝑦)  =  𝑓(𝑥଴, 𝑦)  ൅  𝑓′(𝑥଴, 𝑦)(𝑥 − 𝑥଴) (2) 

Assuming that 𝑥଴  =  𝑥 ൅  𝜀 and that the image is differentiable at 𝑥଴, Formula (2) 
yields: 𝑓(𝑥 −  2𝜀, 𝑦)  ൎ  𝑓(𝑥଴) ൅ 𝑓ᇱ(𝑥଴)(𝑥 −  𝑥଴)  =  𝑓(𝑥 −  𝜀, 𝑦) ൅ 𝑓ᇱ(𝑥 −  𝜀, 𝑦)(−𝜀) (3) 

Similarly, assuming that 𝑥଴  =  𝑥 −  𝜀: 

Figure 5. Image grayscale histogram. (a) High-contrast image; (b) low-contrast image.

According to the above properties, the local binarization problem can be transformed
into a clustering problem based on the current pixel. According to property (1), the current
pixel is clustered as the benchmark in the local window, the class consistent with the current
pixel in the window and the largest difference class are determined, and the characteristics
of the continuity of the same pixel are considered according to property (2).

A local window containing both foreground and background can also be considered
to contain a large grayscale variation. To facilitate the analysis, a typical step edge was
used for the analysis, and the 2D grayscale distribution is shown in Figure 6.
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Points “a” and “b” in Figure 6 are the step points of grayscale at the edge. Sym-
bols “a+” and “a−” were used to describe the left (x− ε, y) and right limits (x + ε, y)
of point “a”, respectively. The following conditions are true due to the grayscale step,
f (x− ε, y) 6= f (x + ε, y) and f ′(x− ε, y) 6= f ′(x + ε, y). The functions are analyzed
through Taylor expansion as follows:

f (x, y) = f (x0, y) + f ′(x0, y)(x− x0) (2)

Assuming that x0 = x + ε and that the image is differentiable at x0, Formula (2) yields:

f (x− 2ε, y) ≈ f (x0) + f ′(x0)(x− x0) = f (x− ε, y) + f ′(x− ε, y)(−ε) (3)

Similarly, assuming that x0 = x− ε:

f (x + 2ε, y) ≈ f (x0) + f ′(x0)(x− x0) = f (x + ε, y) + f ′(x + ε, y)(ε) (4)

The “a+” class in Figure 6 is the same category as “a”, and the “a−” class is a different
category from “a”. Formulas (3) and (4) show that if the pixel is on one side of the
edge, the pixel that is more strongly correlated with it, (i.e., the same pixel) must be
morphologically distributed on the same side of the edge as the pixel, so descriptors that
describe the characteristics of pixels need to reduce the impact caused by crossing the
boundary during pixel clustering, and cannot place pixels in the center of the window for
statistical information. Each pixel is assumed to be treated as a potential edge pixel, and
when a pixel is at an edge position in the image, the main idea of SWF is that it is more
appropriate to align the edge of the convolution window with the center pixel, rather than
aligning the center of the convolution window with the center pixel.
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Multiple weighted subtemplates were generated according to the aforementioned
SWF idea, the edge or corner positions of these subwindows were aligned with the current
binarized pixel points, and the convolution result of each subtemplate was obtained.
According to the difference between the convolution result and the currently processed
pixel, the pixels with the smallest difference from the current pixel in the convolution
result are similar pixels, and the pixels with the largest difference are dissimilar pixels.
Thus the local window binary classification is achieved. The regions of the two categories
are more likely to contain pixels with larger grayscale variations; in other words, greater
computational weights are assigned to these pixels.

A set of test images was generated to verify the improvement (Figure 7). The resolution
of each image was 21 × 21, and the foreground pixel was gradually expanded in the
diagonal direction. Each image was used as a local window.
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The Box form method was compared with the SW form method. The Box form output
binarization threshold is the average value of the window, with all pixels participating
in the threshold calculation. In contrast, the SW method uses the identified similar and
dissimilar regions to calculate the threshold. The amount of local information in terms of
the within-class variance is calculated as:

σ2 = N f (1− t)2 + Nb(0− t)2 (5)

where N f is the number of foreground pixels, Nb is the number of background pixels, and t
is the binarization threshold. The within-class variance of the two methods is shown in
Figure 8, where it can be seen that the SW results are always larger than the Box, indicating
that SW is able to retain more information.
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3. Implementation of the Proposed Method

The algorithm flow of this paper is shown in Figure 9. The eight-dimensional SWF
convolution kernel was defined. Each convolution result was output to be compared
with the current pixel for clustering. Positive- and negative-class pixels were obtained
according to the difference. Side window information was used as reference to calculate the
binarization threshold. The threshold of each pixel was smoothed with its similar pixels,
and finally, thd_map_re f ine was used as the threshold to binarize the input image.
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3.1. Definition of Side Window Core

According to the SWF idea described in Section 2, the current pixel must be placed at
the edge or corner of the description subtemplate and the templates to have continuity in
morphology. The local window of a pixel is defined as a (2r + 1) × (2r + 1) square window,
and eight-dimensional subtemplates were used to describe the local features. The pixel
was aligned with the edge of the template to generate four convolution kernels of Left (L),
Right (R), Up (U), and Down (D), and the current pixel was aligned at the corner of the
template to generate the Southwest (SW), Southeast (SE), Northeast (NE), Northwest (NW)
convolution kernels, as shown in Figure 10.
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Normalized weights were used to simplify the calculation, namely the weights of
S = {L, R, U, D} were wS

ij = 1
(r+1)(2r+1) , and the weights of S = {NW, NE, SW, SE}

were wS
ij = 1

(r+1)2 . By applying a filtering kernel in each local window, eight outputs

s = [sL, sR, sU , sD, sNW , sNE, sSW , sSE] were obtained, respectively. The radius of the convo-
lution kernel was a hyperparameter that could be flexibly defined according to the target.
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3.2. Step 1: Coarse Threshold Calculation

Morphological clustering on the local window according to the output of SWF was
performed by the following steps. The output s with the smallest difference from the
current pixel is the same type, which is also on the same side of the edge, and the output s
with the largest difference is the dissimilar type, which is also on the dissimilar side of the
edge. The differences were quantified using the L1 distance.

∆sij =
∣∣∣∣qi − sij

∣∣∣∣
1 (6)

where qi is the grayscale of the current pixel and sij is the output of the j-th core. The output
of the same type should be the same as or as close as possible to the input at an edge, and
on the other hand, the output of the dissimilar type should be far away from the input.
Therefore, the output of the side window that has the minimum/maximum L1 distance to
the input intensity was chosen as the clustering output.

∆sP = argmin
∣∣∣∣qi − sij

∣∣∣∣
1 ∆sN = argmax

∣∣∣∣qi − sij
∣∣∣∣

1 (7)

The descriptor {sN , sP, ∆sN , ∆sP, w} of each pixel is calculated based on the convolu-
tion kernel, where sN is the SWF output of the pixel with the largest difference; sP is the
SWF output of the pixel with the smallest difference; ∆sN is the difference between the
pixel with the largest difference and the current pixel; ∆sP is the difference between the
pixel with the smallest difference and the current pixel; and w is the index of the kernel
of the same type. For example, if the output result of NE has the minimum difference
from the current pixel, then w = 6. In Figure 11, the grayscale of pixel q1 is 93, and the
result of convolution with SWF is sq1 = {95.8, 60.8, 71.0, 90.4, 68.8, 56.6, 93.2, 83.4}, the
maximum difference is the NE output result, the minimum difference is the SW output
result, the NE region is the dissimilar class, and the SW region is the similar class. For pixel
q2, the dissimilarity is the D and the NE is the similar class.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

pixel with the largest difference and the current pixel; ∆𝑠௉ is the difference between the 
pixel with the smallest difference and the current pixel; and 𝑤 is the index of the kernel 
of the same type. For example, if the output result of NE has the minimum difference from 
the current pixel, then 𝑤 =  6. In Figure 11, the grayscale of pixel q1 is 93, and the result 
of convolution with SWF is 𝑠௤ଵ  =  ሼ95.8, 60.8, 71.0, 90.4, 68.8, 56.6, 93.2, 83.4ሽ, the maxi-
mum difference is the NE output result, the minimum difference is the SW output result, 
the NE region is the dissimilar class, and the SW region is the similar class. For pixel q2, 
the dissimilarity is the D and the NE is the similar class. 

 
Figure 11. SWF clustering visualization. SW is the positive class of q1, NE is the negative class of q1, 
NE is the positive class of q2, and D is the negative class of q2. 

If the current pixel is in the smoothed area, the difference of the SWF output is very 
small, indicating that possibly only one class of pixels is present in the local window, 
which does not contain both foreground and background classes. This is a common prob-
lem in local binarization algorithms and may lead to oversegmentation. Therefore, to ad-
dress this problem, the local contrast was calculated according to Equation (8), and the 
hyperparameter local contrast threshold ℎ_𝑐 is defined. When the local contrast is less 
than the set threshold, a preset threshold is used for such pixels, for example, using a 
preset constant binarization threshold, and the global Otsu method threshold is recom-
mended. 

𝑐 =  ฬ𝑠ே  − 𝑠௉𝑠ே  ൅ 𝑠௉ฬ (8) 

If the contrast is high enough to satisfy the threshold, that is, foreground and back-
ground classes are present locally, the threshold of the current pixel is 𝑡ℎ𝑑_𝑚𝑎𝑝௖௛ ୀ ଴,௜  = ௦ಿ ା ௦ುଶ , and the index of the same SWF convolution kernel is also recorded as 𝑡ℎ𝑑_𝑚𝑎𝑝௖௛ ୀ ଵ,௜  =  𝑤, where 𝑖 is the index of the pixel, 𝑐ℎ =  0 indicates the threshold 
channel of 𝑡ℎ𝑑_𝑚𝑎𝑝, and 𝑐ℎ =  1 represents the index channel of similar convolution 
kernels of 𝑡ℎ𝑑_𝑚𝑎𝑝. All pixels were traversed to obtain the 𝑡ℎ𝑑_𝑚𝑎𝑝 of the entire image. 

3.3. Step 2: Threshold Refinement 
Refinement on the obtained 𝑡ℎ𝑑_𝑚𝑎𝑝 was performed according to property (2) men-

tioned in Section 2, namely that the local same pixels should have continuous and approx-
imate thresholds morphologically. According to the previous calculation results, the index 
of the same type corresponding to each pixel is already known, and the area contained in 
the same template are the pixels of same type. The thresholds of the same class pixels are 
used for mean filtering on the current pixel threshold by Formula (9). The low-contrast 
pixels in the same template region do not participate in the smoothing calculation. 

Figure 11. SWF clustering visualization. SW is the positive class of q1, NE is the negative class of q1,
NE is the positive class of q2, and D is the negative class of q2.

If the current pixel is in the smoothed area, the difference of the SWF output is very
small, indicating that possibly only one class of pixels is present in the local window,
which does not contain both foreground and background classes. This is a common
problem in local binarization algorithms and may lead to oversegmentation. Therefore, to
address this problem, the local contrast was calculated according to Equation (8), and the
hyperparameter local contrast threshold h_c is defined. When the local contrast is less than
the set threshold, a preset threshold is used for such pixels, for example, using a preset
constant binarization threshold, and the global Otsu method threshold is recommended.
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c =
∣∣∣∣ sN − sP
sN + sP

∣∣∣∣ (8)

If the contrast is high enough to satisfy the threshold, that is, foreground and back-
ground classes are present locally, the threshold of the current pixel is thd_mapch=0,i =

sN+sP
2 ,

and the index of the same SWF convolution kernel is also recorded as thd_mapch=1,i = w,
where i is the index of the pixel, ch = 0 indicates the threshold channel of thd_map, and
ch = 1 represents the index channel of similar convolution kernels of thd_map. All pixels
were traversed to obtain the thd_map of the entire image.

3.3. Step 2: Threshold Refinement

Refinement on the obtained thd_map was performed according to property (2) men-
tioned in Section 2, namely that the local same pixels should have continuous and approxi-
mate thresholds morphologically. According to the previous calculation results, the index
of the same type corresponding to each pixel is already known, and the area contained in
the same template are the pixels of same type. The thresholds of the same class pixels are
used for mean filtering on the current pixel threshold by Formula (9). The low-contrast
pixels in the same template region do not participate in the smoothing calculation.

thd_map_re f inei =
1
N ∑

j∈S
thdj (9)

where thd_map_re f ine is the threshold after refinement, i is the pixel index, N is the number
of pixels contained in the similar template, j is the pixel index within the similar template,
S is the similar region, and thdj is the threshold value for each pixel in the similar region.
Threshold thd_map_re f ine was used as the final threshold to binarize each pixel to obtain
the entire binary_image. Figure 12 shows the binarization-threshold heatmap calculated
by the three local binarization methods, namely the Bernsen [23], Sauvola, and proposed
methods, on the degraded-image test set. The three methods use the same local window
size, as can be seen from Figure 12; compared with the Bernsen and Sauvola, the threshold
distribution obtained by the proposed method is closer to the original image in morphology,
indicating that it is more sensitive to changes in image morphology. The quantitative test
results are further discussed in Section 4.
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Details of the procedure are described in Algorithm 1.

Algorithm 1: Calculate threshold based on SWF

Input: qi is the grayscale of the target pixel i, wS
ij is the weight of pixel j, which

is in the neighborhood of the target pixel i, based on kernel
S = {L, R, U, D, NW, NE, SW, SE} is the set of side window index, h_c and h_t
are hyperparameters

Output: binary_image;

sn = 1
Nn

∑j∈S wS
ijqj, Nn = ∑j∈S wS

ij

find sP ← argmin||qi − sn||1, sN ← argmax||qi − sn||1, ci =
∣∣∣ sN−sP

sN+sP

∣∣∣ ;
if c > h_c then

thd_mapc=0,i =
sN+sP

2 , thd_mapc=1,i = index o f Positive S;
else

thd_mapc=0,i = h_t
end
thd_map_re f inei =

1
Nn

∑j∈S wS
ijthd_mapj, Nn = ∑j∈S wij;

binary_imagei =

{
1 i f qi ≥ thd_map_re f inei
0 i f qi < thd_map_re f inei

4. Experiments

Extensive experiments were performed to evaluate the performance of the proposed
method. In this section, the self-built dataset used for testing is introduced, which was
used to simulate degraded in-orbit images in orbit. The proposed binarization method was
then quantitatively compared with other classical algorithms. All the following work was
implemented on a PC (I7-10710U at 4.7 GHz, 16 GB of RAM), and the simulation tool was
MATLAB R2019a.

4.1. Datasets

A test system was designed to simulate the uneven on-orbit illumination environ-
ment, taking the Shenzhou spacecraft docking and cooperation marker as the target. The
test system is shown in Figure 13. As the sunlight in outer space is intense and highly
directional, a strong light was employed to simulate the sunlight, and the illuminance at
the target exceeded 120,000 lx. Test images of different distributions of light and shadows
were captured.
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The target background was made of antiatomic-oxygen flame-retardant cloth, which
shows strong differences under different illumination. In order to eliminate the influence
of this difference on the quantitative assessment of the binarization effect, the mask area of
the target was extracted and the binarization results were quantitatively compared only for
the mask area. The ground truth (GT) of the binarized image was obtained by manually
fine-tuning the image under uniform illumination conditions as shown in Figure 14.
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The images of the test set were captured by changing the lighting conditions, leaving
the positional relationship between the marker and the camera as is, so it can be considered
that the GT and each image in the test set were aligned at the pixel level. To augment the
test set, 1% salt and pepper noise was added to individual test-set images, and the final test
set contained 7 uniformly illuminated images and 37 unevenly illuminated images.

4.2. Quantitative Evaluation

A total of 1 image with uniform illumination, 37 images with uneven illumination,
and 1 image with noise were selected for testing. The proposed method was compared
with three existing binarization techniques, namely Otsu, Bernsen, and Sauvola. Otsu is a
global binarization method, while the other two are local.

Equation (10) shows the formula of the Sauvola method, where I(x, y) is the current
pixel grayvalue, s(x, y) is the standard deviation of local window, R is the dynamic range
of standard deviation, and k is the scaling factor with positive values.

T(x, y) = I(x, y)×
[

1 + k× (
s(x, y)

R
+ 1)

]
(10)

The Bernsen method computes the local threshold T(x, y) using local extrema Imax
and Imin within the neighboring window, with parameter c being the contrast threshold. A
preset threshold is used in the uniform region.

T(x, y) =
{
(Imax + Imin)/2, (Imax + Imin) < c

preset, else
(11)

Both the above-mentioned local methods use two hyperparameters that are highly
influential in all binarization results. For the convenience of comparison, the local window
size of the three local binarization methods of Bernsen, Sauvola, and the proposed algorithm
were all 21. Bernsen’s local contrast threshold c was 15. Sauvola is more sensitive to local
contrast, so two parameters k = 0.5 and k = 0.8 were chosen. The h_c of the proposed
algorithm was 0.05. Bernsen and the proposed algorithm both use the threshold calculated
by the Otsu algorithm in the uniform area. Due to space limitations, the renderings and
quantitative evaluation results of some test sets are presented in this paper. Figure 15 shows
the comparison renderings of some images in the test set using the four algorithms.
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The binarization results of the four algorithms were then qualitatively compared. The
Otsu method loses more information when the image has uneven gray distribution and
can achieve better results when the brightness is uniform. The Bernsen algorithm achieves
better results for images with uneven grayscale. The Sample 1 + Noise sample results show
that the Bernsen method is affected by noise more than other methods. The Sauvola method
is greatly affected by local contrast, and it is difficult to use a single set of parameters to
take into account different images with relatively large contrast differences. The method
proposed in this paper has better adaptability to different illuminations and retains most of
the target features on uniformly illuminated, unevenly illuminated, and noisy images.

An ensemble of evaluation measures was used that are suitable and have been used
in recent international binarization competitions, including FM (F-measure), PSNR (peak
signal-to-noise ratio), and DRD (distance reciprocal distortion). These metrics define the
similarity percentage between the resulting binarized image and GT image.

FM is the weighted harmonic mean of precision (P) and recall (R) that can determine
overall binarization accuracy. High values of these three measures indicate more accurate
results between the binarized image IB and the ideal binary image IGT . The best result is
achieved when FM is 1.

FM =
2× R× P

R + P
P =

TP
TP + FP

R =
TP

TP + FN
(12)

where, TP, FP, FN denote the true-positive, false-positive, and false-negative values, respectively.
PSNR measures how close a binary image is to the GT image, with higher values

indicating better results. Note that the difference between foreground and background
equals C (C = 255).

PSNR = 10 log
(

C2

MSE

)
MSE =

∑M
x=1 ∑N

y=1 (I(x, y)− I′(x, y)2)

MN
(13)
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DRD was introduced by Lu et al. and has been used to measure the visual distortion
in binary images [24]. This method focuses more on the performance of images for human
perception. The calculation formula is as follows:

DRD =
∑S

k=1 DRDk

NUBN
(14)

where NUBN is the count of the 8 × 8 blocks that are not all black or white pixels in the
GT image and DRDk is the distortion of the k-th flipped pixel at (x,y) in the binarization
result image B, computed using a 5 × 5 normalized weight matrix WNm as defined in [24].

DRDk = ∑2
i=−2 ∑2

j=−2|GTk(i, j)− Bk(i, j)| ×WNm(i, j) (15)

In contrast to the first two methods, better binarization effect yields lower DRD values.
The results in Tables 1–3 and Figures 16–18 show that in all test sets, the proposed

algorithm outperformed the other algorithms in terms of in F-Measure, PSNR, and DRD.
Compared with other binarization algorithms, the quantitative metrics of the proposed algo-
rithm fluctuate less on test images, which proves that the proposed method is more adaptable
to degraded images in addition to yielding higher accuracy of binarization segmentation.

Table 1. F-Measure metric.

Dataset Otsu Bernsen Sauvola 1 Sauvola 2 Proposed

Sample 1 0.665 0.875 0.024 0.382 0.932
Sample 6 0.546 0.833 0.614 0.751 0.911

Sample 11 0.443 0.822 0.508 0.697 0.895
Sample 23 0.889 0.919 0.901 0.919 0.932
Sample 36 0.607 0.909 0.692 0.848 0.920
Sample 0 0.858 0.790 0.765 0.642 0.844

Sample 1 (noise) 0.644 0.485 0.035 0.382 0.868

Table 2. Metric PSNR.

Dataset Otsu Bernsen Sauvola 1 Sauvola 2 Proposed

Sample 1 59.202 62.764 56.296 57.416 65.127
Sample 6 58.215 61.474 58.664 60.082 63.981

Sample 11 57.673 61.419 58.025 59.535 63.393
Sample 23 56.904 58.89 56.888 57.883 61.325
Sample 36 58.655 63.844 59.391 61.883 64.424
Sample 0 61.510 59.540 58.724 56.003 61.050

Sample 1 (noise) 58.707 57.673 56.321 57.333 61.973

Table 3. Metric DRD.

Dataset Otsu Bernsen Sauvola 1 Sauvola 2 Proposed

Sample 1 48.117 13.828 104.230 74.721 6.712
Sample 6 63.105 20.961 59.163 34.835 9.531

Sample 11 72.275 23.024 71.063 41.390 8.985
Sample 23 13.946 7.598 13.369 7.412 9.211
Sample 36 55.791 8.243 50.470 18.377 9.056
Sample 0 22.729 35.458 46.403 109.682 24.909

Sample 1 (noise) 45.403 62.655 103.738 72.529 9.761
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4.3. Running Time

The processing times of Bernsen, Sauvola, and the proposed method were compared.
Because the efficiency of the local binarization algorithm is mostly determined by the size of
the local window, the efficiency on different window radii r was compared. A mono image
with a resolution of 480× 270 was used for testing. Although the algorithm in this paper has
multiple templates of convolutional operations, SWF clustering can also be regarded as a
kind of dimensionality reduction operation, which decreases the subsequent computational
cost. In addition, the efficiency of convolutional operations can be substantially improved
by accelerating, and there is no time-consuming calculation such as standard deviation in
the algorithm. As shown in Figure 19, the proposed method has a higher efficiency than
Bernsen and Sauvola methods on different window sizes.
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5. Conclusions

A binarization approach based on morphology clustering was proposed to solve the
problem of in-orbit degraded image binarization. The algorithm in this paper overcomes
the shortcomings of the traditional local binarization method, which rarely considers mor-
phological statistical information. The side window operator was used to extract the local
morphological features of pixels for clustering, and the local threshold was calculated based
on the difference between local homogeneity and heterogeneity. Similar pixel thresholds
were used to filter each pixel threshold based on the property of smooth continuity of
similar pixel thresholds. The effectiveness of the proposed algorithm was validated by con-
structing a test dataset that can simulate in-orbit degraded images and can quantitatively
evaluate the effectiveness of the binarization algorithm. Intensive experiments have fully
validated that the algorithm is suitable for degraded-image binarization under in-orbit
conditions, and compared with the Otsu, Bernsen, and Sauvola methods commonly used
in the industry, the proposed algorithm has stronger accuracy and robustness.
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