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Abstract: Sensory processing issues are one of the most common issues observed in autism spectrum
disorders (ASD). Technologies that could address the issue serve a more and more important role in
interventions for ASD individuals nowadays. In this study, a sensory management recommendation
system was developed and tested to help ASD children deal with atypical sensory responses in class.
The system employed sensor fusion and machine learning techniques to identify distractions, anxious
situations, and the potential causes of these in the surroundings. Another novelty of the system
included a sensory management strategy making a module based on fuzzy logic, which generated
alerts to inform teachers and caregivers about children’s states and risky environmental factors.
Sensory management strategies were recommended to help improve children’s attention or calm
children down. The evaluation results suggested that the use of the system had a positive impact on
children’s performance and its design was user-friendly. The sensory management recommendation
system could work as an intelligent companion for ASD children that helps with their in-class
performance by recommending management strategies in relation to the real-time information about
the children’s environment.

Keywords: assistive technology; autism spectrum disorders; sensors; wearables; sensory management;
machine learning; fuzzy logic

1. Introduction

Autism spectrum disorders (ASDs) refer to a group of neurodevelopmental disabilities
that affect an individual’s social interactions, communication, interests, and behavior [1].
Sensory processing issue is one of the most common issues observed in individuals with
ASD [2]. As many as 90% of ASD individuals may have experienced atypical sensory
responses to auditory, visual, touching, tasting, and smelling stimuli [3]. According to the
Diagnostic and Statistical Manual of Mental Disorders [2], atypical sensory responses in
ASD involve hyper- or hypo-sensitivity to sensory input. ASD individuals who are hypo-
sensitive may fail to notice sensory stimuli which typically developing (TD) people can
easily detect, resulting in behavioral outcomes such as having difficulty paying attention.
Conversely, those who are hyper-sensitive are likely to experience distress to sensory
stimuli [4]. Therefore, for ASD individuals with atypical sensory responses, any of the
senses at any random time could become hyper-sensitive or hypo-sensitive, which could
further trigger discomfort, stress, or distraction [5,6]. ASD individuals could have more
problems in sensory management, such as attention and stress management, than their TD
peers when processing everyday sensory information [4,7,8]. The sensory issue presents a
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significant challenge for ASD children and their caregivers, especially within a classroom
setting, as it affects their learning efficiency and behavioral control.

The rapid development of information technology has encouraged many researchers
to explore technology-based interventions that can be used in daily life for ASD children
with atypical sensory responses. Some causes of the above-mentioned discomfort, stress,
or distraction in ASD individuals could be found as being part of an ‘unfriendly environ-
ment’ [9] (page 92), such as noisy or sudden sounds, bright or dark lights, and warm or
cold weather [10,11]. The identification of a triggering event for atypical sensory responses
in ASD by technologies could be an important aspect to optimize the surrounding causes
related to explosive behaviors in ASD. Traditionally, to measure sensory responses, various
manual methods, including rating scales and questionnaires, were used in some systems for
predicting the comfort level based on sensory inputs or triggers [8,12]. For instance, Mauro
et al. [13] proposed a personalized recommendation system to predict points of interest
for individuals with ASD using a Top-N model. Their system used a self-defined sensory
profiling questionnaire to obtain information about sensory aversion and preference of
people with ASD, generating suggestions for places that are expected to be comfortable
and safe for the users. However, even in a safe place, unpleasant sensory factors around
the child could appear. To provide effective intervention, exact and real-time identification
of sensory causes could be required, which was difficult to achieve merely by manual
methods [9].

Recent advancements in sensing technologies have made the sensors work similarly
to human senses [9]. Developments in sensor fusion and artificial intelligence have driven
the integration of multiple sensors and machine learning for capturing ASD individuals’
real-time sensation in different environments. For instance, a stress-monitoring system for
people with ASD was created by Tomczak et al. [14] using low-power wearable sensors.
The detection module of the system was built using a heuristic rule-based model. Heart
rate, skin conductivity, body temperature, and hand movements were the main indicators
to identify a person’s stress responses. Coronato et al. [15] used wearable accelerometers to
create a situation-aware system that can identify abnormal motor behaviors. The employ-
ment of a neural network model led to an accuracy close to 92% on anomalous gestures
of an individual with ASD. Additionally, the internet-connected smart devices had also
demonstrated their potential by reducing the reliance on dimensions for monitoring sys-
tems [9]. Sula et al. [16] designed a system based on the Internet-of-Things (IoT) that could
monitor the body movement and the sensory environment of children with ASD. It could
send information about the children’s state in real time to therapists and caregivers using
Peer to Peer (P2P) technology. Khullar et al. [9] designed another IoT-based system to detect
the environmental information and process the information using fuzzy logic. The system
was also able to generate alerts to caregivers of children with ASD and provide auditory-
video feedback to calm down children with ASD. Schmidt et al. [17] designed a spherical
video-based virtual reality (SVVR) mobile application to facilitate social skill training for
individuals with ASD. Their study evaluated user experience, usability of application,
and utilization feasibility, and found an overall positive user experience. On the other
hand, robot-assisted therapies were commonly seen in emerging ASD studies. Robots were
always built with various sensors, through which robots could get the necessary signals
and interact as a human-like friend with ASD children [18]. For example, an NAO robot
was a programmable robot equipped with cameras, microphones, and tactile sensors [19].
In a recent study conducted by Ali et al. [20], the NAO robot was programmed to provide
visual, auditory, and tactile stimuli to engage children with ASD. Its camera monitored and
recorded children’s joint attention. KASPAR is another child-sized robot equipped with
tactile sensors. Costa et al. [21] used the KASPAR robot to help teach children with ASD
appropriate tactile interactions. However, these robots did not have body-worn sensors, so
children’s atypical sensory responses were manually analyzed based on observations in
previous robotic studies.
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It has been found that previous studies have used a range of methods, including a
sensory profiling questionnaire, sensors, machine learning techniques, or IoT, to measure
sensory responses and associated behavioral outputs, implying the feasibility of combining
several off-the-shelf technologies to obtain comprehensive information for the development
of a real-time monitoring system for children with ASD. Therefore, the goal of this study
was to design a sensory management recommendation system (hereinafter referred as
SMRS) specifically for children with ASD, using phone devices and sensors. The SMRS
could understand a user’s sensory processing pattern, record and analyze sensory input,
and act as a ‘specialist’ companion to recommend sensory management strategies in real
time. The SMRS was implemented on a mobile phone because the growing usage of
phones and sensors provided low-cost platforms for people to track information and access
support [22]. Furthermore, it was suggested that the stigma associated with the disability
could be reduced by using mobile phones, given that mobile phones could successfully
address the challenges of public exposure [22,23]. The affordability and portability of the
SMRS may make it easier for families of ASD children to access, in particular for those from
relatively low-income countries. The SMRS in this study was evolved from the prototype
which was tested successfully in researchers’ previous pilot study [4]. This study extended
the previous paper by describing the full infrastructure of the SMRS and evaluating its
effectiveness.

2. Materials and Methods
2.1. System Infrastructure

The proposed sensory management recommendation system (SMRS) was capable of
collecting a user’s (child with ASD) sensory profile and allowing real-time data acquisition
from the surroundings of the user through sensors. Firstly, the caregiver of the user should
sign up for an account and complete a Sensory Profile of Children Three to Ten Years
Caregiver Questionnaire [24], which is a standard sensory profiling tool that assesses the
sensory processing pattern of a child. This questionnaire could elicit children’s sensory
preferences or limitations, and classify their sensory pattern under four quadrants based on
Dunn’s model of sensory processing [25]. Table 1 described the characteristics of individuals
under the four quadrants. The measuring module of the SMRS collected physiological data
such as skin conductivity, heart rate, and hand movements, and environmental data such
as temperature, humidity, light exposure, and noise. The recording frequency was 1 hertz.
Moreover, on the basis of acquired sensory information and machine learning models,
the SMRS predicted the level of stress and attention of the child. The real-time data and
predicted stress and attention level were further transmitted to the cloud server embedded
with fuzzy logic controllers for sensory management strategy making. If the analyzed
outcome was ‘High Risk’ (atypical sensory responses situation) and a sensory management
recommendation was given, the alert could be initiated automatically by the SMRS. The
message subscription allowed an alert to be sent to the caregivers or teachers via Short
Message Service (SMS) regarding the occurrence of atypical situation (which was identified
as ‘High Risk’ by fuzzy logic controllers) so that they could provide an intervention as
suggested by the SMRS timely. The overall system infrastructure and working flow were
presented in Figure 1.
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Table 1. Characteristics of four sensory patterns [4].

Sensory Pattern Characteristics

Low registration Less likely to notice sensory input, may behave as passive or easy
going.

Sensory seeking Prone to add sensory events to daily life, may be very active or keep
busy.

Sensory sensitivity More likely to get distracted by sensory inputs, often show discomfort
and sensitivity towards daily events.

Sensory avoiding Prone to withdraw from overwhelming sensory stimulation, may be
very ritualistic and rule-bound.

1 

 

 

  Figure 1. System infrastructure. (a) Data transmission network of the SMRS; (b) working flow of the
SMRS.

2.2. Sensor Fusion and Data Management

To achieve proposed functions, the design of SMRS consisted of sensing devices, an
iOS-based software application, and a cloud server for data management. iPhone [26],
Apple Watch [27], and Arduino sensors [28] were the sensing devices used to record
environmental and physiological data. The sensors and microcontrollers used in the SMRS
are listed in Table 2, along with the purpose of each component. Figure 2a presents the
circuit diagram of the Arduino board and Figure 2b is a prototype of the Arduino board.
More technical details are presented as guidelines for sensor fusion and data management
in the Supplementary Materials.

Table 2. Sensors and microcontrollers.

Sensor/Microcontroller Unit Purpose

Arduino UNO Rev3 N/A * To fetch and transmit signal
from sensors.

Apple Watch three-axis
accelerometer Sensor value To identify the hand

movements.
Apple Watch heart rate sensor Beats per minute (bpm) To measure heart rate.
DHT11 temperature and
humidity sensor

Celsius (◦C) for temperature,
percentage (%) for humidity

To measure temperature and
humidity level.

iPhone microphone Decibel (dB) To measure noise level.
iPhone barometer Kilopascal (kPa) To measure air pressure.
Light sensor (photoresistor) Lux (lx) To measure brightness level.
SEEED Grove Galvanic Skin
Response (GSR) sensor Sensor value To detect skin conductivity.

* N/A: Not applicable.
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2 

 

 

  Figure 2. Arduino UNO circuit connection. (a) Circuit diagram; (b) prototype of the Arduino board.

An iOS-based application was created to connect the Arduino UNO and gain access to
the built-in sensors on the iPhone and Apple Watch. The application allowed the caregivers
to select a language they preferred (Figure 3a), to complete the sensory profile caregiver
questionnaire (Figure 3b), and to view the environmental/physiological changes around
the ASD user (Figure 3c) and sensory management strategies.

 

3 

 

 

  
Figure 3. SMRS application interface. (a) Language selection; (b) sensory profile questionnaire;
(c) sensor data visualization.

The cloud server for the SMRS was equipped with an Intel Xeon Processor, 4 GB RAM,
and a Linux Ubuntu Operating System, which could handle multiple threads in parallel
to receive data from different devices. The fuzzy logic controllers deployed on the cloud
server could process the data received and return outputs to the SMRS. When the SMRS
completed a recording session, sensor data were packed up with personal information (e.g.,
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gender, date of birth, sensory profile) and sent to the cloud server so that researchers could
access and manage the data accordingly.

2.3. Data Acquisition and Machine Learning Model Training

To acquire a training set of data with indicative labels for attention and stress detection,
this study firstly used the SMRS prototype to record data in some children with ASD at a
testing room of a rehabilitation center for several months.

Data acquisition was conducted with 35 children with ASD (mean age: 5.3; 29 boys,
6 girls, gender ratio: 4.83:1). Each child was told to complete 15 data collection sessions in
different settings where environmental influences (i.e., temperature, noise, and brightness)
were controlled during the session. In each session, three classical attention tasks (i.e.,
counting, picture matching, and drawing) for ASD children were given with audio instruc-
tions. Children’s performances on tasks were rated by an accuracy score from 0 (0% correct)
to 1 (100% correct). Detailed descriptions of these procedures can be found in [4]. Finally,
521 valid datasets were obtained. Each dataset recorded sensor data during one session for
approximately 15 min at a frequency of 1 hertz. Two healthcare professionals (qualified
ASD specialists) were invited as assessors to classify children’s attention and stress levels
at the end of tasks. They labelled the attention level of children as low or normal. Stress
levels were labelled as low, moderate, and high. Since the data acquisition was long-term
work, two healthcare professionals were not always available during that period. They suc-
cessfully labelled 222 datasets. By combining task accuracy scores with classifications from
professionals, researchers calculated the entropy and information gain [29] of the labelled
sample to determine the best split points on attention and stress for all the 521 datasets. The
calculation results showed that when employing the following classification, the data had
the highest information gain values, indicating the best quality of the splits. A task accuracy
score higher than 0.6 was considered to be within a normal level of attention, indicating
that the child could generally pay attention to the task. A task accuracy score less than
or equal to 0.6 was classified as the inverse of normal, indicating a low level of attention.
Children relaxing in moderate environmental conditions were classified as having low
stress, whereas performing tasks in moderate and extreme environmental conditions were
classified as creating moderate stress and high stress, respectively. Features extracted as
predictors for attention and stress detection were provided in Table 3.

Table 3. Extracted data features.

Category Included Features

Environmental features Temperature, noise, humidity, brightness, air pressure

Sensory profile features Low registration, sensory seeking, sensory sensitivity, sensory
avoiding

Physiological features GSR, heart rate, watch accelerometer (mean absolute value of
three axis)

Personal characteristics Gender, age

Several machine learning models were implemented and compared for attention
and stress detection. The investigated models included Logic Regression (LR), K Nearest
Neighbor (KNN), Random Forest (RF), Artificial Neural Network (ANN), and Gradient
Boosting Decision Tree (GBDT). The pre-processed data were split into the training and
testing datasets by adopting 80:20 as the ratio of training:testing dataset. Five-fold cross-
validation was performed with Grid Search on the training dataset to prevent overfitting
and to obtain the best parameters for LR, KNN, RF, and GBDT. The best parameters
evaluated by the mean cross-validation scores were used for the final model training. For
ANN, loss functions with L2 regularization were used to optimize the model [30]. The
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performance of each model on the testing dataset was evaluated by accuracy and F1-score,
which were computed by the following equations:

Accuracy =
number of correct predictions

total number of predictions made
, (1)

F1 − score = 2 × precision × recall
precision + recall

, (2)

Precision =
true positive

true positive + false positive
, (3)

Recall =
true positive

true positive + false negative
. (4)

For attention detection, which was a binary classification, a weighted F1-score was
calculated, while a macro F1-score was computed for stress detection, which was a multi-
class problem [31]. Considering the machine learning model needed to be implemented on
the mobile phone devices, the response time of a model was another factor that researchers
investigated. All the models were processed on a laptop CPU and the inference time of
each model was calculated and compared:

In f erence time =
total time taken to calculate the outputs

number of samples
. (5)

The accuracy, F1-score, and inference time on the testing data set of LR, KNN, RF,
ANN, and GBDT models with optimal hyperparameters for stress and attention detection
are presented in Table 4. It could be noticed that GBDT significantly outperformed the other
models on attention detection with the highest accuracy (86.67%) and F1-score (0.8772).
Machine learning models had overall better performance on stress detection than attention
detection. The accuracies of RF, ANN, and GBDT models on stress detection were over
95%. RF had a higher accuracy (98.82%) and F1-score (0.9851) than ANN and GBDT. Most
models could process an input within 0.1 millisecond (ms). Finally, two ensemble learning
models, GBDT and RF, with the highest accuracy and generally short inference time, were
chosen to be embedded into the SMRS for attention and stress detection, respectively [4].

Table 4. Model performance on attention and stress detection.

Attention Detection Stress Detection

Model Accuracy
(%)

Weighted
F1

Inference
Time (ms)

Accuracy
(%) Macro F1 Inference

Time (ms)

LR 65.71 0.6949 0.0052 65.30 0.5712 0.0013
KNN 81.90 0.8319 0.0291 93.92 0.9251 0.1041
RF 79.05 0.8000 0.0958 98.82 0.9851 0.0182
ANN 80.95 0.8246 0.0040 96.89 0.9592 0.0021
GBDT 86.67 0.8772 0.0046 98.50 0.9812 0.0366

2.4. Sensory Management Strategy Making

Real-time data collected by sensor fusion and predicted outcomes were further pro-
cessed through the sensory management strategy making module where fuzzy logic con-
trollers were implemented. The study employed fuzzy logic because it is a very classical
and easily implemented method that imitates the human strategy-making mechanism [32].
It took the best decision for the given conditions based on some set of rules [33]. Before
the fuzzy logic controllers could be used for the SMRS, all the inputs and fuzzy logic rules
must be predefined. Therefore, researchers firstly gathered information about sensory man-
agement strategies through focus group consultations with 10 ASD specialists, combining
with knowledge from ASD sensory toolkits [34,35]. Key environmental conditions that may
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trigger sensory management strategies included loud noises, bright or dark lights, and
warm or cold room temperatures. As suggested by the focus group, the length of time that
atypical sensory responses lasted was a factor that should be considered. The strategy for
long-term and short-term atypical sensory responses could be different given that children
with ASD have some degree of self-management ability. Secondly, in order to obtain more
validated combinations of fuzzy logic rules and outcomes, researchers conducted a survey
with 242 ASD specialists. Scenarios with risky conditions were shortlisted in the survey.
Sensory management strategies obtained from focus group consultations and toolkits were
listed as options. Survey results were finally interpreted into 63 fuzzy logic rules. Three
independent fuzzy logic controllers were designed to process brightness, temperature, and
noise stimuli in parallel. Each fuzzy logic controller contained 21 rules. A full list of rules
is attached in Appendix A. Inputs to the fuzzy logic controllers included sensory stimuli
(temperature/noise/brightness), duration of atypical sensory responses, and attention and
stress levels. Trapezoidal and Gaussian membership functions were used to fuzzify the
inputs. Figure 4 depicted the membership functions of the inputs and output.

 

4 

 

 

  
Figure 4. The graphs of the membership functions for the inputs and outcome.

The selection of the defuzzification method usually influenced overall performance
of the fuzzy logic controllers [36]. This study opted for Largest of Maximum (LOM)
method because it was more suitable for the general design of the fuzzy logic controllers.
Researchers compared it with another most popular defuzzification method, which was
Centroid method [37]. Two methods were tested on 21 different combinations of inputs.
Centroid method only returned 79.4% of outcomes as expected in the testing because
it usually led to a reasonable control action. To simplify, if there were two rules: ‘IF
Temperature is High AND Duration is Short, THEN Outcome is Low Risk’, ‘IF Temperature
is High AND Duration is Long, THEN Outcome is High Risk’, when the temperature was
high, and the duration of atypical sensory responses was approaching long, the Centroid
method averaged the two possible outputs to get the unwanted result ‘Medium Risk’. In
this study, it was more important to detect ‘High Risk’ accurately. Therefore, the LOM
method, which selected the largest output value whose membership value reached the
maximum [38], was used in this study. Expectedly, the LOM method yielded superior
results by returning all outcomes accurately in the testing. Table 5 provides some examples
of the tested inputs, outcomes based on the LOM method, and strategies recommended by
the SMRS.
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Table 5. Outcome responses of fuzzy logic controllers and strategy making module on different
combinations of inputs.

Inputs Outcome Responses

Sensory Stimuli Attention Stress Duration (s) Fuzzy Outcome Recommended Strategy

Brightness = 100 lx Low High 25

 

9 

 

  

Brightness level is low.
Enhance indoor brightness
(e.g., draw the curtains open),
use a phone to show pictures
or videos that the child likes
for comfort and attention.

Brightness = 400 lx Normal Low 40

 

10 

 

 

  

Brightness level is moderate.
No impact.

Brightness = 750 lx Normal High 10

 

11 

 

  

Brightness level is high.
Reduce indoor brightness
(e.g., draw the curtains). Keep
observing.

Temperature = 15 ◦C Normal High 10

 

12 

 

 

  

Temperature level is low.
Enhance temperature level
(e.g., turn up the
air-conditioner). Keep
observing.

Temperature = 26 ◦C Normal Moderate 25

 

13 

 

  

Temperature level is
moderate. Keep observing.

Temperature = 32 ◦C Low High 40

 

14 

 

 

  

Temperature level is high.
Reduce temperature level
(e.g., turn on the fan). Provide
some deep pressure (e.g.,
hugs or massage) input to
child for comfort and
attention.

Noise = 60 dB Low Low 25

 

15 

 

  

Noise level is moderate.
Check other factors that may
distract your child.

Noise = 70 dB Normal High 10

 

16 

 

  

Noise level is moderate-high.
Keep observing.

Noise = 80 dB Low Moderate 40

 

17 

 

 

Noise level is high. Try to
reduce loud (e.g., use
noise-cancelling headphones
or play calming music).
Provide a fidget toy with
texture that child likes for
comfort and attention.

Fuzzy logic controllers were coded by the Python language and deployed on the
cloud server. The SMRS application on the phone was able to receive the outcomes of
fuzzy logic controllers. When the outcome was ‘Low Risk’, the SMRS would show ‘No
impact’ (Figure 5a). When the outcome approached ‘High Risk’, then the SMRS identified
the triggering sensory input and recommended a proper strategy. The SMRS allowed an
automatic message alert of a ‘High Risk’ situation. The recommended strategy could be
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sent to a corresponding caregiver or teacher via SMS message if they activate the automatic
message alert by entering their phone number (Figure 5b).

 

5 

 

 
  Figure 5. Interface of sensory management strategy recommendation. (a) Feedback interface; (b) mes-

sage alert subscription.

2.5. Real-Life System Evaluation

The SMRS Beta App has been released on TestFlight for real-life system evaluation
since March 2022. TestFlight is Apple’s beta testing service with which developers can
invite testers simply by sharing a public link [39]. In this study, the evaluation of SMRS
measured how accurately the SMRS identified the abnormal attention and stress levels of the
children with ASD in real-life cases of different conditions of sound, light, and temperature.
Separately, the study investigated the effectiveness of management strategies recommended
by the SMRS on children’s performance improvement. Furthermore, the caregivers’ level of
satisfaction in terms of system utilization, such as user interface, intention of long-term use,
were assessed as well. ‘Real-life’ here referred to the regular environment in daily life in
which there was no preliminary control on the generation of sound, visual, or tactile-related
stimuli unless the SMRS recommended them to make an adjustment.

The evaluation was performed on 30 preschool children formally diagnosed as ASD.
Another 30 gender- and age-matched TD children were involved as well for comparison.
Table 6 highlights the demographic characteristics of participants. As shown in Table 6,
the testing sites included several childcare centers in Zhejiang Province of China. The
SMRS were tested across sites to demonstrate that the application and results of the SMRS
intervention were not limited to a specific place.
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Table 6. Demographic information of participants of evaluation study.

Condition Testing Site Number of
Participants Average Age Gender Ratio

(Male:Female)

ASD
An ASD Rehabilitation
Center in Wenzhou 15 4.3 12:3

An ASD Rehabilitation
Center in Ningbo 15 4.0 12:3

TD
A Public Kindergarten
in Wenzhou 15 4.4 12:3

A Private Childcare
Center in Ningbo 15 4.3 12:3

The evaluation sessions were conducted in normal classrooms equipped with a desk,
chairs, and necessary facilities (such as Figure 6a). The Arduino board was placed near the
participant. An Apple Watch and GSR sensor were worn by the participant (Figure 6b). As
shown in Figure 6c, in each testing room, there were one teacher and one participant at a
time, with the caregiver using the SMRS and observing around the corner.
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worn sensors in the evaluation; (c) the setup for a SMRS session.

Before the formal evaluation sessions, caregivers were invited to install the SMRS Beta
App and sign up an account for their children. If the caregivers did not own an iPhone
or Apple Watch, test iOS devices that belonged to the research team were lent to them.
All the participants and corresponding stakeholders (i.e., caregivers and teachers) were
given coaching sessions about testing settings in advance. Each participant should undergo
three sessions: no-SMRS session, SMRS session 1, and SMRS session 2 as described in
Sections 2.5.1–2.5.3. Duration of each individual session was 30 min. Any two sessions for
each participant should not be scheduled in one day to avoid a possible short-term effect
such as fatigue and stress.

2.5.1. No-SMRS Session

Prior to the first testing session with SMRS, the classroom teacher and caregiver
provided a baseline rating regarding the child’s attention and stress in a no-SMRS condition.
The child took a class as normal. After the session, the teacher and caregiver rated the
child’s performance by using a report form adapted from the Caregiver-Teacher Report
Form for Ages 11⁄2-5 (C-TRF) [40]. C-TRF is a well-validated instrument which evaluates
behavior problems that occur in the classroom across multiple domains including anxiety,
stress, attention, and social interaction [41]. Each item on the problem section of the C-TRF
contains a statement about a child’s behavior. Response choices include: ‘Not True’ (scored
as 0), ‘Somewhat or Sometimes True’ (scored as 1), and ‘Very True or Often True’ (scored
as 2). The adapted C-TRF in this study includes items listed in ‘Anxious/Depressed’ and
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‘Attention Problem’ subcategories. The adapted version of C-TRF was attached in the
Appendix B.

2.5.2. SMRS Session 1

In the first SMRS session, children and caregivers used the SMRS in the same class
as the No-SMRS session. The researchers helped the child put the watch and GSR sensor
on before the class started. The caregiver held the phone and used the SMRS on the
phone in the classroom. If the detection results regarding attention or stress were wrong,
the caregiver should make a real-time correction on the anomaly detection by clicking
the ‘correct’ button and providing true labels on the phone (Figure 7). In this session, the
caregiver or teacher would not follow immediate strategies recommended by the system for
attracting the child’s attention or calming down the child. After the session, the caregiver
and teacher completed the adapted C-TRF. Results from this session were used to evaluate
how accurately the SMRS identifies the abnormal attention and stress levels of the children
with ASD. By comparing the reported scores between the no-SMRS session and SMRS
session 1, the researchers could discuss whether the implementation of wearable devices
would influence children’s attention and stress in the classroom or not. 

7 

 

 

Figure 7. Caregiver feedback interface.
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2.5.3. SMRS Session 2

The procedures described for the testing preparation in the SMRS session 1 were
identical for the SMRS session 2. However, during this session, when the SMRS identified
an abnormal situation and the system generated a recommended strategy, the teacher in
the classroom would simultaneously receive a text message of the recommended strategy.
The teacher should take actions quickly as instructed by the strategy, such as using deep
pressure (Figure 8a), fidget toys (Figure 8b), or playing a calming video (Figure 8c), to
help the child pay attention or calm down during the class. Similarly, after the session, the
caregiver and teacher completed the adapted C-TRF. By comparing the reported scores
between SMRS session 1 and SMRS session 2, the researchers could investigate whether the
management strategies recommended by the SMRS were helpful on children performance
improvement. If no alerts happened when conducting sessions with a child from ASD
group, the child would be asked to go through SMRS sessions again with the caregiver’s
consent. 

8 

 

  Figure 8. Teachers applied strategies recommended by the SMRS. (a) Deep pressure strategy; (b) fid-
get toy strategy; (c) calming video strategy.

2.5.4. Post-Session Evaluation

Following the completion of the testing, caregivers of the participants were invited to
evaluate the overall functionality of SMRS by completing a System Usability Scale (SUS)
questionnaire [42]. The SUS is a 10-item standardized questionnaire designed to measure
users’ perceived usability and satisfaction of a system. As shown in the Appendix C,
statements arranged as odd numbers are positively expressed and statements with even
numbers are negatively expressed. Responses of each statement range from ‘Strongly
Disagree’ to ‘Strongly Agree’ on a 5-point Likert scale.

2.6. Ethics Statement and Material Interpretation

The research protocol of this study was reviewed and approved by the Research Ethics
Committee of the University of Nottingham Ningbo China. Informed consent was obtained
from all participants involved in the study. For children, consent must have been given by
their caregivers before participation. Caregivers had the right to withdraw their children
from the study at any time.

The materials used in this study, including software application, questionnaires, re-
search protocol, and participant information sheet and consent form, were prepared in
English initially. However, participants in this study were living in China and using Chi-
nese. The validated Chinese versions of sensory profile questionnaire, C-TRF and SUS
questionnaire were used in this study. Other materials which did not have official Chinese
versions were interpreted into Chinese by the first author who comes from China. The
results and materials were presented in English in this study.
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3. Results

This study utilized affordable sensors and off-the-shelf mobile devices to achieve pro-
posed measurement, analysis, and strategy making. In all the testing cases, users’ sensory
profile, physiological data, and information about user environment were successfully
recorded by the SMRS. Machine learning models integrated in the SMRS could compute
real-time user attention and stress using the collected sensory information. Fuzzy logic con-
trollers that were deployed on the cloud server could generate fuzzy outcomes, which were
responsible for activating the alert and making sensory management recommendations.

In the evaluation study, all the ASD and TD participants completed the required three
test sessions. Each caregiver observed their child’s performance in each of the three sessions.
The duration of every individual session was set to 30 min by researchers. During each
session, a caregiver’s real-time reports on incorrect predictions through an interface in
Figure 7 were interpreted into the number of wrong prediction cases. The wrong prediction
cases were averaged for both groups of participants to give an indication of, overall, how
many false predictions were made by machine learning algorithms in 30 min. Average
wrong prediction cases, average ratings from C-TRF of ASD and TD groups, and standard
deviations (SDs) are presented in Table 7.

Table 7. ASD and TD group data of different measures.

Group Sample Session

Rating Parameters: Mean (SD)

Wrong
Prediction

Cases—
Attention

Wrong
Prediction

Cases—Stress

C-TRF
Attention

Score—
Caregiver

C-TRF
Attention

Score—Teacher

C-TRF Stress
Score—

Caregiver
C-TRF Stress

Score—Teacher

ASD 30
No-SMRS / / 8.1 (3.5) 8.6 (2.8) 4.3 (3.5) 4.9 (4.0)
SMRS #1 21.9 (15.7) 6.7 (5.0) 8.3 (3.2) 8.7 (3.3) 4.4 (3.6) 4.9 (3.9)
SMRS #2 11.0 (7.7) 4.2 (2.5) 6.5 (2.8) 7.0 (2.9) 3.4 (3.3) 3.7 (3.4)

TD 30
No-SMRS / / 1.6 (1.6) 2.0 (2.0) 1.6 (1.9) 1.5 (1.9)
SMRS #1 5.2 (4.2) 18.6 (8.4) 1.8 (1.8) 2.2 (2.2) 1.7 (2.1) 1.7 (1.9)
SMRS #2 4.8 (3.4) 13.3 (7.2) 1.5 (1.5) 1.8 (2.0) 1.2 (1.8) 1.3 (1.6)

3.1. Detection Accuracy

When examining wrong prediction cases, researchers identified that the ASD group
reported more wrong prediction cases on attention than stress in the real-life situation.
This meant that the accuracy of the attention model was not as satisfactory as the stress
model in real-life practice, consistent with the results of model training in Section 2.3. The
TD group obtained lower average ratings of C-TRF on both attention and stress domains,
indicating that TD children might have a better ability of attention and stress management
than the ASD group. TD children were more likely to make their attention or stress stable
at a moderate level, with a higher tolerance to an unfriendly environment. The attention
model could detect most of the state of TD children correctly as well. However, caregivers
of TD children reported more wrong prediction cases of stress than those of ASD children.
One reason for this could be that the data used for machine learning training were all from
ASD children. Inputs corresponding to ‘uncomfortable level’ for an ASD child might be still
within a TD child’s ‘comfort zone’, making the machine learning model generate wrong
predictions for TD children.

By comparing the detection accuracy between SMRS session 1 and session 2, the
number of wrong prediction cases dropped in session 2 where teachers implemented
strategies to adjust the environment and help the children. It was suggested that machine
learning models embedded in the SMRS were more usable for ASD children and had
better performance in a comfortable environment. Admittedly, prediction accuracy of the
attention model needs further improvement.

3.2. Effectiveness of the SMRS Intervention

To investigate the effectiveness of the SMRS intervention on children’s performance
improvement, the t-test was employed to check if differences existed between the no-SMRS
session and the SMRS session 2 for two groups. The magnitude of the differences between
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the no-SMRS session and SMRS session 2 was examined by calculating the effect size (d).
The effect size was computed by dividing the mean change by standard deviation between
two sessions. Cohen [43] labeled an effect size ‘small’ if d ≥ 0.2 and < 0.5, ‘moderate’ if
d ≥ 0.5 and < 0.8, or ‘large’ if d ≥ 0.8.

A summary of the t-test and effect sizes are presented in Table 8. The analyses for
each rating score given by caregivers and teachers on the C-TRF revealed significant
performance differences in the ASD group between the no-SMRS session and the SMRS
session 2 (p < 0.001). It indicated that the use of SMRS and the application of strategies
recommended by the SMRS could help improve ASD children’s attention and reduce
stress. Although differences in the TD group were not significant on the C-TRF rating of
attention, caregivers also observed reduced stress in TD children (p < 0.05). Overall, t-test
results suggested the positive impact of the SMRS intervention on sensory management in
children with ASD. However, another index—effect size—was found only to be moderate
for attention improvement and small for stress relief.

Table 8. Summary of the t-test and effect sizes for both groups.

Measures

No-SMRS—SMRS Session 2

ASD TD

t Sig.* (2-Tailed) d t Sig. (2-Tailed) d

C-TRF Attention
Score—Caregivers 4.732 <0.001 0.505 0.769 0.448 0.065

C-TRF Attention
Score—Teachers 4.533 <0.001 0.561 1.229 0.229 0.100

C-TRF Stress
Score—Caregivers 4.160 <0.001 0.265 3.340 0.002 0.216

C-TRF Stress
Score—Teachers 5.288 <0.001 0.323 1.649 0.110 0.114

* Sig.: Significance.

3.3. Level of Satisfaction in Terms of System Utilization

Caregivers’ perceived satisfaction in terms of system utilization was measured using
the SUS. The average mean score for the 10 SUS items are presented in Table 9. Caregivers’
rating for the 6th statement was all scored below 2, suggesting that they generally disagreed
that there was too much inconsistency in the system. They also did not perceive the system
to be cumbersome to use or unnecessarily complex, given that the scores of the 2nd and 8th
statement were low. Mean scores relating to the statement ‘I found the various functions in
this system were well integrated’ were particularly high with similar standard deviations
for both ASD and TD groups. However, it was noticeable that the statement ‘I think that I
would need the support of a technical person to be able to use this system’ also obtained
high scores, indicating that some instruction and assistance were required by the user
group before they were able to use the system themselves.

The overall SUS scores in Table 9 were calculated with reference to the practical
guidance developed by Sauro [44]. The scores for each statement were interpreted to a new
number on a normalized scale of 0–4, summed, and then multiplied by 2.5. Generally, a
SUS score above 68 was considered to have above-average usability. The mean SUS score
of the ASD group and the TD group was 70.5 and 68.3, respectively, over the average SUS
rating of 68. According to the practical guideline on the interpretation of a SUS score [44], a
score above 70 suggested that the user-friendliness was good.
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Table 9. Caregivers’ SUS rating of the SMRS.

Statement
Mean Score (SD) and Range

ASD Group TD Group

1. I think that I would like to use this system
frequently. 3.87 (0.64); range: 3–5 3.67 (0.72); range: 3–5

2. I found the system unnecessarily complex. 1.67 (0.72); range: 1–3 2.07 (0.80); range: 1–3
3. I thought the system was easy to use. 3.67 (0.72); range: 3–5 3.73 (0.80); range: 3–5
4. I think that I would need the support of a
technical person to be able to use this system. 3.73 (0.80); range: 3–5 3.93 (0.70); range: 3–5

5. I found the various functions in this
system were well integrated. 4.20 (0.68); range: 3–5 4.33 (0.62); range: 3–5

6. I thought there was too much
inconsistency in this system. 1.07 (0.26); range: 1–2 1.07 (0.26); range: 1–2

7. I would imagine that most people would
learn to use this system very quickly. 3.53 (0.83); range: 2–5 3.40 (0.51); range: 3–4

8. I found the system very cumbersome to
use. 1.13 (0.35); range: 1–2 1.20 (0.56); range: 1–3

9. I felt very confident using the system. 3.33 (0.90); range: 2–5 3.40 (0.74); range: 2–5
10. I needed to learn a lot of things before I
could get going with this system. 2.80 (0.68); range: 2–4 2.93 (0.46); range: 2–4

Overall SUS Score (calculated as per [44]) 70.5 (3.92); range:
62.5–80

68.3 (3.62); range:
62.5–77.5

4. Discussion

The evaluation results suggested the benefit of the SMRS for preschool ASD children
in real-life classroom settings. The SMRS could provide overall correct predictions on
the attention and stress levels of children with ASD, identifying distractions and anxious
situations. Statistical analysis revealed that the application of strategies recommended by
the SMRS had a positive impact on ASD children’s sensory management in class, improving
their attention level and reducing stress. The results of SUS survey suggested that caregivers
of ASD children contended that the SMRS was user-friendly and various functions, such as
real-time monitoring, detection, alerts, and strategy making, were well integrated.

The utilization of the SMRS in this study revealed that such a sensor and machine
learning-based system could work as an efficient ‘specialist’ companion in real-life class-
room settings for ASD children. The SMRS sensed ASD children’s environment, detected
their attention and stress, and provided sensory management strategies to help mediate
the negative affect of an unfriendly environment.

4.1. Comparisons with Existing Sensory-Based Technologies

The researchers compared the SMRS with some existing sensory-based technologies
for ASD children. Related work referred to in the Introduction section targeting sensory
issues of ASD individual were compared with the SMRS. As there were no previous studies
that utilized the exact same materials and methods, comparisons mainly focused on the
system features and methodological quality.

As shown in Table 10, it can be found that most technologies take advantage of sensors
for monitoring. However, many of them fail to profile users’ sensory processing patterns
to make recommendations on management strategies to help users. There is evidence to
suggest that sensory processing patterns are idiosyncratic in individuals with ASD [25].
Researchers’ previous work compared prediction accuracy of machine learning models
on attention detection before and after removing sensory profile features [4]. The results
showed that the prediction accuracy of all models dropped dramatically after the sensory
profile features were removed, which indicated that the inclusion of a sensory profile could
help ensure the correctness of detection. Although many sensory profiling tools have been
widely used in healthcare services, very few technologies have involved these tools in their
design.
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Table 10. Comparison with other sensory-based technologies for ASD individuals.

Reference

Technology Features Methodology Quality

Sensory
Profiling

Physiological
Monitoring

Environmental
Monitoring

Data
Analysis

Strategy
Making Evaluation ASD Sample in

the Evaluation

This study Yes Yes Yes Yes Yes Yes 30
[13] Yes No Yes Yes Yes Yes 20
[14] No Yes No Yes No Yes 20

[15] No Yes No Yes No Not
reported Not reported

[16] No Yes Yes No No Yes 1
[9] No No Yes Yes Yes Yes 10

[20] No Yes No No No Yes 12
[21] No Yes No No No Yes 8

Regarding data analysis, references [16,20,21] still depended on an ASD expert’s
manual analysis, which would require the continuous involvement of expert assistance. It
complicated the use of technologies in daily life and increased the cost for ASD families.
Five out of eight studies in Table 10 have used machine learning or cloud computing to
enable on-device data analysis. Most of them were published in or after 2019, suggesting
an emerging trend of studies executing computation directly in the system.

To date, to the researchers’ best knowledge, this is the first work that has combined a
standardized sensory profiling tool, sensor monitoring, data analysis, and sensory manage-
ment strategies in one low-cost system for supporting ASD families to deal with sensory
issues. These features highlighted the novelty of the SMRS. Moreover, one challenge for
many previous studies was to evaluate the intervention with a large sample of ASD indi-
viduals. Some studies only involved a few ASD participants in the evaluation or did not
report evaluation. This study conducted an evaluation with a larger sample than previous
studies, following a well-defined protocol aiming to make the results more generalizable.

4.2. Limitations and Recommendations for Further Study

The development of the SMRS complemented other existing research by providing
a comprehensive sensor and machine learning-based monitoring system. The SMRS
was available on TestFlight which could be installed after being invited. This allowed
continuous test of the SMRS and data collection in children with ASD. With increased
data size, machine learning models will be further trained to improve prediction accuracy.
Researchers in this study further used data from 30 ASD participants in the evaluation
study to train the GBDT model for attention detection. Experiments using an increased
training sample witnessed an improvement of the performance of GBDT model with the
detection accuracy increased from 86.67% to 92.61%. This implies that after a period of beta
test involving more ASD users, the SMRS can have better performance in identifying the
risk situations for children with ASD.

Considering the moderate effect size of the SMRS intervention in an ASD group
whose sample size was still limited, further efforts could be made to expand the strategy
knowledge base by adding more effective intervention strategies, and to involve more ASD
participants in the evaluation.

Another limitation of this study related to the restricted age range and condition
(ASD) of the users. The sensory profile questionnaire in the SMRS was for children aged
between three and ten only. The age of children involved in this study ranged from three to
five. However, sensory issues in ASD may last throughout an individual’s life. Using an
adolescent/adult sensory profile and the replication of the study with other age groups
would increase the utility of the SMRS. Sensory issues were not only observed in ASD but
also in disorders such as Attention Deficit Hyperactive Disorder or Sensory Processing
Disorder. The SMRS could also be tested for other sensory-related disorders in the future.
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Moreover, researchers noticed a slight increase of C-TRF scores in SMRS session 1
compared to the no-SMRS session, suggesting that sensors that touched the body of the child
might make the child stressed or more easily distracted. A further system update may try to
minimize the influence of tactile defensiveness due to the touch of sensor. For example, non-
invasive sensors could be used, such as Kinect or apparel-based sensors. The IoT nowadays
creates opportunities for human-machine or machine-to-machine communications, in
which way the ‘things’ can not only identify sensory events in their surroundings but also
react autonomously without human intervention [16]. Future work could make use of
IoT to create a smart environment to implement the environmental control and calming
strategy automatically so that the SMRS will not require the continuous involvement of a
human assistant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22155803/s1. Figure S1: Arduino UNO circuit diagram; Figure S2:
SMRS application interface.
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Appendix A

Fuzzy Logic Rules

Temperature_rule1 = ctrl.Rule(antecedent = (((Temperature[‘Low’] | Temperature[‘High’])
& Duration[‘Short’] & Attention[‘Normal’] & Stress[‘Moderate’]) | ((Temperature[‘Low’] |
Temperature[‘High’]) & Duration[‘Short’] & Attention[‘Low’] & Stress[‘Low’]) |
(Attention[‘Normal’] & Stress[‘Low’])), consequent = Outcome[‘Low Risk’], label = ‘Low
Risk’)

Temperature_rule2 = ctrl.Rule(antecedent = (((Temperature[‘Low’] | Temperature[‘High’])
& Duration[‘Short’] &Attention[‘Normal’] & Stress[‘High’]) | ((Temperature[‘Low’] |
Temperature[‘High’]) & Duration[‘Short’] & Attention[‘Low’] & Stress[‘Moderate’]) |
(Temperature[‘Moderate’] & Duration[‘Short’] & Attention[‘Normal’] & Stress[‘Moderate’])
| (Temperature[‘Moderate’] & Duration[‘Short’] & Attention[‘Normal’] & Stress[‘High’]) |
(Temperature[‘Moderate’] & Duration[‘Short’] & Attention[‘Low’] & Stress[‘Low’]) |
(Temperature[‘Moderate’] & Duration[‘Short’] & Attention[‘Low’] & Stress[‘Moderate’]) |
(Temperature[‘Moderate’] & Duration[‘Short’] & Attention[‘Low’] & Stress[‘High’]) |
(Temperature[‘Moderate’] & Duration[‘Long’] & Attention[‘Normal’] &
Stress[‘Moderate’])), consequent = Outcome[‘Medium Risk’], label = ‘Medium Risk’)

https://www.mdpi.com/article/10.3390/s22155803/s1
https://www.mdpi.com/article/10.3390/s22155803/s1
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Temperature_rule3 = ctrl.Rule(antecedent = (((Temperature[‘Low’] | Temperature[‘High’])
& Duration[‘Short’] & Attention[‘Low’] & Stress[‘High’]) |
((Temperature[‘Low’] | Temperature[‘High’]) & Duration[‘Long’] & Attention[‘Normal’] &
Stress[‘Moderate’]) | ((Temperature[‘Low’] | Temperature[‘High’]) & Duration[‘Long’] &
Attention[‘Normal’] & Stress[‘High’]) | ((Temperature[‘Low’] | Temperature[‘High’]) &
Duration[‘Long’] & Attention[‘Low’] & Stress[‘Low’]) | ((Temperature[‘Low’] |
Temperature[‘High’]) & Duration[‘Long’] & Attention[‘Low’] & Stress[‘Moderate’]) |
((Temperature[‘Low’] |Temperature[‘High’]) & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘High’]) | (Temperature[‘Moderate’] & Duration[‘Long’] & Attention[‘Normal’] &
Stress[‘High’]) | (Temperature[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘Low’]) | (Temperature[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘Moderate’]) | (Temperature[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘High’])), consequent = Outcome[‘High Risk’], label = ‘High Risk’)

Noise_rule1 = ctrl.Rule(antecedent = ((Noise[‘High’] & Duration[‘Short’] &
Attention[‘Normal’] & Stress[‘Moderate’]) | (Noise[‘High’] & Duration[‘Short’] &
Attention[‘Low’] & Stress[‘Low’]) | (Noise[‘High’] & Duration[‘Short’] & Attention[‘Low’]
& Stress[‘Moderate’]) | (Attention[‘Normal’] & Stress[‘Low’])), consequent =
Outcome[‘Low Risk’], label = ‘Low Risk’)

Noise_rule2 = ctrl.Rule(antecedent = ((Noise[‘High’] & Duration[‘Short’] &
Attention[‘Normal’] & Stress[‘High’]) | (Noise[‘Low’] & Duration[‘Short’] &
Attention[‘Normal’] & Stress[‘Moderate’]) | (Noise[‘Low’] & Duration[‘Short’] &
Attention[‘Normal’] & Stress[‘High’]) | (Noise[‘Low’] & Duration[‘Short’] &
Attention[‘Low’] & Stress[‘Low’]) | (Noise[‘Low’] & Duration[‘Short’] & Attention[‘Low’]
& Stress[‘Moderate’]) | (Noise[‘Low’] & Duration[‘Short’] & Attention[‘Low’] &
Stress[‘High’]) | (Noise[‘Low’] & Duration[‘Long’] & Attention[‘Normal’] &
Stress[‘Moderate’])), consequent = Outcome[‘Medium Risk’], label = ‘Medium’)

Noise_rule3 = ctrl.Rule(antecedent = ((Noise[‘High’] & Duration[‘Short’] &
Attention[‘Low’] & Stress[‘High’]) | (Noise[‘High’] & Duration[‘Long’] &
Attention[‘Normal’] & Stress[‘Moderate’]) | (Noise[‘High’] & Duration[‘Long’] &
Attention[‘Normal’] & Stress[‘High’]) | (Noise[‘High’] & Duration[‘Long’] &
Attention[‘Low’] & Stress[‘Low’]) | (Noise[‘High’] & Duration[‘Long’] & Attention[‘Low’]
& Stress[‘Moderate’]) | (Noise[‘High’] & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘Moderate’]) | (Noise[‘High’] & Duration[‘Long’] & Attention[‘Low’] &
Stress[‘High’])), consequent = Outcome[‘High Risk’], label = ‘High Risk’)

Brightness_rule1 = ctrl.Rule(antecedent=(((Brightness[‘Low’] | Brightness[‘High’]) &
Duration[‘Short’] & Attention[‘Normal’] & Stress[‘Moderate’]) | ((Brightness[‘Low’] |
Brightness[‘High’]) & Duration[‘Short’] & Attention[‘Low’] & Stress[‘Low’]) |
((Brightness[‘Low’] | Brightness[‘High’]) & Duration[‘Short’] & Attention[‘Low’] &
Stress[‘Moderate’]) | (Attention[‘Normal’] & Stress[‘Low’])), consequent=Outcome[‘Low
Risk’], label=‘Low Risk’)
Brightness_rule2 = ctrl.Rule(antecedent=(((Brightness[‘Low’] | Brightness[‘High’]) &
Duration[‘Short’] & Attention[‘Normal’] & Stress[‘High’]) | ((Brightness[‘Low’] |
Brightness[‘High’]) & Duration[‘Short’] & Attention[‘Low’] & Stress[‘High’]) |
((Brightness[‘Low’] | Brightness[‘High’]) & Duration[‘Long’] & Attention[‘Normal’] &
Stress[‘Moderate’]) | ((Brightness[‘Low’] | Brightness[‘High’]) & Duration[‘Long’] &
Attention[‘Low’] & Stress[‘Low’]) | ((Brightness[‘Low’] | Brightness[‘High’]) &
Duration[‘Long’] & Attention[‘Low’] & Stress[‘Moderate’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Normal’] & Stress[‘Moderate’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Normal’] & Stress[‘High’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Low’] & Stress[‘Low’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Low’] & Stress[‘Moderate’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Low’] & Stress[‘High’]) | (Brightness[‘Moderate’] &
Duration[‘Short’] & Attention[‘Low’] & Stress[‘High’]) | (Brightness[‘Moderate’] &
Duration[‘Long’] & Attention[‘Normal’] & Stress[‘Moderate’])),
consequent=Outcome[‘Medium Risk’], label=‘Medium Risk’)
Brightness_rule3 = ctrl.Rule(antecedent=(((Brightness[‘Low’] | Brightness[‘High’]) &
Duration[‘Long’] & Attention[‘Normal’] & Stress[‘High’]) | ((Brightness[‘Low’] |
Brightness[‘High’]) & Duration[‘Long’] & Attention[‘Low’] & Stress[‘High’]) |
(Brightness[‘Moderate’] & Duration[‘Long’] & Attention[‘Normal’] & Stress[‘High’]) |
(Brightness[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] & Stress[‘Low’]) |
(Brightness[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] & Stress[‘Moderate’]) |
(Brightness[‘Moderate’] & Duration[‘Long’] & Attention[‘Low’] & Stress[‘High’])),
consequent=Outcome[‘High Risk’], label=‘High Risk’)
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Appendix B

Adapted Caregiver-Teacher Report Form

TODAY’S DATE
Mo. ____ Day ____ Year _____
Your role:
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0 1 2 17. Wanders away 
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caregiver
Below is a list of items that describe children. For each item that describes the child over
the past 30 min, please circle the 2 if the item is very true or often true of the child. Circle
the 1 if the item is somewhat or sometimes true of the child. If the item is not true of the
child, circle the 0. Please answer all items as well as you can, even if some do not seem to
apply to the child.
0 = Not True 1 = Somewhat or Sometime True 2 = Very True or Often True

Anxious/Depressed

0 1 2 1. Clings to adults or too dependent
0 1 2 2. Feelings are easily hurt
0 1 2 3. Gets too upset when separated from parents
0 1 2 4. Looks unhappy without good reason
0 1 2 5. Nervous, high-strung, or tense
0 1 2 6. Self-conscious or easily embarrassed
0 1 2 7. Too fearful or anxious
0 1 2 8. Unhappy, sad, or depressed

Attention
Problem

0 1 2 9. Cannot concentrate, cannot pay attention for
long

0 1 2 10. Cannot sit still, restless, or hyperactive
0 1 2 11. Difficulty following directions
0 1 2 12. Fails to carry out assigned tasks
0 1 2 13. Fidgets
0 1 2 14. Poorly coordinated or clumsy
0 1 2 15. Quickly shifts from one activity to another
0 1 2 16. Inattentive, easily distracted
0 1 2 17. Wanders away

Appendix C

System Usability Scale

Strongly
Disagree

Strongly
Agree

1 2 3 4 5

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical
person to be able to use this system.
5. I found the various functions in this system were
well integrated.
6. I thought there was too much inconsistency in this
system.
7. I would imagine that most people would learn to use
this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get
going with this system.

References
1. Ousley, O.; Cermak, T. Autism Spectrum Disorder: Defining dimensions and subgroups. Curr. Dev. Disord. Rep. 2014, 1, 20–28.

[CrossRef] [PubMed]
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association:

Washington, DC, USA, 2013.
3. Leekam, S.R.; Nieto, C.; Libby, S.J.; Wing, L.; Gould, J. Describing the sensory abnormalities of children and adults with autism. J.

Autism Dev. Disord. 2007, 37, 894–910. [CrossRef] [PubMed]
4. Deng, L.; Rattadilok, P.; Xiong, R. A Machine Learning-Based Monitoring System for Attention and Stress Detection for Children

with Autism Spectrum Disorders. In Proceedings of the 3rd International Conference on Intelligent Medicine and Health, Macau,
China, 13–15 August 2021; pp. 23–29. [CrossRef]

http://doi.org/10.1007/s40474-013-0003-1
http://www.ncbi.nlm.nih.gov/pubmed/25072016
http://doi.org/10.1007/s10803-006-0218-7
http://www.ncbi.nlm.nih.gov/pubmed/17016677
http://doi.org/10.1145/3484377.3484381


Sensors 2022, 22, 5803 21 of 22

5. Gomes, E.; Rotta, N.T.; Pedroso, F.S.; Sleifer, P.; Danesi, M.C. Auditory hypersensitivity in children and teenagers with autistic
spectrum disorder. Arq. Neuropsiquiatr. 2004, 62, 797–801. [CrossRef] [PubMed]

6. Talay-Ongan, A.; Wood, K. Unusual sensory sensitivities in autism: A possible crossroads. Int. J. Disabil. Dev. Educ. 2007, 47,
201–212. [CrossRef]

7. Baranek, G.T.; Foster, L.G.; Berkson, G. Tactile defensiveness and stereotyped behaviors. Am. J. Occup. Ther. 1997, 51, 91–95.
[CrossRef] [PubMed]

8. Brown, C.; Dunn, W. Adolescent-Adult Sensory Profile: User’s Manual; Therapy Skill Builders: San Antonio, TX, USA, 2002.
9. Khullar, V.; Singh, H.P.; Bala, M. IoT based assistive companion for hypersensitive individuals (ACHI) with autism spectrum

disorder. Asian J. Psychiatr. 2019, 46, 92–102. [CrossRef] [PubMed]
10. Schoen, S.A.; Miller, L.J.; Sullivan, J.C. Measurement in sensory modulation: The sensory processing scale assessment. Am. J.

Occup. Ther. 2014, 68, 522–530. [CrossRef] [PubMed]
11. Shabha, G. An assessment of the impact of the sensory environment on individuals’ behavior in special needs schools. Facilities

2006, 24, 31–42. [CrossRef]
12. Riederer, M.; Schoenauer, C.; Kaufmann, H.; Soechting, E.; Lamm, C. Development of Tests to Evaluate the Sensory Abilities of

Children with Autism Spectrum Disorder Using Touch and Force Sensors. In Proceedings of the 4th International Conference on
Wireless Mobile Communication and Healthcare, Athens, Greece, 3–5 November 2014; pp. 160–163. [CrossRef]

13. Mauro, N.; Ardissono, L.; Cena, F. Personalized Recommendation of PoIs to People with Autism. In Proceedings of the 28th
ACM Conference on User Modeling, Adaptation and Personalization, Genoa, Italy, 14–17 July 2020; pp. 163–172. [CrossRef]
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