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Abstract: The recent upsurge of smart cities’ applications and their building blocks in terms of the 

Internet of Things (IoT), Artificial Intelligence (AI), federated and distributed learning, big data an-

alytics, blockchain, and edge-cloud computing has urged the design of the upcoming 6G network 

generation, due to their stringent requirements in terms of the quality of services (QoS), availability, 

and dependability to satisfy a Service-Level-Agreement (SLA) for the end users. Industries and ac-

ademia have started to design 6G networks and propose the use of AI in its protocols and opera-

tions. Published papers on the topic discuss either the requirements of applications via a top-down 

approach or the network requirements in terms of agility, performance, and energy saving using a 

down-top perspective. In contrast, this paper adopts a holistic outlook, considering the applications, 

the middleware, the underlying technologies, and the 6G network systems towards an intelligent 

and integrated computing, communication, coordination, and decision-making ecosystem. In par-

ticular, we discuss the temporal evolution of the wireless network generations’ development to cap-

ture the applications, middleware, and technological requirements that led to the development of 

the network generation systems from 1G to AI-enabled 6G and its employed self-learning models. 

We provide a taxonomy of the technology-enabled smart city applications’ systems and present 

insights into those systems for the realization of a trustworthy and efficient smart city ecosystem. 

We propose future research directions in 6G networks for smart city applications. 

Keywords: artificial intelligence (AI); beyond 5G; blockchain; deep learning; internet of thigs (IoT); 

machine learning; metaheuristics algorithms; sixth generation (6G) wireless communication;  

smart city 

 

1. Introduction 

With the prominence of connected smart cities and the recent emergence of a smart 

city’s mobile applications and their building blocks architecture in terms of Internet of 

Things (IoT) [1], Artificial Intelligence (AI) [2], federated and distributed learning [3], big 

data analytics [4], blockchain [5], and edge-cloud computing [6], the implementation of a 

new generation of networks has been prompted. While optimization strategies at the ap-

plication level along with a fast network, such as the currently in-deployment 5G net-

works, play an important role, this is not enough for AI-based distributed, dynamic, con-

textual, and secure smart city applications enabled by emergent technologies [7]. As 

shown in Figure 1, these applications include, but are not limited to, autonomous driving, 

accident prevention and traffic management enabled by the Internet of Vehicles (IoV), 
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remote patient monitoring, medical drug supply chain management, the prognosis/diag-

nosis of diseases empowered by the Internet of Medical Things (IoMT), industry automa-

tion and surveillance using the Internet of Robotic Things (IoRT), building maintenance 

and package delivery enabled by the Internet of Drones (IoD), system maintenance and 

pollution control enabled by the Industrial Internet of Things (IIoT), interactive gaming and 

aerospace navigation using Holographic Communication (HC), immersive training and 

guided repair enabled by Extended Reality (XR), intelligent transportation systems and 

smart connected healthcare using blockchain, and data analytics empowered by edge-cloud 

computing. These applications and their rigorous support for meeting requirements in 

terms of the quality of services (QoS) and dependability to satisfy the Service-Level-Agree-

ment (SLA) for the end users [8–11] have been a driving force for the evolution of networks. 

 

Figure 1. A view of smart city digital ecosystem. 

The energy consumption of the smart cities’ digital ecosystem serving these applica-

tions is a major issue causing environmental threats and increasing electricity bills, requir-

ing immediate sustainable remedies [12]. Estimates show that cloud data centers, consid-

ered the backbone of smart cities, will be responsible for 4.5% of the total global energy 

consumption by 2025 [13]. The average electricity cost for powering a data center could 

be as high as $3 million per year [14]. Furthermore, it is predicted that by 2040, Information 

and Communications Technology (ICT) will be responsible for 14% of global carbon emis-

sions [15]. Consequently, the underlying communication networks should focus on de-

ploying efficient, dependable, and secure applications in smart city applications while 

considering the critical requirements of privacy, energy efficiency, high data rates, and 

ultra-low latencies for those applications. 

Therefore, industries and academia have started to look beyond 5G networks and 

design the upcoming 6G. In particular, 6G network designers propose the use of AI in its 

underlying protocols and operations for optimal performance and energy efficiency. The 

vibe over AI and its tremendous potential for intelligent applications and network sys-

tems, in combination with IoT smart city applications, have been a great motivation in 

developing AI-IoT-based solutions. These solutions require huge communication and 
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computation resources, giving rise to latency, energy consumption, network congestion, 

and privacy leakage. 

The current research on this topic either focuses on the requirements of AI applica-

tions in a smart city ecosystem that can benefit from the underlying 6G networks or on 

the self-learning 6G networks for agility, flexibility, and energy efficiency. To our 

knowledge, no work adopts a holistic perspective considering the underlying 6G net-

works, middleware, and technology-enabled applications for an intelligent and integrated 

smart city digital ecosystem. 

The main contributions of our paper are as follows. 

1. We provide a temporal evolution of the wireless communication network genera-

tions from 1G to AI-enabled 6G and capture the inherent challenges and technologi-

cal requirements that lead to the development of a given network generation over a 

certain period. 

2. We present self-learning models that would be infused in 6G to accommodate the 

strict requirements of smart city applications in terms of low latency, high reliability, 

security, energy efficiency, execution time, and context awareness. 

3. We propose a taxonomy of distributed, dynamic, and contextual AI applications in 

6G networks based on the underlying technology used by those applications. In ad-

dition, we provide insights on the requirements of these applications that should be 

considered by the underlying 6G networks. 

4. We propose future directions toward the realization of a trustworthy and efficient 

digital ecosystem consisting of intelligent and connected applications, the middle-

ware, the underlying technologies, and the 6G network systems. 

The rest of the paper is organized as follows. Section 2 provides a categorization and 

overview of related surveys. The temporal evolution of wireless communication network 

generations is presented in Section 3. Sections 4 and 5 synthesize the taxonomies of AI-

enabled 6G networks with their self-learning models and technology-enabled smart city 

applications in 6G. Future research directions are discussed in Section 6. Section 7 sum-

marizes and concludes the paper. 

2. Related Survey 

There have been few surveys on AI-enabled applications and AI-6G in smart cities. 

We classify these surveys into two categories based on the survey’s approach: (1) a top-

down approach highlighting the requirements of AI applications in terms of networks’ 

capabilities [16,17] and (2) a down-top perspective focusing on AI-enabled 6G networks 

for agile, flexible, and efficient systems [18–21]. 

Concerning the top-down approach, Akhtar et al. [16] presented the projected 6G 

architecture and its characteristics along with potential technologies enabling the envi-

sioned network generation systems. The authors focused on quantum communication 

and machine learning, blockchain, tactile internet, and free duplexing and spectrum shar-

ing technologies. Furthermore, the authors discussed e-heath and bio-sensing, HC, and 

IoT applications that will be underlined by 6G networks. However, the authors did not 

analyze the requirements of the technology-enabled applications in 6G. Using a similar ap-

proach, Tataria et al. [17] explained the 6G networks architecture, characteristics, and de-

ployment scenarios. In addition, the authors analyzed the requirements for applications in 

6G systems enabled by HC, tactile and haptic internet, edge-cloud computing, and IoT tech-

nologies. However, these works [16,17] do not focus on employing self-learning models on 

the underlined 6G networks layer for security, agility, flexibility, and energy efficiency. 

Regarding the down-top approach, Yang et al. [18] proposed an AI-enabled 6G ar-

chitecture for radio network resource management and service provisioning. Similarly, 

Letaief et al. [19,20] analyzed the potential of AI for 6G networks design and optimization. 

Zhang and Zu [21] presented a survey on AI-enabled 6G networks for radio interface, 

intelligent traffic control, resource management, performance and energy optimization, 
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and security. However, these works do not analyze the requirements of AI applications 

in 6G networks. 

Table 1 summarizes the related survey and their comparison with our work. In con-

trast to these surveys based on top-down or down-top approaches, in this paper, the 6G 

technology is prospected from a holistic perspective, where self-learning models are, re-

spectively, inserted into the main technical layers of 6G to achieve the requirements of 

building an integrated smart city digital ecosystem as a whole, not just looking at appli-

cation needs or network requirements. In this approach, in addition to AI-enabled 6G net-

work systems and employed self-learning models, middleware and technology-enabled 

applications and their requirements for an intelligent and connected contextual compu-

ting and communication smart cities ecosystem are analyzed. 

Table 1. Summary of related surveys. 

Work Approach 
Evolution of Wireless  

Communication Technology 

AI-Enabled 6G 

Networks 

Technology-Enabled  

Applications in 6G 

[16] 
Top-down 

✓  ✓ 

[17]   ✓ 

[18] 

Down-Top 

 ✓  

[20]  ✓  

[19]  ✓  

[21]  ✓  

This 

paper 
Holistic ✓ ✓ ✓ 

✓ → considered;  → not considered 

3. Evolution of Wireless Communication Technology (1G–6G) 

Wireless communication technology has evolved over the years intending to provide 

high-speed, reliable, and secure communication. Figure 2 shows the evolution of wireless 

network development from 1G to 6G, including the year of proposing and that of deploy-

ing a particular network generation over time. In the following, we explain each evolution 

along with its applications and shortcomings. 

 

Figure 2. Evolution of wireless communication technology from 1G to 6G. 
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3.1. First Generation (1G) Technology 

The first generation (1G) communication system was introduced in 1978 in the 

United States based on the Advanced Mobile Phone System (AMPS) [22]. The AMPS is an 

analog cellular system allocated with 50MHz bandwidth with a frequency range of 824–

894 MHz [23]. The bandwidth in the AMPS is divided into sub-channels of 30 KHz, each 

using Frequency Division Multiple Access (FDMA) for multiple users to send data. In 

1979, 1G was commercially launched in Japan by the Nippon Telegraph and Telephone 

(NTT) DoCoMo Company. In 1981, the Nordic Mobile Telephone (NMT) standard for 1G 

was developed by the Nordic countries such as Norway, Denmark, Switzerland, Finland, 

and Sweden. In 1983, the AMPS was commercially launched in the United States and was 

later used in Australia. The Total Access Communication Systems (TACS) standard was in-

troduced in the United Kingdom for 1G [24]. First generation technology supported voice 

calls with up to 2.4 Kbps of bandwidth within one country. However, the underlying tech-

nology could not handle international voice and conference calls, and other applications 

such as messaging services, emails, and accessing information over a mobile wireless net-

work. In addition, being an analog system, 1G suffered from bad voice quality and poor 

handoff reliability. Furthermore, 1G was less secure. To overcome these shortcomings, the 

2G network generation was introduced. 

3.2. Second Generation (2G) Technology 

To enable applications such as international voice calls, messaging, and access to in-

formation over a wireless network, which require a high data transfer rate, and to make 

communication more secure, the second-generation (2G) wireless technology was de-

signed in the 1980s and introduced in 1991 under the Global System for Mobile (GSM) 

communication standards in Finland [25]. The analog system of 1G was replaced by a 

digital system enabling the encryption of voice calls and thus providing security. The 

GSM uses Time Division Multiple Access (TDMA) such that each network user is allo-

cated the channel bandwidth based on time slots [26]. The GSM operates on a 900–1800 

MHz frequency band except for in America where it operates in the 1900 MHz band. 

TDMA was later used by other digital standards such as the Digital AMPS (D-AMPS) in 

the United States and the Personal Digital Cellular (PDC) in Japan. As an alternative to 

TDMA, Code Division Multiple Access (CDMA) was introduced in the United States on 

the IS-95 standard [22] which allowed multiple network users to simultaneously transmit 

data based on assigned unique code sequences. In addition to international roaming voice 

calls, 2G supported conference calls, call hold facility, short message services (SMS), and 

multimedia message services (MMS) with a data rate up to 9.6 Kbps. 

The continuous evolution of the GSM technology led to the development of General 

Packet Radio Service (GPRS), referred to as 2.5 G, which implemented packet switching in 

addition to circuit switching. GPRS has provided additional services such as Wireless Ap-

plication Protocol (WAP) access and internet communication such as e-mail and World 

Wide Web (WWW) access [27]. It provides data rates up to 115 Kbps [28]. GPRS further 

evolved to the Enhanced Data Rates for GSM evolution (EDGE), providing higher data 

rates. For instance, a 40 KB text file can be transferred in 2 s using EDGE compared to 6 s in 

GPRS. EDGE was deployed on GSM networks in 2003 by Cingular (now AT&T) in the 

United States. The peak data speed of 2G is 50 Kbps using GPRS and 1 Mbps using EDGE. 

However, 2G networks were not capable of handling video conferencing, navigation ser-

vices, and other applications which require high data rates, leading to the 3G network gen-

eration. 

3.3. Third Generation (3G) Technology 

The Third Generation Partnership Project (3GPP) was formed in 1998 to provide a 

standardized frequency across the globe for mobile networking, enabling high data rate 
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services such as video calls, navigation, and interactive gaming. It is based on the Interna-

tional Mobile Telephone (IMT)-2000 standard and was first made available in Japan by 

the NTT DoCoMo in 2001. The IMT-2000 focused on providing a wider coverage area, 

improving the QoS, and making services available to users irrespective of their location 

[29]. One of the requirements of the IMT-2000 was to have a minimum speed of 200 Kbps 

for a network to be 3G. The third generation has introduced wireless technology such as 

video conferencing and video downloading with an increased data transmission rate at a 

lower cost. It increased the efficiency of the frequency spectrum by improving the audio 

compression during a call, allowing more simultaneous calls in the same frequency range. 

Third generation technology evolved between 2000 and 2010 to provide Universal Mobile 

Telecommunications System (UMTS)-based networks with higher data rates and capaci-

ties. In particular, High-speed Downlink Packet Access (HSDPA) was deployed (also re-

ferred to as 3.5G), which is a packet-based data service providing downlink data rates 8–

10 Mbps. To provide services for applications that require high data rates such as interac-

tive gaming, High-Speed Uplink Packet Access (HSUPA) was introduced (referred to as 

3.75G) which enabled an uplink data transmission speed of 1.4–5.8 Mbps. However, IP 

telephony, 3D videos, and High Definition (HD) mobile TV were not supported by the 3G 

technology, leading to the foundation of the 4G network generation. 

3.4. Fourth Generation (4G) Technology 

To transmit data, voice, multimedia, and internet services at a higher rate, quality, 

and security at a low cost, the Fourth Generation (4G) was initiated in the late 2000s as an 

all-IP-based network system. Fourth Generation technology was first used commercially 

in Norway in 2009 after its successful field trial in Japan in 2005. It aimed to provide peak 

data rates of up to 1 Gbps at low mobility and 100 Mbps at high mobility and is based on 

Long-Term Evolution (LTE) and Wireless Interoperability for Microwave Access (Wi-

MAX) technologies. The LTE standard was further enhanced to LE-Advanced Pro (re-

ferred to as 4.5G) to increase the mobile broadband and connectivity performances [22]. 

However, 4G was not capable of operating applications that require image processing, 

such as machine vision, smart connected cars, and augmented reality, giving rise to the 

5G network generation. 

3.5. Fifth Generation (5G) Technology 

To obtain a consistent QoS, low end-to-end latency, reduced cost, and massive device 

connectivity, the Fifth Generation (5G) communication technology was established to sup-

port applications such as AR, home and industrial automation, and machine vision. Fifth 

Generation technology was first offered in South Korea in 2019. It provides a data rate of 

20 Gbps in the downlink and 10 Gbps in the uplink, and is aimed to support three generic 

services; Enhanced Mobile Broadband (eMBB), Massive Machine-type Communications 

(mMTC), and Ultra-Reliable Low-Latency Communications (URLLCs) [30]. eMBB aims to 

deliver peak download speeds of over 10 Gbps to support applications such as Ultra-High 

Definition (UHD) videos and AR. mMTC defines the requirement to support one million 

low-powered economical devices per Km2 with a battery life of up to 10 years. It can sup-

port applications such as smart homes and industrial automation that involve several sen-

sors, controllers, and actuators. URLLC sets the requirement of high reliability (99.99%), 

extremely low latencies (<1 ms), and support for low data rates (bps/Kbps) to support 

applications such as social messaging services, traffic lights, self-driving cars, and smart 

healthcare. In 2020, Huawei, as part of the 5.5G vision, proposed three additional sets of 

services; Uplink-centric Broadband Communication (UCBC), Real-Time Broadband Com-

munication (RTBC), and Harmonized Communication and Sensing (HCS) [31]. UCBC 

aims to increase the uplink bandwidth by 10-fold to support applications involving ma-

chine vision. For Augmented Reality (AR), Virtual Reality (VR), and Extended Reality 

(XR) applications, RTBC would provision large bandwidth and low latency services with 
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a certain level of reliability. HCS focuses to offer communication and sensing functionali-

ties for connected cars and drone scenarios. However, with the emergence of an interac-

tive and connected IoT, communicating IoV, and holographic applications, the 5G net-

works could not manage the stringent high computing and communications requirements 

of those applications. Consequently, the 6G network generation was instigated. 

3.6. Sixth Generation (6G) Technology 

The Sixth Generation (6G) technology was envisioned in 2019–2020 to transform the 

“Internet of Everything” into an “Intelligent Internet of Everything” with more stringent 

requirements in terms of a high data rate, high energy efficiency, massive low-latency 

control, high reliability, connected intelligence with Machine Learning (ML) and Deep 

Learning (DL), and very broad frequency bands [19]. Three new application services are 

proposed; Computation Oriented Communications (COC), Contextually Agile eMBB 

Communications (CAeC), and Event-Defined uRLLC (EDuRLLC) [19]. COC will enable 

the flexible selection of resources from the rate-latency-reliability space depending on the 

available communication resources to achieve a certain level of computational accuracy 

for learning approaches. CAeC will provision eMBB services that would be adaptive to 

the network congestion, traffic, topology, users’ mobility, and social networking context. 

6G-EDuRLLC targets the 5G-URLLC applications that will operate in emergency or ex-

treme situations having spatial-temporal device densities, traffic patterns, and infrastruc-

ture availability. 

Table 2 summarizes the characteristics of the wireless communication networks from 

1G to 6G [16,32]. 

Table 2. Characteristics of the wireless communication technology from 1G to 6G. 

Features       Network 1G 2G 3G 4G 5G 6G 

Start 1970 1980 1998 2000 2010 2020 

Deployment 1984 1999 2001 2010 2019 2030 * 

Technology 

AMPS, 

NMT, 

TACS 

GSM, 

GPRS, 

EDGE 

WCDMA, 

UMTS 

LTE, Wi-

MAX 

MIMO, 

mm Waves 

THz 

communic

ations, 

VLC 

Frequency 30 KHz 1.8 GHz 1.6–2 GHz 2–8 GHz 3–30 GHz 
95 GHz–3 

THz 

Multiplexing FDMA 
TDMA/CD

MA 
CDMA OFDMA OFDM OFDM 

Switching Circuit 
Circuit, 

packet 
Packet All packet All packet All packet 

Core network PSTN PSTN 
Packet 

Network 
Internet Internet Internet 

Primary services (in addition 

to previous generations) 
Voice calls 

Interna-

tional 

roaming 

voice calls, 

conference 

calls, SMS, 

MMS, 

WAP, 

WWW, 

and emails 

Video con-

ferencing, 

GPS 

Mobile 

web ac-

cess, IP te-

lephony, 

3D videos, 

HD mobile 

TV 

Machine 

vision, 

connected 

cars, smart 

homes, AR 

Tactile and 

haptic in-

ternet, con-

nected au-

tonomous 

systems, 

holo-

graphic so-

ciety 

Peak data rate NA 

50 Kbps 

(GPRS) 

1 Mbps 

(EDGE) 

21 Mbps 100 Mb/s 20 Gb/s ≥1 Tb/s 
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Mobility support NA NA NA 350 km/h 500 km/h 
≥1000 

km/h 

Latency NA 300 ms 100 ms 10 ms 1 ms 10–100 µs 

Network energy efficiency 

(compared to 4G) 
NA 0.01x 0.1x 1x ≥10x ≥100x 

Spectral efficiency compared 

to 4G) 
NA NA 0.6x 1x 3x ≥15x 

Area traffic capacity NA NA 1 Kbps/m2 
0.1 

Mbps/m2 

10 

Mbps/m2 
1 Gbps/m2 

Connection density (de-

vices/km2) 
NA NA 104 105 106 107 

* → Expected; AMPS → Advanced Mobile Phone System; NMT → Nordic Mobile Telephone; TACS 

→ Total Access Communication System; GSM → Global System for Mobile; GPRS → General Packet 

Radio Service; EDGE → Enhanced Data rates for GSM Evolution; WCDMA → Wideband Code Di-

vision Multiple Access; UMTS → Universal Mobile Telecommunications Service; LTE → Long-Term 

Evolution; WiMAX → Worldwide Interoperability for Microwave Access; MIMO → Multiple Input 

Multiple Output; THz → Terahertz; VLC → Visible Light Communication; FDMA → Frequency 

Division Multiple Access; TDMA → Time Division Multiple Access; CDMA → Code Division Mul-

tiple Access; OFDMA → Orthogonal Frequency Division Multiple Access; OFDM → Orthogonal 

Frequency Division Multiplexing; PSTN → Public Switched Telephone Network; SMS → Short Mes-

sage Service; MMS → Multimedia Message Service; WAP → Wireless Application Protocol; WWW 

→ World Wide Web; GPS → Global Positioning System; HD → High Definition; AR → Augmented 

Reality; NA → Not Applicable. 

4. Artificial Intelligence (AI)-Enabled 6G Networks 

The disruptive emergence of highly distributed smart city mobile applications [33–35] 

such as the IoV, IoMTs, IoD, IoRT, IIoT, 3D virtual reality, and their stringent require-

ments in terms of the QoS and the need for the service providers to satisfy SLAs, have 

been a driving force for 6G. In addition, many of those applications are AI-Big data-

driven, making it challenging if not impossible for 5G to satisfy those requirements. There-

fore, 6G must provide battery-free device capabilities, very high data rates, a very high 

energy efficiency, massive low-latency control, very broad frequency bands, and ubiqui-

tous broadband-global network coverage beyond what 5G LTE can offer. To achieve that 

level of efficiency, in contrast to 5G, 6G needs to be equipped with context-aware algo-

rithms to optimize its architecture, protocols, and operations. For this purpose, 6G will 

infuse connected intelligence in its design in an integrating communication, computing, 

and storage infrastructure from the edges to the cloud and core infrastructure. Supporting 

a wide range of applications that are demanding in terms of low latency, high reliability, 

security, and execution time requires an AI-enabled optimization for 6G [19]. Traditional 

approaches using statistical analysis based on prior knowledge and experiences via the 

deployment of the Software Defined Network (SDN) [19] will not be any more effective 

due to the elapsed time from analysis to decision making. Consequently, ML and DL al-

gorithms are used to solve several issues in networking, such as caching and data offload-

ing [36]. In this section, we present AI-enabled 6G network protocols and mechanisms 

(Figure 3) and their employed self-learning ML/DL models. 



Sensors 2022, 22, 5750 9 of 32 
 

 

 

Figure 3. Artificial Intelligence (AI)-enabled 6G networks. 

4.1. Channel Estimation 

To fulfill the demanding requirements of smart city applications in terms of high data 

rate (Tbps), low latency (order of 0.1–1 ms), and high reliability (order of 10−9) [37], the 6G 

radio access will be enabled by emerging technologies such as Terahertz communication 

[38], visible-light communication, ultra-massive multiple-input multiple-output (MIMO) 

[39], and large intelligent surfaces [40]. These technologies will increase the complexity of 

the radio communication channels, making efficient channel estimation challenging using 

the traditional mathematical approaches. The wireless communication channel attenuates 

the phase shifts and attenuates and adds noise to the transmitted information. In this con-

text, channel estimation can be defined as the process of estimating the characteristics of 

the communication channel to recover the transmitted information from the channel ef-

fect. To increase the performance and capacity of 6G communication, precise and real-

time channel estimation becomes crucial. Recently, DL has gained wide attention for pre-

cise channel estimation. Figure 4 shows a DL-based channel estimation process where the 

signal is first transmitted along with some pilot (reference) signals. The effects of the chan-

nel on the pilot signals are then extracted. The channel characteristics are then estimated 

by a DL method using the interpolated channel. 
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Figure 4. Deep Learning (DL)-based channel estimation. 

Ye et al. [41] proposed a Deep Neural Network (DNN)-based approach for channel 

estimation and symbol detection in an Orthogonal Frequency Division Multiplexing 

(OFDM) system. The DNN model is trained offline using OFDM samples generated using 

different information sequences under distinct channel conditions. The model is then used 

to recover the transmitted information without estimating the channel characteristics. Gao 

et al. [42] proposed a Convolutional Neural Network (CNN)-based channel estimation 

framework for massive MIMO systems. The authors used one-dimensional convolution 

to shape the input data. Each convolutional block consists of a batch normalization layer 

to avoid gradient explosions [43] and a Rectified Linear Unit (Relu) activation function. 

4.2. Modulation Recognition 

With the increasing data traffic in smart cities, different modulation methods are em-

ployed in a communication system for efficient and effective data transmission by modu-

lating the transmitted signal. In this context, modulation recognition aims to identify the 

modulation information of the signals under a noisy interference environment [44]. Mod-

ulation recognition aids in signal demodulation and decoding for applications such as 

interference identification, spectrum monitoring, cognitive radio, threat assessment, and 

signal recognition. The conventional decision-theory-based and statistical-pattern-recog-

nition-based methods for modulation recognition become computationally expensive and 

time consuming for smart city applications [44]. DL can be used as an alternative to im-

prove the accuracy and efficiency of modulation recognition as shown in Figure 5. Zhang 

et al. [44] investigated the applicability of a CNN and Long Short-Term Memory (LSTM) 

for modulation recognition as the former is good for the automatic feature extraction of 

spatial data and the latter performs well for sequential data. Yang et al. [45] proposed the 

use of CNN and Recurrent Neural Networks (RNNs) for modulation recognition over 

additive white Gaussian noise and Rayleigh fading channels. The authors found that DL 

algorithms perform modulation recognition more accurately compared to ML algorithms 

such as the Support Vector Machine (SVM). To ensure the privacy and security of the 

transmitted data, Shi et al. [46] proposed a CNN-based federated learning approach with 

differential privacy for modulation recognition. 
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Figure 5. Convolutional Neural Network (CNN)-based modulation recognition in networking. 

4.3. Traffic Classification 

The categorization of network traffic into different classes, referred to as traffic clas-

sification, is important to ensure the QoS, control pricing, resource management, and se-

curity of smart city applications. The simplest method for traffic classification involves 

mapping the applications’ traffic to port numbers [47]. However, this technique provides 

an inaccurate classification since several applications use dynamic port numbers. Pay-

load-based methods are alternatives to the port-based techniques where the traffic is clas-

sified by examining the packet payload [47]. However, the traffic payload cannot be ac-

cessed in scenarios where the packets are encrypted due to privacy and security concerns. 

Consequently, ML/DL-based methods can be used to address the issues of the conven-

tional methods (Figure 6). Ren, Gu, and Wei [48] proposed a Tree-RNN to classify network 

traffic into 12 different classes. The proposed DL model consists of a tree structure that 

divides the large classification problem into smaller ones, with each class represented by 

a tree node. Lopez-Martin et al. [49] proposed a hybrid RNN- and CNN-based network to 

classify traffic from IoT devices and services. CNN layers extract complex network traffic 

features automatically from the input data, eliminating the feature selection process used 

in the classical ML approaches. 

 

Figure 6. Deep Learning (DL)-based network traffic classification for Internet of Things (IoT) appli-

cations. 
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4.4. Traffic Prediction 

Network traffic predictions focus on predicting future traffic using previous traffic 

data. This aids in proactively managing the network and computing resources, improving 

the QoS, making the network operations cost-effective, and detecting anomalies in the 

data traffic. DL has shown potential in predicting network traffic accurately in real time. 

Figure 7 shows an overview of the DL-based predictions of the network traffic data. Vi-

nayakumar et al. [50] evaluated the performance of different RNNs, namely the simple 

RNN, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Identity Recurrent 

Unit (IRNN), and Feed-forward Neural Network (FNN) to predict network traffic using 

a GEANT backbone networks dataset. The experimental results showed that LSTM pre-

dicts the network traffic with the least MSE. Aloraifan, Ahmad, and Alrashed [51] used 

Bi-directional LSTM (Bi-LSTM) and Bi-directional GRU (Bi-GRU) to predict the network 

traffic matrix. To increase the prediction accuracy, the authors combined a CNN with Bi-

LSTM or Bi-GRU. The authors found that the prediction performance of DL algorithms 

depends on the configuration of the neural network parameters. 

 

Figure 7. Deep Learning (DL)-based time series prediction of network traffic data. 

4.5. Data Caching 

Internet data traffic is exploding at a rapid pace with the increasing popularity and 

demand of different smart city applications such as infotainment, AV, VR, interactive 

gaming, and XR. Consequently, it becomes challenging to accommodate these data in 

terms of storage and transmission for applications that require an ultra-low latency such 

as autonomous vehicles and smart healthcare. To address this challenge, edge caching [52] 

is seen to be a potential solution that provides storage facilities to the IoT data at the edge 
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of the network, i.e., in proximity to the mobile devices. This enables IoT applications to 

retrieve data in real time from the edge resources, eliminating backhaul link communica-

tion. Consequently, edge caching reduces data transmission time and energy. However, 

determining the optimal cache content and cache placement strategies in a dynamic net-

work is challenging [53]. DL can be effective in designing optimal caching strategies, as 

shown in Figure 8. Jiang et al. [54] proposed a distributed deep Q-learning-based caching 

mechanism to improve the edge caching efficiency in terms of cache hit rate. The mecha-

nism involves the prediction of users’ preferences offline followed by the online predic-

tion of content popularity. However, due to the limited caching resources of the edge 

nodes and spatial-temporal content demands from the mobile users, cooperative edge 

caching schemes are required. Zhang et al. [55] proposed a DRL-based cooperative edge 

caching approach that enables the communication between distributed edge servers to 

enlarge the size of the cache data. However, cooperative schemes often collect and analyze 

the data at a centralized server. The sharing of sensitive data, such as users’ preferences 

and content popularity, among different edge and cloud servers, raises privacy concerns. 

To tackle this challenge, federated learning (FL) can be a promising solution in which 

learning models to predict content popularity are trained locally at the IoT devices for 

cooperative caching [55]. 

 

Figure 8. Deep Reinforcement Learning (DRL)-based data caching in the Internet of Things (IoT) 

environment. 

4.6. Intelligent Routing 

To manage the network traffic efficiently and to fulfill the QoS requirements of 6G 

applications, several routing strategies have been developed. However, the traditional 

routing protocols developed using meta-heuristic approaches become computationally 
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expensive with increasing traffic variability. Consequently, ML and DL-based approaches 

have been proposed to address the shortcomings of the traditional methods. Figure 9 

shows an example of DL-based intelligent routing in an IoT environment. Tang et al. [56] 

proposed a real-time deep CNN-based routing algorithm in a wireless mesh network 

backbone. A CNN model with two convolutional layers and two fully connected layers is 

trained periodically using the continuous stream of network data. Liu et al. [57] proposed 

a DRL-based routing in software-defined data center networks by recombining network 

resources (such as cache and bandwidth) based on their effectiveness in reducing delay 

and then using DRL for routing with the recombined state. The employed DNN model 

within DRL consists of two fully connected hidden layers with 30 neurons each. The CNN 

model in the actor and critic networks of DRL consists of two max pooling layers, three 

convolutional layers with eight filters, and one fully connected layer with 30 neurons. A 

Relu activation function is employed in all the layers. 

 

Figure 9. Deep Reinforcement Learning (DRL)-based intelligent routing in the Internet of Things 

(IoT) environment. 

4.7. Radio Resource Management 

With the future 6G networks, the density of small-cell networks increases drastically. 

Consequently, radio resource management has emerged for the system-level manage-

ment of co-channel interference, radio resources, and other radio transmission character-

istics in a wireless communication system to utilize the radio spectrum efficiently. With 

the increasing dynamicity and complexity of network generations towards 6G, the tradi-

tional heuristic-based approaches for radio resource management become inaccurate. 

ML/DL-based approaches are explored as an alternative solution. Shen et al. [58] proposed 

graph neural networks for radio resource management in a large-scale network by mod-

eling the wireless network as a wireless channel graph and then formulating the resource 

management as a graph optimization problem. The neural network consisted of three lay-

ers, an adam optimizer, and a learning rate of 0.001. Zhang et al. [59] proposed a DNN 

framework for radio resource management to minimize the energy consumption of the 

network constrained by power limitation, inference limitation, and the QoS. A DNN 
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model with three layers, 800 neurons per layer, a 0.01 learning rate, and an adam opti-

mizer is employed for a power optimization scheme, whereas a DNN model with four 

layers, 80 neurons per layer, a 0.05 learning rate, and an RMSProp optimizer is used for 

sub-channel allocation. 

4.8. Network Fault Management 

In network management, fault management is to detect, predict, and eliminate mal-

functions in the communication network. The integration of newly emerging technologies 

and paradigms in 6G networks makes the network more complex, heterogeneous, and 

dynamic. Consequently, fault management becomes more challenging in 6G networks. 

ML/DL approaches have been studied recently for efficient fault management. Regin, Ra-

jest, and Singh [60] proposed a Naïve Bayes and CNN-based algorithm for fault detection 

over a wireless sensor network in a distributed manner. The results show that the pro-

posed approach accurately detects faults and is energy efficient. Regarding fault diagno-

sis, [61] implemented an FNN for fault detection and classification in wireless sensor net-

works. The DL model was tuned using a hybrid gravitational search and particle swarm 

optimization algorithm. Kumar et al. [62] studied the feasibility of ML and DL approaches 

for fault prediction on a cellular network. The results showed that a DNN with an auto-

encoder (AE) predicts the network fault with the highest accuracy compared to auto-

regressive neural networks and the SVM. 

4.9. Mobility Management 

Sixth Generation networks will serve a spectrum of mobile applications such as the 

IoV, IoRT, and IoMT that require low latency and highly reliable services. To guarantee 

the QoS for these applications while improving the resource utilization and network bot-

tleneck, it becomes crucial to learn and predict users’ movements. DL-based approaches 

can be an alternative solution, as shown in Figure 10. Zhao et al. [63] proposed a mobile 

user trajectory prediction algorithm by combining LSTM with RL. LSTM is used to predict 

the trajectories of mobile users, whereas RL is used to improve the model training time of 

LSTM by finding the most accurate neural network architecture for the given problem 

without human intervention. An initial learning rate of 0.002 is selected for LSTM and a 

Q-learning rate and discount factor of 0.001 and 1 are used for RL. Klus et al. [64] proposed 

ANN models for cell-level and beam-level mobility management optimization in the wire-

less network. The results showed that DL-based approaches outperform the conventional 

3GPP approach for mobility management. 

 

Figure 10. Deep Learning (DL)-based mobility management for Internet of Things (IoT) devices and 

users. 
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4.10. Energy Optimization 

With 6G networks providing efficient connectivity to a wide range of IoT applica-

tions, the number of IoT devices is expected to increase dramatically. The data transfer, 

storage, and analysis from these devices will increase the energy consumption of the net-

work. Recently, ML/DL approaches have shown potential for saving energy in wireless 

networks. Wei et al. [65] proposed actor-critic RL for users’ requests scheduling and re-

source allocation in heterogeneous cellular networks to minimize the energy consumption 

of the overall network. Continuous stochastic actions are generated by the actor part using 

a Gaussian distribution. The critic part estimates the performance of the policy and aids 

the actor in learning the gradient of the policy using compatible function approximation. 

Kong and Panaitopol [66] proposed an online RL algorithm to dynamically activate and 

deactivate the resources at the base station depending on the network traffic. The online 

RL algorithm eliminates the need for a separate model training process. 

4.11. Intrusion Detection 

The evolving smart city applications running on the underlying 6G networks require 

high reliability and high security. In this context, intrusion detection can be used to iden-

tify unauthorized access and malicious activities in smart city applications. Figure 11 

shows a DL-based approach for intrusion detection in the IoT environment. Sharifi et al. 

[67] proposed an intrusion detection system using a combined K Nearest Neighbor (Knn) 

and K-means algorithm. The proposed system employs principal component analysis for 

feature extraction and then uses a K-means algorithm to cluster the data. The clustered 

data is then classified using KNN. Yin et al. [68] proposed an RNN-based approach for 

binary and multi-class intrusion detection. For binary class intrusion detection, an RNN 

model with 80 hidden nodes and a learning rate of 0.1 provides the highest accuracy. For 

multi-class intrusion detection, an RNN model with 80 hidden nodes and a 0.5 learning 

rate yields the highest accuracy. The results show that DL approaches are better than ML 

approaches for intrusion detection. 

 

Figure 11. Deep Learning (DL)-based intrusion detection in Internet of Things (IoT) environments. 

4.12. Traffic Anomaly Detection 

Network traffic anomalies refer to unusual changes in the traffic such as a transient 

change in users’ requests, port scans, and flash crowds. The detection of such anomalies 
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is important for the security of the network and reliable services. DL approaches have 

recently gained popularity for traffic anomaly detection in complex, dynamic, and heter-

ogeneous wireless networks (Figure 12). Kim and Cho [69] proposed a C-LSTM neural 

network to model the spatial-temporal traffic data information and to detect an anomaly. 

The CNN layer in the model reduces the variation in the information, the LSTM layer 

models the temporal information, and the DNN layer is used to map the data onto a sep-

arable space. The tanh activation function is employed in all the layers except the LSTM 

output layer, which uses softmax activation. Naseer et al. [70] evaluated the performance 

of ML and DL models for anomaly detection. The authors implemented extreme learning 

machine, nearest neighbor, decision tree, random forest, SVM, Naïve Bayes, quadratic dis-

criminant analysis, Multilayer Perceptron (MLP), LSTM, RNN, AE, and CNN models. The 

results showed that DCNN and LSTM detect anomalies with the highest accuracy. 

 

Figure 12. Deep Learning (DL)-based network traffic anomaly detection. 

4.13. Botnet Detection 

The ever-growing IoT network in smart cities suffers from botnet attacks where a 

large number of IoT devices are infected by malware to execute repetitive and malicious 

activities and launch cyber-attacks such as Denial of Service (DoS), distributed DoS 

(DdoS), or data theft against critical smart city infrastructure [71,72]. For efficient and re-

liable botnet detection, ML and DL approaches have been restored as potential solutions 

in the literature (Figure 13). Injadat et al. [73] proposed a combined Bayesian Optimization 

Gaussian Process (BO-GP) algorithm and Decision Tree (DT) classifier for detecting botnet 

attacks on the IoT devices. Popoola et al. [74] proposed a DL-based botnet detection sys-

tem for the resource-constrained IoT devices. The dimensionality of the large volume of 

network traffic data is reduced using the LSTM autoencoder (LAE) having a Relu activa-

tion function and a learning rate of 0.001. A deep Bi-LSTM model, with six input neurons, 

four dense hidden layers, and an output layer, is then used for botnet detection on the 

low-dimensional feature set. A Relu activation function is employed in the input and hid-

den layers, whereas sigmoid and softmax activation functions are used at the output layer 

for binary and multiclass classification, respectively. 
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Figure 13. Machine Learning (ML)- and Deep Learning (DL)-based botnet detection for Internet of 

Things (IoT). 

5. Taxonomy of Technology-Enabled Smart City Applications in 6G Networks 

In this section, we present a taxonomy of smart city applications for next-generation 

6G networks, as shown in Figure 14. We base the taxonomy on the underlying technolo-

gies, i.e., IoT, HC, blockchain, XR, and edge-cloud computing, used by those applications 

empowered by AI, ML/DL, federated and distributed learning, and big data analytics par-

adigms. In the following, we describe the technologies along with the requirements, in 

terms of the network characteristics, of the applications using them. 
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Figure 14. Taxonomy of smart city applications in 6G based on underlying technologies. 

5.1. Internet of Things (IoT) 

The IoT is a network of connected devices, sensors, and users using internet technol-

ogies that can self-organize, sense and collect data, analyze the stored information, and 

react to the dynamic environment [75]. The number of connected devices is expected to 

reach more than 30 billion by 2025 which will be more than 70% of the non-IoT devices. 

Figure 15 shows the growth of IoT and non-IoT devices over years. The IoT can be further 

classified based on its application domains such as the IoV, IoMT, IoRT, IoD, and IioT. 
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Figure 15. Growth of Internet of Things (IoT) and non-IoT devices from 2010 to 2025. 

5.1.1. Internet of Vehicles (IoV) 

The IoV is a distributed network of mobile vehicles that have sensing, computing, 

and Internet Protocol (IP)-based communication capabilities [76]. The global IoV market 

is projected to reach $208,107 million by 2024 from $66,075 in 2017, with a GAGR of 18% 

between 2018 and 2024 [77]. The IoV network interconnects vehicles with pedestrian and 

urban infrastructure facilities such as the cloud and Roadside Units (RSUs). The IoV in-

cludes six types of communications for vehicles to receive and transmit data as shown in 

Figure 16: (1) Vehicle-to-Vehicle (V2V), (2) Vehicle-to-Infrastructure (V2I), (3) Vehicle-to-

Roadside (V2R), (4) Vehicle-to-Sensors (V2S), (5) Vehicle-to-Cloud (V2C), and (6) Vehicle-

to-Pedestrian (V2P). Several vehicular applications have been developed for the IoV such 

as an intelligent parking system, real-time navigation, traffic and accident alert, facial 

recognition for autonomous driving, cooperative adaptive cruise control, and traffic sig-

nal violations. These applications have strict data rate and latency requirements that 

should be supported by the underlying 6G networks. For instance, autonomous driving 

involving multiple sensors may require a total data rate of 1 Gbps for V2V and V2X com-

munications [78]. Furthermore, it requires a reliability of 99.999% [79], which cannot be 
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obtained with the existing wireless communication systems. In addition, vehicular appli-

cations such as infotainment, e-toll collection, collision warning, autocruise, AR map nav-

igation, and co-operative stability control have stringent latency requirements of 500 ms, 

200 ms, 100 ms, 20 ms, 5 ms, and 1 ms, respectively [80]. The 6G networks should consider 

the issues of the limited spectrum, high latency, and low reliability prevailing in the cur-

rent vehicular standards, i.e., IEEE 802.11p [81]. 

 

Figure 16. Types of communications on the Internet of Vehicles (IoV). 

5.1.2. Internet of Medical Things (IoMT) 

The IoMT is a distributed network of bio-medical sensors and devices that acquire, 

process, and transmit the bio-medical signals of patients. It integrates the communication 

protocol of the IoT with medical devices to enable remote patient monitoring and treat-

ment. Its global market is expected to reach $172.4 billion by 2030 from $39.3 billion in 

2020, at a CAGR of 15.9% from 2021 to 2030 [82]. The IoMT has several applications, such 

as the monitoring of patients with chronic diseases, monitoring of elderly people, disease 

prognosis and diagnosis, medical equipment and drug monitoring, drug anti-counterfeit-

ing, and medical waste management. In the context of a pandemic such as COVID-19, the 

IoMT can be used for the detection, tracking, and monitoring of infected individuals and 

the prediction of infections [83]. The IoMT applications require ultra-low latency and high 

reliability for scenarios such as remote surgery. The tactile and haptic internet is the back-

bone for such scenarios, whose requirements are not completely fulfilled by the current 

wireless systems [84]. The tactile internet requires an end-to-end latency of the order of 1 

ms and haptic feedback requires a latency of sub-milliseconds [85,86]. 

5.1.3. Internet of Robotic Things (IoRT) 

The IoRT is a distributed network of intelligent robot devices that can monitor events, 

integrate sensors’ data from multiple heterogeneous sources, and use local/distributed in-

telligence to take actions [87]. The IoRT market is expected to reach $1.44 billion by 2022, 
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growing at a CAGR of 29.7% from 2016 to 2022 [88]. The IoRT has several applications in 

several domains such as agriculture, construction, logistics, transportation, banking, 

healthcare, home automation, and industrial automation [89]. Robotics and automation 

require control in real time to avoid oscillatory movements, with a maximum tolerable 

latency of 100µs and round-trip times of 1ms [17]. Moreover, industrial robotic automa-

tion requires a reliability of 99.999% [79]. 

5.1.4. Internet of Drones (IoD) 

The IoD is a network of coordinated drones with communication capabilities among 

themselves, pedestrians, and ground infrastructure [90]. The global drone market is ex-

pected to reach $43.4 billion by 2027 with a CAGR of 12.56% between 2022 and 2027 [91]. 

The IoD applications include smart city surveillance, infrastructure monitoring, and 

maintenance, search, and rescue missions in place of natural/manmade hazards, logistics, 

traffic control, weather forecasts, disaster management, and events live streaming [92]. 

These applications require tactile and haptic internet with an ultra-low latency, high data 

rate, and high reliability requirements. 

5.1.5. Industrial Internet of Things (IioT) 

The IioT refers to a network of connected machines and devices in the industry for 

machine-to-machine (M2M) and machine-to-human (M2H) communications [93]. The 

IioT market is expected to reach $197 billion by 2023 from $115 billion in 2016 with a 

CAGR of 7.5% from 2017 to 2023 [94]. Applications involve predictive maintenance, qual-

ity control, safety management, and supply chain optimization. The IioT sensors and de-

vices are often placed in noisy environments to support mission-critical safety applica-

tions. These applications have stringent latency and reliability requirements for proper 

control decisions [95]. In some cases, the IioT may require a reliability of 99.99999% [96] 

as information loss could be catastrophic in some scenarios such as nuclear energy plants. 

5.2. Holographic Communication (HC) 

HC is the next evolution of 3D videos and images that will capture data from multiple 

sources, providing end users with an immersive 3D experience. The global holographic 

display market size is projected to reach $11.65 billion by 2030 from $1.13 billion in 2020, 

i.e., a CAGR of 29.1% from 2021 to 2030 [97]. It requires very high data rates and an ultra-

low latency. The bandwidth requirements for a human-sized hologram after data com-

pression varies from tens of Mbps to 4.3 Tbps [98,99]. However, a high level of compres-

sion to reduce the bandwidth requirements will lead to a high latency. To have a seamless 

3D experience, holograms require a latency of sub-milliseconds [17,100]. Consequently, 

there is a tradeoff between the level of compression, computation bandwidth, and latency, 

which needs to be optimized by the network [101]. Furthermore, the network should have 

high resilience in the case of HC to maintain a high QoS by assuring reliability and reduc-

ing jitter, packet loss, and latency. Considering the security requirements for HC in appli-

cations such as smart healthcare (remote surgery), the network must be secured. 

5.3. Extended Reality (XR) 

Extended reality (XR) technologies involve AR, Mixed Reality (MR), and VR applica-

tions. The current wireless communication technologies are unable to provide an immersive 

XR experience for users of these applications, such as 3D medical imaging, surgical training, 

immersive gaming, guided remote repair and maintenance, virtual property tours, e-com-

merce purchase, hands-on virtual learning, and virtual field trips for students. This is due 

to the inability of the currently deployed 5G technology to deliver ultra-low latencies and 

very high data rates [102]. These XR applications are highly demanding in terms of commu-

nication and computation due to the incorporation of perceptual needs (human senses, 

physiology, and cognition). The envisioned 6G networks should ensure the Quality-of-
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Physical-Experience (QoPE) [103] for these XR applications by providing URLLLC and 

eMBB services. 

5.4. Blockchain 

Blockchain is a decentralized peer-to-peer technology that eliminates the need for a 

centralized third party [104]. Each event in the network is recorded in a ledger that is 

replicated and synchronized among all network participants. A participant in the network 

owns a public–private key pair [105], which enables authentication [106,107] and allows 

transaction validation. The consensus, cryptographic, provenance, and finality character-

istics of blockchain provide security, privacy, immutability, transparency, and traceabil-

ity. Blockchain has shown potential in several applications including healthcare [108–112], 

transportation [113,114], energy [115,116], education [117,118], and governance [119,120]. 

Figure 17 shows a blockchain-based integrated IoV-edge-cloud computing system, where 

the ledge is replicated at the edge and cloud servers. The events for different vehicular 

applications such as autonomous driving, infotainment, and real-time navigation are rec-

orded as transactions in the ledger. The consensus protocol and replication of the ledger 

involved in blockchain require high bandwidth, reliable connection, and low-latency com-

munications between multiple nodes to reduce communication overhead [121–123]. It re-

quires a synergistic aggregation of URLLC and mMTC to provide an ultra-low latency, 

reliability, and scalability. 

 

Figure 17. Blockchain-enabled Integrated Internet of Vehicles (IoV)-Edge-Cloud environment. 

5.5. Edge-Cloud Computing 

Cloud computing is a technological paradigm that enables on-demand access to a 

shared pool of configurable computing, storage, and network resources over the internet 

[124]. It is based on a pay-per-use model and can be provisioned with minimal manage-

ment effort. With the emergence of the IoT and big data analytics applications in various 

domains such as healthcare [125–127], education [128–130], transportation [131], banking 

[132,133], energy utilities [134,135], and entertainment [136,137], cloud computing pro-

vides a sandbox for data processing and storage, enabling the deployment of compute-

intensive smart city applications [138]. However, considering the distance between the 

IoT devices and the remote cloud servers, the latency requirements of time-critical appli-

cations may be violated. Consequently, mobile edge computing has been introduced, 
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which provides computing and storage resources close to the IoT devices. For applications 

with low latency requirements, the service request can be directed to the nearest edge 

computing site. However, the computing capabilities of edge servers are low compared 

to the remote cloud servers, leading to the high processing time for compute-intensive 

applications. Thus, an integrated edge-cloud computing system is often used to handle 

compute-intensive and/or time-critical applications [139,140]. However, the underlying 

6G networks should consider the energy efficiency [141–148], optimal resource provision-

ing and scheduling [149–152], and contextual-aware application partitioning [153–164] re-

quirements of this integrated system. 

In summary, smart city applications have stringent requirements, in terms of an ul-

tra-low latency, high data rate, reliability, energy efficiency, and security that should be 

fulfilled by the next-generation 6G networks. These applications, underpinned by emerg-

ing technologies such as the IoT, HC, blockchain, XR, and edge-cloud computing, provide 

a lot of potential for unprecedented services to citizens. However, smart urbanism [165] 

is seen as critical for the success of a smart city. Governments should put in place plans to 

address some inherent issues to the deployment of AI-sensing and data-driven smart ap-

plications. In particular, privacy concerns should be addressed as personal data is col-

lected continuously. In addition, people’s fear that this paradigm shift to smart cities may 

generate unemployment in some professions should be dealt with. Furthermore, worries 

of losing social face-to-face interactions with government entities, which would rely on 

sensing and digital devices to collect personal data for improving services, have to be 

taken care of. Consequently, smart urbanism advocates incremental changes to cities ra-

ther than a massive one. 

6. Future Directions 

While the 5G mobile communication networks generation is just starting to be de-

ployed, there is already a plan to design new 6G networks. This is because of the prolifer-

ation of diversified smart city applications that are extensively distributed and more in-

telligent than ever before, thanks to the emergence of AI, big data analytics, federated and 

distributed learning, the IoT, edge-cloud computing, and blockchain. The currently in-

deployment 5G networks will not be capable of meeting the heterogeneous and stringent 

requirements of these applications, in terms of efficiency, real-time operation, and relia-

bility, with ever-increasing traffic demands. For instance, 5G is incapable of delivering 

ultra-low latencies and high data rates for holographic applications that demand data 

rates of up to 4.3 Tbps. In contrast to the previous generation networks, 6G is expected to 

support numerously connected and intelligent applications with stringent requirements 

in terms of high data rates, high energy efficiency, ultra-low latencies, and very broad 

frequency bands. Considering the requirements of 6G networks and smart city applica-

tions, AI will be the dominant enabler in the network, middleware, and application layers, 

as shown in Figure 18. Current research practices either focus on self-learning 6G net-

works, AI-enabled middleware, or AI applications in smart cities’ digital ecosystems. AI 

with self-learning capabilities empowers 6G networks to be intelligent, agile, flexible, and 

adaptive by providing functionalities for channel estimation, modulation recognition, net-

work traffic classification and prediction, intelligent routing, radio resource management, 

fault management, network energy optimization, and intrusion, botnet, and traffic anomaly 

detections. Furthermore, at the middleware layer, AI can aid in the scheduling of smart city 

applications’ requests, computing resource management, computation and communication 

energy optimization, application performance optimization, context-aware data caching, 

and fault tolerance and data availability. In regard to smart city applications, AI can benefit 

the evolving applications within emerging technological paradigms such as the IoV, IoMT, 

IoD, IoRT, IIoT, HC, XR, cloud computing, edge-cloud computing, and blockchain. 
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Figure 18. AI-enabled smart city applications in self-learning 6G networks. 

Research in the following directions is required for the realization of AI-enabled 

smart city applications in self-learning 6G networks. 

1. Automated AI frameworks: In 6G networks, a massive amount of the data will be gen-

erated from the network, middleware, and application layers. The dynamic environ-

ment requires ongoing updates of the AI learning models’ parameters. In 6G net-

works where ultra-low latencies are a key requirement, tuning the parameters using 

traditional grid search or meta-heuristic approaches may introduce a computational 

overhead, degrading the performance of smart city applications and the underlying 

6G networks. Consequently, there is a need for automated AI frameworks that would 

select the optimal models’ parameters based on the contextual applications and net-

work dynamics. 

2. AI frameworks integration: The self-learning 6G networks in the smart city digital eco-

system will comprise numerous AI models at the network, middleware, and appli-

cation layers. The output of the learning models from the application and middle-

ware layers should be fed as the input to the learning models at the network layer in 

a dynamic environment. The high flexibility and scalability of the AI learning frame-

works are crucial for supporting a high number of interactions between the learning 

models at different layers and providing dependable services in real time. Conse-

quently, further research is required on how to integrate dependable, flexible, and 

scalable learning frameworks for smart city applications in 6G networks. 

3. Performance of AI models: In 6G networks, meeting the accuracies of the AI models to 

process high-dimensional dynamic data at the network, middleware, and application 

layers is crucial. However, these AI models, deep learning and meta-heuristics in 

particular, have high computational complexity and require a huge amount of time 

for convergence. This hinders the deployment of applications with ultra-low latency 

requirements such as robotics and automation, collision warning in the IoV, and AR 

map navigation. Furthermore, the computationally expensive AI models have a high 
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energy consumption. Consequently, further research on how to design efficient AI 

approaches to improve computation efficiency and energy consumption is required. 

7. Summary and Conclusions 

The design of agile, flexible, and self-learning 6G networks is envisioned to support 

emerging distributed, dynamic, and intelligent smart city applications. AI is expected to 

play an important role in smart city applications as well as the 6G networks. In this paper, 

we provide a temporal evolution of wireless network generations capturing the techno-

logical and application requirements that led to the development of a given network gen-

eration over a certain period. In addition, we adopt a holistic approach to providing tax-

onomies for AI-enabled 6G networks and technology-enabled smart city applications. For 

the 6G networks, we highlight the employed self-learning models. Furthermore, for the 

applications use cases, we provide the QoS and SLA requirements that should be consid-

ered for the deployment of these applications. Finally, we discussed research directions 

toward intelligent and integrated computing, communication, coordination, and deci-

sion-making smart city digital ecosystems in 6G networks. 
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