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Abstract: Recently, the ever-growing interest in the continuous monitoring of heart function in out-
of-laboratory settings for an early diagnosis of cardiovascular diseases has led to the investigation
of innovative methods for cardiac monitoring. Among others, wearables recording seismic waves
induced on the chest surface by the mechanical activity of the heart are becoming popular. For what
concerns wearable-based methods, cardiac vibrations can be recorded from the thorax in the form of
acceleration, angular velocity, and/or displacement by means of accelerometers, gyroscopes, and fiber
optic sensors, respectively. The present paper reviews the currently available wearables for measuring
precordial vibrations. The focus is on sensor technology and signal processing techniques for the
extraction of the parameters of interest. Lastly, the explored application scenarios and experimental
protocols with the relative influencing factors are discussed for each technique. The goal is to
delve into these three fundamental aspects (i.e., wearable system, signal processing, and application
scenario), which are mutually interrelated, to give a holistic view of the whole process, beyond the
sensor aspect alone. The reader can gain a more complete picture of this context without disregarding
any of these 3 aspects.

Keywords: precordial vibrations; wearable systems; seismocardiography (SCG); gyrocardiography;
fiber Bragg grating sensors; SCG annotation; SCG processing techniques; SCG fiducial points; SCG
applications; machine learning

1. Introduction and Physiological Sources of Displacement Cardiography

Early detection of any abnormality that affects the physiological heart function has
been shown to be crucial in reducing the burden of cardiovascular diseases (CVDs) on the
healthcare system in terms of both economic loss (expected to be 47 trillion US dollars by
2030 [1]) and medical personnel overload (about 17.8 million global deaths per year [2]).

Several studies have demonstrated that monitoring physiological parameters and
hemodynamics for heart failure (HF) patients can allow the early detection of worsening
symptoms prior to an exacerbation [3]. For this reason, in recent years, there has been a
growing interest in developing innovative solutions based on wearable systems, which
enable monitoring the cardiovascular function outside of laboratory settings in ambulant
subjects, allowing an early diagnosis and management of CVDs and their risk factors.
Today, electrocardiogram (ECG) and photoplethysmography (PPG) are still the dominant
cardiac monitoring techniques implementable in a wearable configuration. However,
innovative methods are gaining growing attention for the evaluation of cardiac function
in daily life, such as those which measure seismic waves produced on the thorax surface
by the mechanical activity of the heart: the heart beats as a result of mechanical events
triggered by electrical signals. Within a single cardiac cycle, the following mechanical
phases can be identified:
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• Isovolumetric ventricular contraction: at first, isovolumetric ventricular contraction
causes ventricular pressure to rise above atrial pressure, forcing the atrioventricular
(AV) valves to close. The continuing contraction with the valves closed increases
ventricular pressure.

• Ventricular ejection: occurs when ventricular pressure rises above arterial pressure and
the semilunar valves open. As blood is ejected into the arteries, ventricular volume
decreases, and ventricles begin to repolarize and relax. Ventricular pressure decreases
and contraction ends.

• Isovolumetric ventricular relaxation: repolarization of the ventricular muscle cells
initiates isovolumetric ventricular relaxation. As the ventricles relax, pressure in the
ventricles drops and the semilunar valves close, preventing blood reflux. Valve closure
produces a dicrotic wave on the aortic pressure curve. This isovolumetric relaxation
makes pressure drop quickly.

• Passive ventricular filling: as all four chambers of the heart are relaxed and the AV
valves open, passive ventricular filling starts. Atrial depolarization triggers atrial
contraction and a new cardiac cycle begins.

Within each cardiac cycle, the contraction (i.e., systole) and relaxation (i.e., diastole) of
helically oriented muscle fibers cause the longitudinal retraction of the left-ventricular base
toward the apex, while valve closure and pumping of blood to the aorta generate a strong
pressure shock [4]. The originated vibrations propagate by causing cyclic compressions
and elongations of the nonhomogeneous and anisotropic tissues within the thorax. The
linear viscoelastic behavior of the biological tissues is mainly responsible for dampening
the propagation of vibrations from the heart to the thorax surface. As a result, these
compression waves manifest themselves on the skin in the form of microscopic vibrations
of amplitude 0.2–0.5 mm along the sagittal plane [5].

The mechanical vibrations involve four frequency bands: below 50 Hz, 150–200 Hz,
500–600 Hz, and 700–800 Hz [6]. These values depend on different cardiac mechanical
events, such as the opening and closure of valves (i.e., mitral valve and aortic valve), blood
flow, and heart wall deformation (i.e., compression/expansion along the long axis of the
heart) due to heartbeat. More in detail, frequencies below 50 Hz are traceable to the cyclic
motion of the contour of the heart, while all the frequencies above 50 Hz are related to the
activity of the valves that regulate the resulting flow of blood across the chambers and its
ejection into the vascular tree. These vibrations include inaudible (0.6–20 Hz) and audible
(above 20 Hz) frequencies.

Signals that result from cardiac vibrations have been investigated to determine their
relationship with the mechanical events of the cardiac cycle. These signals have a potential
utility in noninvasive cardiology, because they may allow detecting any defect in the heart
valve functioning or in blood flow dynamics. Instrumentation used to selectively record
cardiac mechanics from the chest surface belongs to the general category of displacement
cardiography. For what concerns contact-based methods, cardiac vibrations can be recorded
from the thorax as accelerations and angular velocities using magneto-inertial units (i.e., by
accelerometers and gyroscopes) or as local deformations using strain sensors (especially,
fiber Bragg gratings—FBGs) [7]. According to the measurand, signals can be distinguished
into a seismocardiogram (SCG), which generally results from the linear acceleration compo-
nent of precordial motion, and the gyrocardiogram (GCG), which represents the rotational
component of precordial motion [8,9].

Currently, the most well-established technique is seismocardiography, which is per-
formed by placing ultralow-frequency accelerometers onto the subject’s chest wall. The
SCG signal was first discovered by Baevskii et al. in 1964 and introduced into clinical
practice by Salerno and Zanetti in the 1990s [10]. Over the years, advances in sensor
technologies and signal processing led to more portable and wireless sensors for SCG
acquisition in various scenarios, helping to deepen the knowledge on the clinical power of
this signal. Another interesting approach was introduced in 2017 and consists in the use of
MEMS gyroscopes to record the three-dimensional angular velocity and displacement of
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the thorax associated with cardiac activity [9]. Although the history of gyrocardiography
is brief compared to that of seismocardiography, this technique may provide additional
understandings about the mechanical aspects of the cardiac cycle. Indeed, the GCG signal
has a higher signal-to-noise ratio than the SCG signal; hence, it could provide novel insights
into cardiac fiducial points, higher fidelity for certain types of motion artefacts, and a more
reliable heart rate (HR) detection when using kinetic energy envelopes [9,11].

In recent years, one of the most promising technological solutions for monitoring
cardiac mechanics is represented by FBG sensors. These sensors are placed on the surface
of the chest to detect heart-induced local deformations. In the literature, works commonly
refer to the cardiac FBG signal as an SCG when detected on the chest. The FBG-based
systems, based on fiber optic technology, have the great advantage of working in a harsh
environment, such as in the presence of strong electromagnetic fields (e.g., during magnetic
resonance scans), where the use of electronic sensors is forbidden [12,13].

In order to switch from the use of mechanical cardiac signals (e.g., SCG and GCG) in
research fields to their use in clinics, it is fundamental to quantify the signal waveforms.
For instance, it is important to determine the temporal shift between each fiducial point
and the successive one to determine the spatial distribution of fiducial points on the SCG
waveform without the need for any additional reference signal [14].

This paper reviews the measuring systems used for noninvasive recording of car-
diac mechanics. Since methods for monitoring cardiac mechanics are gaining increasing
attention, we have focused on these techniques excluding wearable-based methods that
rely on the measurement of different physical quantities (e.g., ECG and PPG). Firstly, we
focus on the most popular technique: accelerometers for SCG signal acquisition. Then,
we describe the two main novel approaches proposed in the literature: gyroscopes for
GCG measurements and FBG-based systems for detecting chest wall deformations. For
each category, we focus on their working principle as wearable systems and pay particular
attention to their metrological aspects. The fundamental hardware components embedded
into the wearable devices are illustrated by detailing the sensing element, the transmission,
and the storage units. Then, the most popular signal processing techniques are described.
Lastly, the most used sensor locations are highlighted together with the main application
scenarios and experimental protocols tested for each of the three categories identified.

We decided to consider these three aspects (i.e., wearable system, signal processing,
and application scenario) because there is a mutual influence among them. For instance,
the processing technique must be chosen with respect to the sensor used because signals
obtained with different sensors have different characteristics. In addition, different testing
applications (e.g., at rest or during exercise) may require different processing techniques or
the same technique (e.g., filter) but with different parameters; in particular cases, the appli-
cation scenario may even require a specific type of sensor. Therefore, to give an overview of
the context, we illustrate all three aspects, which must be carefully modulated with respect
to each other in order to obtain a performant system for the intended application.

2. Precordial Vibrations Recording Using Accelerometers
2.1. SCG Signal

Different sensors may be used to record chest vibrations that originate from cardiac
movements and pressure shocks. The most popular technique is based on accelerometers.
These motion sensors should be tightly coupled to the subject’s chest wall surface to reliably
detect its linear accelerations. Since 1960, the signal obtained by recording precordial
vibrations from the chest wall surface using an accelerometer has been referred to as the
SCG signal [15]. It traces the mechanical events occurring during the four main phases of a
cardiac cycle. The SCG signal is recognized as the mechanical equivalent of the ECG signal.
Although many studies during the past century have demonstrated that the morphology
of the SCG signal changes due to different cardiac diseases, to date, the clinical acceptance
of SCG is still hampered. The main obstacles to SCG clinical use are the instrumentation
encumbrance, the lack of standardized sensor positioning, the influence of the inter- and
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intrasubject variability on SCG morphology, the lack of a standardized methodology to
process the collected signal, and a reliable method for features extraction, useful to identify
the underlying cardiac events [16,17]. However, recent research studies contributed to
providing a deeper insight into these issues and proving the potential clinical feasibility of
SCG for an early diagnosis of abnormal cardiac functions [18–22].

One of the main challenges in SCG studies is that SCG morphology appears to vary
significantly, not only for cardiovascular pathologies but also due to other factors such as
age, sensor locations, sex, and postural positions.

A typical SCG signal along with the corresponding ECG signal for two consecutive
beats is shown in Figure 1. The SCG waveform shows clearly identifiable peaks that
correspond to specific events in the mechanical activity of the heart, which are delayed
in time with respect to the corresponding electrical events. The standard fiducial points
of the SCG signal are aortic valve opening (AO), aortic valve closure (AC), mitral valve
opening (MO), mitral valve closure (MC), and the IM point that occurs during the period of
rapid change in ventricular pressure. Five additional features, namely, the rapid ventricular
filling (RF), rapid ejection (RE) of blood from the ventricles, isovolumic contraction (IC), and
peak of atrial systole (AS) can be eventually identified on the standard SCG waveform [23].
All the seismographic feature points highlighted in the literature are schematically reported
in Table 1, followed by an explanation of the physiological event that they represent.
Unfortunately, the annotation of SCG peaks and valleys is more challenging than ECG
labeling. The field of electrocardiography has been in existence for over a century; hence,
the technology used for ECG measurements has been widely assessed and innovated. In
contrast, seismocardiography is a more recent technique still requiring improvements in the
knowledge of SCG signal genesis and of the factors that affect its morphology (e.g., sensor
locations, human motion, and respiration). Because of the SCG recent history, the literature
is not yet consistent in terms of the location, definition, and annotation methodology of all
the fiducial points of SCG signal. Several studies proposed SCG monitoring techniques for
the evaluation of cardiovascular parameters (e.g., HR extraction and heartbeat duration),
extraction of heart rate variability (HRV), and estimation of hemodynamic parameters.
However, most of these works used the SCG signal in association with other clinically
relevant techniques (e.g., ECG and PPG) for an early diagnosis of certain CVDs and
detection of valvular defects (e.g., premature mitral valve closure, abnormal leaflet closure,
and regurgitation of blood).

The reliable identification of SCG fiducial points enables an easy extraction of several
cardiac time intervals (CTIs), including systolic time intervals (STIs). The STIs are as
follows:

• The pre-ejection period (PEP), which is the time interval between electrical depolariza-
tion of the left ventricle (QRS on the ECG) and the onset of ventricular ejection;

• The left-ventricular period (LVET), defined as the time interval between the opening
and closing of the aortic valve. It is the phase of systole during which the left ventricle
ejects blood into the aorta;

• The QS2, which is the time period between the onset of the QRS complex and the first
aortic vibration of the second heart sound. The sum of PEP and LVET gives the total
time of electromechanical systole.

Both PEP and LVET are indices of myocardial contractility. In particular, PEP allows
assessing how myocardial contractility is affected by the cardiac preload and afterload,
while LVET is influenced by HR.

The extraction of these intervals from SCG has already been successfully demonstrated
by comparing the results against an ECG signal used as a reference [24]. An accurate mea-
surement of these intervals should be important since any deviation from the physiological
pattern may correspond to an abnormality of cardiac functions. These time intervals should
have a duration that varies within a range of normal values. For those intervals which are
computed on the basis of a peak of the ECG signal, the normal delay can be interpreted as
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the physiological time difference between the electrical and mechanical aspects of cardiac
activity. Even this electromechanical delay must vary within a range of normal values.

For instance, the LVET interval increases in patients with aortic valve dysfunction and
decreases in patients with left-ventricular dysfunction. The PEP interval can increase as
a consequence of left-ventricular failure, left-bundle branch block, or negative inotropic
agents, and it can decrease as a consequence of aortic valve disease, low left-ventricular
isovolumic pressure, or positive inotropic agents. The QS2 interval increases in patients
with left-bundle branch block and aortic valve disease, and it decreases in the presence of
positive inotropic agents [25].

In addition to STI, other clinically relevant time intervals that have been pointed out
in the literature are as follows:

• The electromechanical delay (EMD), which is the interval between the ECG Q wave
and the closure of mitral valve.

• The isovolumic relaxation time (IVRT), defined as the time interval between the end
of aortic ejection and the beginning of ventricular filling.

• The isovolumic contraction time (IVCT), which is the interval between the closing of
the atrioventricular valves and the opening of the semilunar valves.

• The pulse transit time (PTT), which is the time required for the travel of the blood
pressure wave from one location to another. As PTT is inversely proportional to the
blood pressure value, its evaluation is considered a promising method for continuous,
noninvasive, and cuffless blood pressure monitoring. The most common type of PTT
that can effectively estimate blood pressure is the time delay between a proximal-
location pressure wave and a distal arterial-location pressure wave. This metric is
called aortic PTT.

Even for IVRT, IVCT, and PTT, any deviation from the physiological duration may cor-
respond to an abnormality in the cardiac mechanics. For instance, when the left-ventricular
relaxation is defective, the decrease in left-ventricular pressure is slow, and this induces a
delay in the normal crossover between the left-atrial and left-ventricular pressures. This
phenomenon determines a delay in the opening of the mitral valve (i.e., MO fiducial point)
and prolongs the IVRT. Thus, a prolonged IVRT is an early indicator of left-ventricular
diastolic dysfunction. Moreover, as RE is a fiducial point that corresponds to arterial
circulation, the SCG signal could also be exploited for stroke volume estimation, which is
computed as the time integral of the flow rate in the systolic ejection period [26–28].

Some of these indices (i.e., PEP, EMD, and QS2), by definition, require the joint use
of the mechanical signal (i.e., SCG) together with an optical or electrical signal (i.e., ECG
and PPG) for their computation. In particular, the estimation of PEP and QS2 relies on the
use of a reference ECG signal, while the estimation of the PTT interval relies on the use of
a reference PPG signal. Only a few indices (i.e., LVET, IVRT, and IVCT) can be extracted
from standalone SCG because they entirely rely on SCG fiducial points.
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Figure 1. Typical SCG waveform and nomenclature with corresponding ECG signal. Adapted
from [29]. Copyright 1993 with permission from Elsevier.

Table 1. Most common seismographic feature points that have been pointed out in the literature.

Fiducial Point Physiological Event

Aortic valve opening (AO) Aortic valve passively opens because of pressure differences on either
side of the valve and allows the ejection of blood into the vascular tree

Isovolumic contraction (IC) Event occurring in early systole during which the ventricles contract
with no corresponding volume change

Peak of rapid systolic ejection (RE) Rapid ejection of blood into the aorta and pulmonary arteries from the
left and right ventricles, respectively

Aortic valve closure (AC) Closure of the aortic valve at two-thirds of ejection

Mitral valve opening (MO) Mitral valve opening when the left ventricle relaxes

Peak of rapid diastolic filling (RF) The period in which the ventricle fills with blood from the left atrium
from the onset of mitral valve opening to mitral valve closure

Peak of atrial systole (AS) Peak of arterial blood pressure during systole, normally from 90 mmHg
to 120 mmHg

Mitral valve closure (MC) Mitral valve closure in correspondence with the left-ventricle
contraction

Isovolumic movement (IM) Ventricular isovolumetric contraction

2.2. SCG Signal Collection and Analysis

To extract the parameters of interest from raw data, two main blocks are required
(see Figure 2): the wearable system with its own building blocks that include the sensor
unit to record the SCG signal and the unit for data transmission and/or storage, and a
signal processing block to process the signal and extract cardiac information (e.g., HR
values and waveform fiducial points). Specifically, the output of the wearable system (i.e.,
the raw/semi-raw SCG signal) is given as an input to the signal processing block, and a
processor/computer with a sufficient computational power is used to extract the valuable
information from the SCG signal. In this section, further details about both these blocks
are given together with a description of the most used sensor positions and experimental
protocols proposed in the literature to assess the SCG-based wearable system performance
in cardiac monitoring.
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Figure 2. The two main blocks required to extract the information of interest: the wearable sys-
tem with its building blocks (sensing element, analog electronics, and data transmission/storage
unit) for signal collection, and signal processing for HR estimation and fiducial point extraction
using accelerometers.

2.2.1. Wearable Systems for SCG Monitoring

Accelerometers, along with gyroscopes, are inertial sensors that measure the acceler-
ation of a proof mass, which leads to a change in some physical quantity depending on
the nature of the sensing element (i.e., the capacitance between the proof mass and the
substrate in capacitive accelerometers) [30]. Often, accelerometers are found in a triaxial
configuration and measure linear accelerations along the three axes. The accelerometer
can be modeled as a mass–spring–damper system; if a force is applied to the system, the
outer shell accelerates while the internal mass (i.e., m) tends to remain stationary due to
the principle of inertia and, therefore, the spring stretches. For details, see Section S1 of
Supplementary Materials.

In the real world, no inertial accelerometer is composed of a mass and a spring, but it
is an electromechanical device that converts mechanical motion into an electrical signal by
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means of a transduction element. According to the transduction element, accelerometers
may be classified into three main categories: capacitive, piezoresistive, and piezoelectric [31,
32]. In all three cases, as the small accelerometer mass reacts to motion, it places the
transduction element into compression or tension.

Capacitance-based accelerometers are characterized by a simple design, insensitivity
to temperature variations, and high sensitivity (i.e., maximum displacement of ~20 µm).
They are ideal for measuring low-frequency motion where the g level is also low, such as
vibrations. The sensing mechanism relies on a change in capacitance; a stationary plate,
fixed to the housing, and a mobile plate, free to move inside the housing, form a capacitor
whose value is a function of the distance between the plates. This change in capacitance is
proportional to the acceleration that the inertial mass undergoes, and it is converted into an
electrical output by a readout circuit [33,34].

Piezoelectric accelerometers exploit the piezoelectric effect of a quartz crystal; when
an accelerative force is applied to it, the crystal produces a voltage that is proportional to
the applied force [35–37].

Piezoresistive accelerometers are made of a piezoresistive material that gets deformed
when a mechanical force is applied to it. In this case, the change in resistance is measured.
These accelerometers are characterized by a high bandwidth, which allows them to measure
high frequency, and a low sensitivity, which makes them unsuitable for vibration recording.

Today, accelerometers are miniaturized machines embedding both the mechanical and
the electrical components for signal transduction (i.e., microelectromechanical systems,
MEMS). The physical dimensions of MEMS can range from less than one micrometer to
several millimeters [38]. For instance, piezoelectric MEMS accelerometers are made of lead
zirconate titanate (PZT), a sensing element that produces a proportional electric charge
under acceleration, allowing to measure vibrations.

According to the literature, SCG measurement systems can be divided into two main
categories of sensing units: systems that use commercially available uniaxial or triaxial
accelerometers, and systems that integrate these readymade accelerometers in custom
circuitry elements for signal conditioning (e.g., analog filtering).

In recent studies, commercial one-axis ([39–42]) and three-axis ([22,43–48]) accelerom-
eters with a weight ranging between 0.26 g and 43 g and a maximum operational level of
2000 g were used (the most used monoaxial sensor node is the high-sensitivity Brüel and
Kjær model 4381 piezoelectric accelerometer [49], which has a weight of 43 g and a sensi-
tivity of 10 pC/ms−2, while the most used triaxial accelerometer is the PCB Piezotronics
sensor model 356A32 [50], which has a weight of 5.4 g and a sensitivity of 100 mV/g).

In a few studies, custom systems for SCG recording were proposed [51–53]. In [51],
a self-built system that includes three subsystems (i.e., SCG, ECG, and synchronous data
collection subsystems) was designed. The multichannel SCG measurement subsystem is
composed of multiple accelerometer sensing modules, whose core is the three-axis digital
accelerometer LIS331DLH from STMicroelectronics [54], a microcontroller for data process-
ing and conversion, which can communicate with multiple accelerometer sensing modules
using an inter-IC (I2C) interface, digital-to-analog converters, and a synchronous data collec-
tion subsystem for data synchronization. In [52], a similar approach was adopted, featuring
a custom printed circuit board (PCB) that includes a miniaturized MEMS accelerometer
(ADXL335, ±3 g) for SCG recording and analog electronics for signal preprocessing (i.e., a
preamplifier, a Butterworth low-pass filter with a cutoff frequency of 50 Hz, and a buffer).

In all these studies, the collected data, once registered by the sensing element, are
transmitted via the wireless module through a communication protocol (e.g., Bluetooth,
Wi-Fi, or ZigBee) or via cable through a DAQ (e.g., iWorx 228 from iWorx Inc., Denver, NH,
USA or NI-9205 from National Instruments, Austin, TX, USA) to a PC for signal processing
and storage. In a few studies, the inertial sensors are provided with an analog interface
for connection with the analog-to-digital converter (ADC) channel of a DAQ system that
reads and converts the collected signals [40,41,44,48,51,55,56]. DAQ systems are also useful
for a synchronized acquisition of signals from SCG sensor and reference instrument when



Sensors 2022, 22, 5805 9 of 38

used. As an alternative, the inertial unit is provided with a Bluetooth interface for data
transmission. This case is quite common in custom realized PCBs. For instance, in [52],
a wireless communication interface was integrated in the ad hoc designed PCB. In [45],
acceleration and ECG signals were synchronized by means of a micro controller unit (MCU),
which collects and streams data via TCP/IP over WiFi to a receiving client on a PC that
stores the data for further offline processing. In [53], the sensor was connected to a wireless
transmitter and a receiver to pick up seismocardiography and the pulse generated by the
sensing circuitry using the ZigBee communication protocol.

Rarely, raw data are stored on a separate device, memory, and/or SD card before
transmission to the end-device used for data analysis, such as in [57], where a Freescale
FRDM-KL25Z board was used to collect the data on a memory stick.

2.2.2. Signal Processing

The signal processing stage is generally dedicated to the identification of SCG fiducial
points (already listed in Table 1) or to waveforms matching tasks.

For what concerns the identification of SCG fiducial points, a few studies focused on
the identification of the AO peak only (see Figure 1), which is the mechanical equivalent
of the ECG R-peak and, thus, taken as a reference for the extraction of reliable HR/HRV
values [30,33,45,48,51,53,57,58]. In recent years, for the estimation of the HRV index, the
peak corresponding to the isovolumetric contraction (IC) has also been investigated. Further
and more challenging analysis was aimed at the identification of other fiducial points in
addition to AO and IC to achieve a reliable annotation of SCG waveform and an accurate
estimation of CTIs [23,39,40,45,51,52,59,60].

Once the SCG trace has been recorded, a filtering stage is essential to better emphasize
distinctive features and peaks on the raw signal for both the estimation of HR/HRV and
the SCG waveform annotation or analysis.

For HR/HRV estimation purposes, Butterworth bandpass filters in the range 5–
30 Hz [61], 6–25 Hz [48], or 4–50 Hz [57] or low-pass filters with a cutoff frequency of
35 Hz [47] and 40 Hz [53] were used to preserve the frequencies related to the heartbeat.
Additional filters can be used to remove noise, respiratory contribution, and motion arte-
facts. In [47], for instance, a third-order Savitzky–Golay filter with a 100 ms time window
was used to remove motion artefacts [62]. Referring to the SCG annotation, the imple-
mented filters proposed in the literature are different from the previous ones. Most studies
used a Savitzky–Golay, Butterworth, or finite impulse response (FIR) bandpass filter in
the range 0.3–50 Hz [51], 0.3–40 Hz [40], 0.5–40 Hz [60], 0.8–25 Hz [63], 1–40 Hz [60],
1–35 Hz [55], 50–500 Hz [41], and 2–14 Hz [45]. A few works used a low-pass filter with a
cutoff frequency of 30 Hz [42] or 90 Hz [41]. The most appropriate type of filter is generally
chosen in accordance with the fiducial points to be extracted and according to whether they
belong to the systolic or diastolic profile.

For HR/HRV estimation, SCG signals are usually compared with their concurrent
ECG using windowing techniques and thresholding-based peak detection schemes to
estimate AO peak location. However, these techniques may show a degradation in per-
formance in the presence of noise, interferences, and inter- and intra-beat physiological
variabilities. Moreover, all these methods require the identification of R peaks in the ECG
signal to localize the subsequent AO peaks in the SCG signal. The addition of a reference
instrument (i.e., ECG) leads to an increase in the system overall cost and a decrease in user
comfortability. To address these issues, Choudhary et al. [64] proposed an SCG standalone
algorithm for HRV analysis which entirely depends on AO peak detection. The algorithm
exploits modified variational mode decomposition (MVMD) and a decision-rule-based
postprocessing scheme to detect AO peaks and tachogram of AO–AO intervals to estimate
HRV indices. The proposed method showed a strong correlation and agreement with HRV
indices measured using the traditional ECG.

For what concerns HR monitoring, Gonzalez et al. made a comparison of the accuracy
of different efficient heartbeat detectors derived from SCG signals collected from subjects in
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a quiet environment while the subject is lying still. The study found that the best detector,
for its simplicity, is based on a narrowband bandpass filter [61].

For waveform annotation tasks and other types of waveform analysis, the most common
techniques can be grouped into four main categories: temporal adaptive template-based [45,
55], temporal envelope-based [39,40,52], machine learning (ML)-based [43,44,59,60], and
visual inspection and comparison-based [41,42,51].

Because of the influence of subject anthropometric characteristics and sensor position-
ing on the SCG morphology, adaptive algorithms have been developed. These algorithms
are mainly based on the extraction of a template from the ensemble of multiple cardiac
cycles, as well as the application of search windows and temporal/amplitude thresholds to
the extracted template for identifying fiducial points on SCG local extrema [45,55]. Fiducial
points can also be identified using temporal envelope-based techniques in which the SCG
envelope is used to locate peaks together with time and amplitude features for a slope
within a search window of a few milliseconds. This operation can be performed with con-
current ECG/PPG or using SCG as a standalone solution [39,40,52]. For instance, in [39],
multiple envelopes (i.e., HR, diastolic and systolic envelopes) were derived from the SCG
signal at different stages of the algorithm using high-pass filtering and triple integration.
The HR envelope was used to replace the ECG R-wave as a reference, the systolic envelope
was used to locate AO, AC, and IM points, and the diastolic envelope was used to locate
MO points.

Another viable option for SCG waveform analysis is represented by ML techniques
which can be exploited for a variety of different tasks from waveform annotation and com-
parison to SCG template generation or waveform-based classification
tasks [43,44,59,60,65–68]. ML techniques are useful and mainly employed for waveform
matching tasks, which may pave the way for automated diagnosis of HF based on the
SCG morphology changes. For instance, in [59], Hsu et al. combined wavelet transform
with deep learning models, ML classifiers, and distance metrics to perform SCG biometric
matching tasks on 1 s long signals [59]. In this study, ECG was used to segment SCG into
cardiac cycles and to annotate AO peaks. Baseline ML algorithms (KNN, SVM, decision
tree, random forest, naïve Bayes, and AdaBoost) and deep learning architectures (AlexNet
and ResNet-50) were trained with the training data as input and tested on the testing data
to evaluate their performance in predicting the subject’s identity on the basis of a pattern
matching approach. Performance evaluation was also performed using recognition rate
and equal error rate for authentication issues. The best SCG biometric models were the
bump wavelet-transformed pattern and the ResNet-50 model which had 0% equal error
rate and 100% recognition rate. In the literature, ML approaches are usually applied to
SCG signals collected from HF patients, due to their powerful potential to group similar
signals into classes with common features and high similarities. For what concerns clinical
studies that involved signal collection from HF patients, Inan et al. devised a method based
on comparing the similarity of the structure of seismocardiogram signals before and after
physical exercise using graph mining (graph similarity score). They found that the graph
similarity score can assess HF patients’ state and it correlates to clinical improvements
in 45 patients (13 decompensated and 32 compensated) [22]. This attempt demonstrated
that wearable technologies for cardiac monitoring together with ML algorithms can assess
compensated and decompensated HF states by analyzing cardiac response to submaximal
exercise. In [68], the k-means algorithm was used to cluster SCG events associated with
the mechanical processes corresponding to AS, MC, AO, RE, PE, AC, RF, IM, IC, and
MO fiducial points using unsupervised ML techniques. Differently, in [65], the clustering
capability of the k-means algorithm together with the waveform alignment capability of
dynamic time warping (DTW) was used for SCG template generation. Here, SCG segments
from both healthy and HF patients were clustered according to morphological similarities
using the k-means clustering algorithm. Then, signal traces were aligned and averaged
to build SCG waveform templates for the two groups using the DTW algorithm. DTW is
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a timeseries analysis method used to align signals and find similarities between signals.
Therefore, this approach is often used to build SCG waveform templates.

Visual inspection and comparison-based techniques try to identify SCG features
using m-mode echo images or other signals as a reference or to correlate them with the
physiological events identified in the corresponding reference signal/image. For instance,
in [41], Sørensen et al. annotated fiducial points on the SCG signal and tried to correlate
them with physiological events identified in ultrasound images. For all subjects, a mean
SCG signal was calculated, and fiducial points (peaks and valleys) were manually annotated
and labeled in the same way across all signals. These features were then correlated with
eight physiological events from the ultrasound images. The results of this study showed
that the physiological events do not always occur exactly at the fiducial points (i.e., local
extrema of the SCG signal), but before or after. However, the main limitation in this study
was the low temporal resolution of the ultrasound modalities compared to that of the SCG
signal. Similarly, Lin et al. computed the timing of feature events as the time lag from both
the ECG R peak in each cardiac cycle and the corresponding echo point [51]. In this study, a
multichannel system was used to record the SCG signal from different measurement sites,
underlying cardiac activities that are invisible to the conventional single-sensing modalities,
such as left-ventricular lateral wall contraction peak velocity (LCV), septal wall contraction
peak velocity (SCV), transaortic valvular peak flow (AF), transpulmonary peak flow (PF),
transmitral atrial contraction peak flow (MFA), and transmitral ventricular relaxation peak
flow (MFE).

Although research is moving toward an automatic annotation of the SCG waveform,
in most of the studies, the main limitation is the dependency to an additional signal (e.g.,
ECG, PPG, and ICG) not only to validate the proposed technique but also as a reference
to identify certain fiducial points or to segment the signal into cardiac cycles. Only a few
studies proposed a method that does not require any reference signal for SCG waveform
annotation [11,40,69]. In [40], Khavar et al. proposed a delineation algorithm to detect
IM, AO, and AC fiducial points with or without the electrocardiogram (ECG) R-wave
as the reference point. The proposed algorithm generates HR, systolic, and diastolic
envelopes using high-pass filtering, moving average filtering, extrema search window, and
probabilistic decision making. However, in the SCG standalone case, a lower detection rate
was observed. In [69], the authors proposed a standalone AO peak detection algorithm
based on dominant multiscale kurtosis (DMK) and dominant multiscale central frequency
(DMCF) in a multiresolution domain using wavelet. Exploiting DMK and DMCF-based
criteria, probable AO peak-rich sub-bands are selected, and the signal is reconstructed.
Then, the reconstructed signal is enhanced for AO peaks using weights, which are based
on relative squared dominant multiscale kurtosis (RSDMK). Lastly, AO peaks are detected
using a Gaussian derivative filtering-based scheme. In the validation stage, the proposed
method showed a detection accuracy of 86% over approximately 4585 beats.

From this analysis of the state of the art, it emerges that signal processing for SCG
fiducial point identification is still facing three major limitations: the lack of a standard
filtering technique in terms of the type of filter and range of frequency to be used, the
lack of a reliable SCG standalone algorithm for an automated and reference-independent
waveform annotation, and the lack of a consistent number of explorative studies on HF
patients and real clinical settings.

2.2.3. Experimental Setup and Application Scenarios

This paragraph aims to describe the influencing factors that may have an impact on
SCG waveform and the experimental setups that have been arranged to investigate the
influence of these factors on SCG signal. These influencing factors mainly include human bi-
ological factors (e.g., age, gender, BMI, and somatic features), which determine the presence
and consistency of the biological tissues that vibrations encounter during transmission, the
subject’s posture and physical conditions (i.e., health status, physical fatigue) during signal
acquisition, human motion and/or respiration, which are responsible for motion artefacts
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on SCG signal that may overshadow the rhythm signal and degrade signal quality, and
sensor positioning, which may lead to different signal waveforms. Indeed, in the literature,
SCG signals have been collected under various experimental conditions, reported here
in terms of sensor placement and performed protocol. Consequently, signal processing
approaches for the suppression of artefacts introduced by the influencing factors have been
proposed.

For what concerns sensor positioning, for precordial vibration monitoring, accelerom-
eters are commonly attached to the patient’s chest at different placement locations on the
sternum or in its proximity. The most investigated points include the sternum [45,47,66],
the lower end of the sternum (i.e., xiphoid process) [41,46,52,55], the fourth intercostal
space (IC4) near the left lower sternal border [43,44], and the four valvular auscultation
sites (mitral, tricuspid, aortic, and pulmonary) [51,65]. Sensor placement locations that have
been investigated in the literature are reported in Figure 3a, together with the measurement
sites explored for the other sensor types (i.e., gyroscopes and FBGs) that we illustrate in
more detail in the next sections. However, SCG recording is still lacking for standard
measurement locations. Most of the studies proposed single sensing modalities consisting
of an accelerometer placed on a single measurement site of the chest surface to collect the
SCG signal from a single location on the chest. In a few cases, multiple accelerometers have
been placed on specific landmarks of the chest to observe timing and pattern variations of
feature points among the different recording sites [41,51].

Figure 3. Distribution of accelerometer location sites for accelerometer-based (a), gyroscope-based
(b), and FBG-based (c) wearable measurement in recent studies.

Because the morphology of the SCG shows an inter- and intrasubject variability due
to several factors (e.g., age, difference in the positioning of the sensor over the body,
biological tissues crossed during wave propagation, and motion artefacts), most of the
studies proceeded to collect data while the subject was in a resting state. Only a few studies
included a period of physical activity in their experimental protocol [47,60,63]. However,
signal processing was performed only on the pre- and post-exercise recordings, and physical
activity was functional to create variations in the subjects’ HR and hemodynamics. For
instance, Yang et al. proposed an experimental protocol that included climbing eight
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flights of stairs between two sessions of 5 min of resting [63]. However, SCG signals were
collected during the two resting phases; hence, physical exercise was only used to create
HR variations in the two sets of recordings (i.e., pre-exercise and post-exercise). In [60],
Zia et al. asked the subjects to stand still for 5 min, to walk on a treadmill for 3 min at 3
mph, and to perform squat exercise for 90 s. Subsequently, the subject stood vertically and
motionless for a 5 min recovery. Even in this case, useful data were limited to the recovery
period because the subject’s hemodynamic state changed rapidly during this interval.

Moreover, most of the studies were performed on healthy subjects in laboratory
settings. Very few studies investigated the use of SCG signals to assess the clinical status of
heart failure patients [22].

Several studies did not propose an experimental approach but focused on the devel-
opment of innovative algorithms for data processing and adopted the records contained
in publicly available databases to evaluate the performance of the proposed algorithm.
For instance, in [46,58,59,64,69], the public CEBS database of PhysioNet containing the
combined measurements of ECG, breathing, and SCG was used to test the performance of
the proposed algorithm for HR estimation [70]. The details of the main studies that used
accelerometers for recording precordial vibrations are schematically reported in Table 2.
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Table 2. Details of the main studies that measured precordial vibrations using gyroscopes.

Paper Recorded Signals Reference Signals Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application Scenario Public

Database Enrolled Individuals

Choudhary
et al. 2020 [52] SCG at 1 kHz ECG, PPG

—Fiducial points
(IM, AO, IC, AC,

pAC, MO)
BP 1 filter (20–30 Hz)

PCB that integrates an
accelerometer

(ADXL335, ±3 g), a
pre-amplifier, a

Butterworth LP 2 filter
(50 Hz), and a buffer

Lower sternum During both normal
breathing and apnea. — 8 healthy male subjects

Khosrow-Khavar
et al. 2015 [39] SCG ECG —Fiducial points

(IM, AO, AC)
HP 3 filter (0.5, 5, 10,

20, and 30 Hz)
Accelerometer (Brüel
and Kjær model 4381) Upper sternal border

The lower part of the
body in supine position
was placed in a negative
pressure chamber from
−20 to −50 mmHg in
steps of −10 mmHg.

— 18 healthy subjects (15
male + 3 female)

Khosrow-Khavar
et al. 2017 [40] SCG ECG

—Fiducial points
(IM, AO, AC)

—CTIs (LVET, PEP)

BP 1 filter (0.3–40
Hz)

Accelerometer (Brüel
and Kjær model 4381,

Nærum, Denmark)
Upper sternum

The lower part of the
body in supine position
was placed in a negative
pressure chamber from
−20 to −50 mmHg in
steps of −10 mmHg.

—

LBNP 4 raining dataset:
48 subjects (32 male +

16 female)
SFU_GYM 5 test

dataset: 65 healthy
subjects

BGH 6 test dataset: 25
patients with a history

of cardiac disease
(12 female + 3 male)
TC 7 test dataset: 15
healthy old subjects

Sørensen et al.
2018 [41] SCG at 5 kHz

SCG (reference for
the second heart

sound),
echocardiography,

ECG

—Fiducial points
(AO, AC, AS, MO,

MC)

1st-order LP 2

Butterworth filter
(90 Hz)

Accelerometer (Silicon
Designs 1521) Xiphoid process

Supine position while the
ECG and SCG were

simultaneously recorded
pre, during, and post

echography.

— 45 healthy subjects
(male + female)

Hsu et al. 2020
[59] SCG ECG —SCG biometric

matching tasks

BP 1 (0.5 Hz–100 Hz)
and 3rd-order

Savitzky–Golay filter
with a time interval
of 0.01s with signal

detrending.

— — — PhysioNet
CEBS 8 database —

Lin et al. 2018 [51] SCG at 400 Hz ECG,
echocardiography

—Fiducial points
(LCV, SCV, AF, PF,

MFA, MFE)

BP 1 filter (0.3–50
Hz)

3-axis accelerometer
(LIS331DLH, da

STMicro- electronics,
Ginevra, Svizzera)

4 sensors placed at
the 4 cardiac

auscultation sites in
correspondence with
the mitral, tricuspid,

aortic, and
pulmonary valves

ECG and SCG were
simultaneously collected,

for each subject, in the
supine position. Then,

these signals were
recorded during

echocardiography.

— 25 healthy subjects (13
male + 12 female)
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Table 2. Cont.

Paper Recorded Signals Reference Signals Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application Scenario Public

Database Enrolled Individuals

Zia et al. 2019 [60] SCG ECG, ICG

—Identification of
consistent time

features that co-vary
with AO and PEP

metrics

FIR filter (1–40 Hz)
with kaiser window

3-axis accelerometer
and gyroscope Sternum

Standing, walking at 3
mph on a treadmill,
exercise (squat) and
post-exercise rest.

— 17 healthy subjects (10
male + 7 female)

Gamage et al.
2019 [43] SCG at 10 kHz —

—Cluster SCG
events based on their

morphology and
group the clustered
events with respect

to lung volume
phases and

respiratory flow
signals

BP 1 filter (0.5–40
Hz)

3-axis accelerometer
(Model 356A32, PCB
Piezotronics, Depew,

NY)

4th intercostal space
near the left lower

sternal border
— — 5 healthy male subjects

Taebi et al. 2018
[44] SCG at 10 kHz —

—Feature extraction
during different

lung phases
—Cluster SCG

events into classes of
HLV 12 and LLV 13

LP 2 filter (100 Hz)

3-axis accelerometer
(Model 356A32, PCB
Piezotronics, Depew,

NY)

4th intercostal space
and left sternal

border

Supine on a bed with the
chest tilted at 45◦ . — 7 healthy male subjects

Shafiq et al. 2016
[55] SCG at 500 Hz ECG —Fiducial points

(AO e AC)

5th-order
Butterworth BP 1

filter (1–35 Hz)
Accelerometer Xiphoid process Supine position while

breathing normally. — 5 healthy subjects

Khosrow-Khavar
et al. 2015 [42] SCG ECG —Fiducial points

(IM, AC)

5th-order LP 2

Butterworth filter
(30 Hz)

Accelerometer (Brüel
and Kjær model 4381,

Nærum, Denmark)
—

The lower half of the
body of the subject was

placed in a sealed
chamber in which the

pressure was gradually
reduced to -50 mmHg.

—

LBNP 4 training
dataset: 18 healthy

subjects (15 male + 3
female)

SFU_GYM 5 test
dataset: 67 healthy

subjects (35 male + 32
female)

Wick et al. 2012
[56] SCG at 1.2 kHz ECG,

echocardiography

—Fiducial points
(AC)

—CTIs (R-AC delay)
HP 3 filter (50 Hz).

Custom device
integrating two 3-axis

accelerometers
(ADXL327, Analog

Devices, Inc.,
Norwood, MA)

4th intercostal space

Echocardiography, ECG,
and SCG data were

simultaneously recorded
using both the custom

device and the
ultrasound machine in

static conditions

— 2 healthy subjects (1
male + 1 female)
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Table 2. Cont.

Paper Recorded Signals Reference Signals Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application Scenario Public

Database Enrolled Individuals

Tavakolian et al.
2010 [27] SCG at 2.5 kHz

ECG, ICG,
suprasternal pulsed

Doppler

—STI (LVET, PEP,
and QS2)

—Stroke volume
estimation

—
Accelerometer (Model

393C, PCB
Piezotronics)

Midline of the
sternum with the
lower edge of the

sensor on the
xiphoid process

Suprasternal Doppler,
SCG, ECG, and ICG were
simultaneously recorded.

For stroke volume
estimation, the signal

acquisition was
conducted in two

separate sessions at least
a day apart. The signal

from the first session was
used for training and the
second day for testing.

—

24 subjects (21 male + 3
female): 20 healthy

subjects + 4 patients of
the BGH 6 who had a
history of heart attack
and very low ejection

fraction.

Choudhary et al.
2020 [46] SCG at 5 kHz — —Fiducial points

(AO) —

Custom device
integrating an
accelerometer

(ADXL335, ±3 g)

Xiphoid process

Under both normal
breathing and apnea in

static conditions.
The test was repeated in
supine position during
normal breathing and

apnea, while sitting and
standing, and during

post-exercise recovery.

Test on CEBS 8

database

5 healthy male subjects
+ 20 healthy subjects
from CEBS 8 database

Mora et al. 2020
[45]

SCG
(SCG-1: 100 Hz;
SCG-2: 5 kHz)

ECG —Template
generation

BP 1 FIR 15 filter
(2–14 Hz)

3-axis accelerometer
(ADXL 355 from

Analog Devices, Inc.)

Xiphoid process for
datasets SCG-1 and

SCG-2

2 datasets of SCG and
ECG signals.

SCG-1: SCG recorded on
13 healthy volunteers in

sitting position.
SCG-2: public dataset

Dataset SCG-2:
dataset CEBS

Dataset SCG-1: 13
healthy subjects

Dataset SCG-2: 20
healthy subjects

Choudhary et al.
2019 [69] SCG at 5 kHz — —Fiducial points

(AO)
5th-order median

filter — — — CEBS 8 database —

Hsu et al. 2021
[47] SCG at 150Hz Blood pressure —HR estimation

3rd-order
Savitzky–Golay filter

of 100 ms span,
6th-order LP 2

Butterworth filter
(35 Hz), and

interpolation with
spline cubic curves

at 750 Hz

3-axis accelerometer
(MPU-6050) Sternum

During both static
(sitting) and dynamic
(walking) conditions.

— 20 healthy subjects (14
male + 6 female)

Lin et al. 2020 [58] SCG at 5 kHz ECG —HR estimation — — — — CEBS 8 database 20 healthy subjects (12
male + 8 female)
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Table 2. Cont.

Paper Recorded Signals Reference Signals Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application Scenario Public

Database Enrolled Individuals

Garcia-Gonzales
et al. 2013 [61] SCG at 5 kHz ECG —HR estimation

4th-order BP 1

Butterworth filter
(5–30 Hz)

3-axis accelerometer
(LIS344ALH, ST
Microelectronics)

—

During static condition
(supine position on a

single bed). After 5 min
of basal state, subjects

listened to music for ~50
min. Finally, all subjects

were monitored for 5 min
after the music ended.

— 17 healthy subjects (11
male + 6 females).

Dinh et al. 2011
[53] SCG at 400 Hz ECG —HR estimation 2 stages of LP 2

filtering (40 Hz)

PCB with a 3-axis
accelerometer

(MMA7260QT, made
by Freescale).

—

Pre-exercise (in sitting,
standing, and supine

position), during exercise
(walking), post-exercise

(standing)

— 1 healthy subject

Choudhary et al.
2021 [64]

SCG (CEBS
database: 5 kHz;

private database: 1
kHz)

ECG
—Fiducial points

(AO)
—HRV estimation

— — — —
CEBS 8 database

+ private
database 14

CEBS 8 database: 20
healthy subjects

Private database 14: 3
healthy male subjects

Ramos-Castro
et al. 2012 [48] SCG at 1 kHz ECG —HR estimation

4th-order
Butterworth BP 1

filter (6–25 Hz)

In the first group, a
3-axis accelerometer
(ADXL330, Analog

Devices) with a
low-pass frequency of

100 Hz was used,
while, in the second

group, an iPhone 4 was
used.

Sternum In supine position — 12 healthy subjects

Tadi et al. 2015
[57] SCG at 800 Hz ECG —HRV estimation

BP 1 filter (4–50 Hz)
with moving
average filter

(window duration of
10 and 20 ms)

3-axis capacitive digital
accelerometer

(MMA8451Q from
Freescale

Semiconductor)

Sternum Supine position on a bed — 20 healthy male
subjects

Shandhi et al.
2022 [66] SCG at 500 Hz ECG

—Estimate changes
in PAM 9 and PCWP

10
BP 1 filter (1–40 Hz)

Custom-built wearable
patch embedding a
PCB with a 3-axis

accelerometer
(BMA280 from Bosch

Sensortec GmbH,
Reutlingen, Germany)

Middle of the
sternum

During RHC 11

procedure — 20 patients with HF
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Table 2. Cont.

Paper Recorded Signals Reference Signals Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application Scenario Public

Database Enrolled Individuals

Chen et al. 2020
[65] SCG at 1 kHz ECG

—Cluster
waveforms based on
similar morphology

—Template
generation

HP 3 filter (40 Hz) Accelerometer

4 sensors placed at
the 4 cardiac

auscultation sites in
correspondence with
the mitral, tricuspid,

aortic, and
pulmonary valves

Supine position at rest —
16 total subjects: 8

healthy subjects + 8
patients with HF

1 BP: bandpass. 2 LP: low pass. 3 HP: high pass. 4 LBNP: low body negative pressure. 5 SFU_GYM: Simon Fraser University Gymnasium. 6 BGH: Burnaby General Hospital. 7 TC:
Terminal Club. 8 CEBS: “Combined measurements of ECG, Breathing, and Seismocardiogram” database. The dataset contains 1 h ECG, respiration, and SCG data of 20 subjects (12
male + eight female) in supine position, collected at a frequency of 5 kHz. For the central 50 min, the subjects listened to classical music at a frequency of 5 kHz. The models were
trained on the first 5 min of SCG, and the identification of fiducial points was performed on the last 5 min of SCG. A Biopac MP36 DAQ (Santa Barbara, CA, USA) was used to record
the ECG with electrodes (3M Red Dot 2560). One channel of the Biopac MP36 DAQ + a piezoresistive chest band (SS5LB sensor by Biopac, Santa Barbara, CA, USA) were used to
collect the respiratory signal. The Biopac MP36 DAQ + a three-axis accelerometer (LIS344ALH, ST Microelectronics) were used to acquire the SCG signal. The dataset is available at
https://archive.physionet.org/physiobank/database/cebsdb/ (accessed on 5 May 2022). 9 PAM: pulmonary artery mean pressure. 10 PCWP: pulmonary capillary wedge pressure.
11 RHC: right-heart catheterization. 12 HLV: high lung volume. 13 LLV: low lung volume. 14 The private database contains 15 multichannel SCG signals recorded from three healthy male
subjects in five different sessions. These sessions involved various physiological modulations and postures: (i) supine position with normal breathing for 6 min, (ii) supine position with
hold or stopped breathing for 40 s, (iii) sitting for 2 min, (iv) standing for 2 min, and (v) exercise recovery. The exercise recovery included rope-skipping (1 min) and a plank exercise
(30 s) followed by a recovery period of 20 s. The signal acquisition was accomplished using a small custom wearable electronic device. The system consisted of a miniaturized MEMS
accelerometer (ADXL335, ±3 g), pre-amplifier, Butterworth LP filter (50 Hz), buffer, data acquisition system (Biopac MP150), and PC with the AcqKnowledge interfacing software.
Signals were sampled at 1 kHz. 15 FIR: finite impulse response.

https://archive.physionet.org/physiobank/database/cebsdb/
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3. Precordial Vibration Recording Using Gyroscopes
3.1. GCG Signal

Single-axis or triaxial gyroscope sensors (preferably MEMS) can be attached to the
skin of the thorax and used to measure the three-dimensional angular velocities of the chest
as a response to the motion of the heart.

The signal obtained by recording precordial vibrations from the chest wall using a
gyroscope is commonly known as the GCG, which indicates the rotational movement of
the chest in response to the cardiac activity (see Figure 4). The GCG is commonly collected
together with SCG and/or BCG to constitute so-called mechanocardiography (MCG) or
vibrational cardiography (VCG). Hence, although SCG and GCG result from the same
physiological source, they represent different aspects of such analysis. GCG and SCG can be
treated as complementary techniques, and the use of a gyroscope sensor can help improve
the automated interpretation of SCG signals to estimate HRV, CTIs, and annotation of
waveforms.

The GCG is a low-frequency mechanical signal classified as a local pulse signal mea-
sured in degrees per second (i.e., ◦/s) [71]. GCG has a frequency range of 1–20 Hz and
amplitude range within a few dps. GCG signal can be either registered on one or three axes
of rotation (i.e., horizontal or x-axis, vertical or y-axis, and dorsoventral or z-axis), and each
axis has a distinctive signal pattern. The x- and y-axes of the GCG have a similar waveform
shape among different subjects and measurement devices. The GCG signal is generally less
sensitive than the SCG signal to inter- and intrasubject variability [72]. Usually, the y-axis
GCG signal has the highest signal-to-noise (SNR) ratio and, thus, it is taken as a reference
for gyrocardiography.

Since the GCG and SCG waveforms result from the same physiological events, trace-
able to cardiac mechanical processes, the peaks and valleys of the GCG signal reflect the
same physiological events of SCG waves in the cardiac cycle, including mitral valve open-
ing (MO) and closure (MC), isovolumetric contraction (IC), rapid ejection (RE), aortic valve
opening (AO), and closure (AC).

On the basis of these fiducial points, the isovolumetric contraction time (IVCT), isovol-
umetric relaxation time (IVRT), STI (i.e., PEP, LVET, and QS2), and other relevant indices of
cardiac contractility and hemodynamics (e.g., stroke volume and cardiac output) can be
estimated. In particular, LVET can be measured as the time interval between AO and AC
fiducial points, and the PEP interval can be determined by calculating the time between the
ECG Q-wave and AO.

As GCG is a velocity signal, its waveform also reflects systolic peak velocity (SPV)
and diastolic peak velocity (DPV), which can be annotated taking as a reference systolic
myocardial velocity (Sa) and early diastolic velocity (Ea) indices in tissue Doppler imaging
(TDI), which in turn are a measure of longitudinal systolic and diastolic function. Accurate
estimation of the timings of tissue velocities can be clinically important, as it enables, for
instance, the computation of myocardial dispersion, which reflects the heterogeneity of
myocardial systolic contraction and can be used as an indicator of exposure to arrhythmias
in different heart diseases (e.g., heart failure, ischemia, and infarction). Tadi et al. demon-
strated the utility of assessing the timing agreement between the integral of the GCG y-axis
signal (i.e., angular displacement) and 3D speckle tracking strain measurements, since
strain is a function of position, which is in turn the integral of velocity. Thus, maximal
angular displacement points may be useful for estimating the myocardial mechanical
dispersion [72].

In the past few years, many studies focused on correlating GCG peak timings with
the timings of peak tissue velocities; however, future research studies may be focused on
investigating information that can be extracted from the magnitude of the GCG signal.
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Figure 4. Typical GCG waveform and nomenclature with corresponding ECG signal.

3.2. GCG Signal Collection and Analysis

Like accelerometer sensors (see Section 2.2), even for gyroscope sensors, two main
blocks are required to extract the parameters/time intervals of interest from raw signals
(see Figure 5): the wearable system and the signal processing block. As gyroscopes are
electronic inertial sensors, the building units that compose the wearable system are the
same as those used for accelerometer-based wearables: the sensor unit with optional analog
electronics and the storage and/or transmission units, used to transfer data to the end
device employed for signal processing.

In the next sections, we describe the working principle of gyroscopes, and we give
details about the most constitutive elements of the wearable systems proposed for GCG
recording. Then, we highlight the main signal processing state-of-the-art techniques, the
application scenarios (with particular regard to the performed experimental protocols), and
the main influencing factors.

3.2.1. Wearable Systems for GCG Monitoring

A gyroscope is a sensor of angular motion able to measure its own angular velocity or
rate of gyration around a particular axis. It is often installed on a moving object to record
its angular velocity. Traditional mechanical gyroscopes are composed of a toroid-shaped
rotor that rotates around its axis, remaining parallel to itself and opposing any attempt to
change its orientation. Today, the most used gyroscope is the MEMS gyroscope, which is
characterized by miniaturized dimensions, low cost, low power consumption, and high
accuracy.

MEMS gyroscopes can be modeled as mass–spring–damper systems with a mass that
moves along two orthogonal mechanical excitation modes (see Supplementary Materials
Section S2). The in-plane rotation of a rigid body in a three-dimensional space can be
described using Euler angles (ϕ′, ϑ′, and ψ′). Angular velocities ωx, ωy, and ωz generated
by rotation along the x-, y-, and z-axes are related to Euler angles as follows:ϕ′

ϑ′

ψ′

=
1

0
0

sin ϕ tan ϑ
cos ϕ

sin ϕ cos ϑ

cos ϕ tan ϑ
− sin ϕ

cos ϕ cos ϑ

ωx
ωy
ωz

. (1)
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Figure 5. The two main blocks required to extract the information of interest: the wearable system
with its building blocks (sensing element, analog electronics, and data transmission/storage unit)
for signal collection and signal processing for HR estimation and fiducial point extraction using
gyroscopes.

Precordial vibrations cause very small angular velocities of deviation; thus, the gy-
roscope used for this application should be highly sensitive and should respond to very
small variations in angular velocities [73].

Other parameters that characterize gyroscope sensors are the following:

• Angle random walk (ARW), which describes the error resulting from broadband white
noise, which is caused in MEMS devices by detection electronics.

• Bias offset error, which is the nonzero output of the gyroscope when the input rotation
is null. This static error is typically 25 ◦C for an ideal environment, and it can be easily
corrected.
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• Bias instability, which is the instability of the bias offset at constant temperature and
in an ideal environment. It introduces a dynamic error difficult to compensate for, and
it strongly affects sensor accuracy over a long time.

• Temperature sensitivity, which defines performance changes over temperature changes.
• Shock and vibration sensitivity, which denotes the degradation in performance caused

by vibration and shock inputs.

The sensor metrological characteristics required depend on the specific application
and operating conditions. However, bias drift is the most limiting factor for all kinds of
gyroscopes [74].

In the GCG recording application, the gyroscope is mechanically coupled to the
subject’s chest. Cardiac vibrations, which are projected outward along the dorsoventral
axis, rotate the sensor in the two spatially coupled gyration axes. Up to 60% of cardiac
vibrational energy is contained in the gyration signal, resulting in a higher noise rejection
ratio than acceleration data.

As GCG is an emerging technique, gyroscope sensors were only used in a few stud-
ies, and they were usually employed to complement information obtained from SCG
signals [11,60,63,75]. D’Mello et al.’s work validated the benefit of the SCG–GCG combined
use (i.e., VCG). This approach leverages the mutually orthogonal information that can be
obtained from all six degrees of freedom, enabling a comprehensive analysis of cardiac
vibrations [11].

For this purpose, the use of inertial measurement units (IMUs), embedding both a
gyroscope and an accelerometer together with a magnetometer, is recommended. For
instance, in [63], an IMU consisting of a three-axis MEMS accelerometer, a three-axis MEMS
gyroscope, and a magnetometer was used for GCG recordings to enable a complete nine-
DoF solution. The overall weight (23.6 g) and dimensions (51 mm × 34 mm × 14 mm) of
the IMU are comparable to those of a single sensor node. Raw or pre-processed data from
IMUs can be transferred to an end device for signal postprocessing via wireless or wired
connection. For instance, in [63], all IMU and ECG measurements were simultaneously
recorded and wirelessly transmitted via Bluetooth to a laptop, while, in [8], data were trans-
mitted serially to a computer via USB cable using an Arduino Leonardo microcontroller.
Otherwise, data can be stored locally using an onboard memory such as in [75], where
all measurements from a six-degree-of-freedom IMU were stored on a memory card and
processed later using custom-made software.

3.2.2. Signal Processing

Gyrocardiography is a newborn technique for precordial vibration monitoring; there-
fore, most studies explored the feasibility of the identification of standard peaks on repeat-
ing patterns to find correspondence with SCG fiducial points and with the underlying
physiological events [63,72,76]. A few studies also investigated the accuracy and repro-
ducibility of CTI estimation from the proposed GCG fiducial points. For instance, Dehkordi
et al. delineated, on the GCG x- and y-axis waveforms, five fiducial points associated
with the opening and closure of the aortic and mitral valves and compared the manually
annotated points with the corresponding events on TDIs [76]. Then, the CTIs and Tei index
were calculated on the basis of the found fiducial points and compared to the TDI-based
reference timings for validation. GCG y-axis points appeared to provide better estimates for
CTIs than GCG x-axis points. Similarly, Tadi et al. attempted the identification of fiducial
points and the estimation of CTIs (i.e., IVCT, IVRT, PEP, LVET, and QS2) on the x- and y-axis
GCG signals, which are typically of better quality [72]. These studies demonstrated that
triaxial GCG provides reliable fiducial points for cardiac events and reliable measurements
of CTIs. A few recent studies took advantage of these waveform labeling attempts to extract
the HR and HRV indices [11,77,78].

As for SCG signals, in this case, a filtering stage is fundamental prior to the actual
signal processing and analysis, to remove bias, underlying trends, and high-frequency
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noise. However, despite the filtering stage, a significant amount of noise, related to the
in-band noise, will remain.

For waveform annotation tasks, Butterworth bandpass filters with 0.5–20 Hz [75],
0.8–25 Hz [63], and 1–20 Hz [72] frequencies were used. For HR/HRV estimation, in [77],
a third-order Butterworth bandpass filter with a bandpass of 4–50 Hz was used to filter
the raw GCG signals; then, a moving average FIR filter with the window width of 15 ms
was used to smooth the filtered signals, and a third-order Butterworth bandpass filter with
cutoff frequencies of 1 Hz and 40 Hz was applied to the beat detection results. In alternative,
D’Mello et al. used a high-pass brick wall filter with a cutoff frequency of 0.4 Hz to filter
the raw GCG signals for HR analysis [11].

Currently, gyrocardiograms are used to supplement the seismocardiogram signal
rather than replacing it in HR estimation, feature extraction, and time interval estimation
tasks. Indeed, GCG signal processing was primarily addressed to the identification of
fiducial points for waveform annotation and CTI estimation [11,63,78,79]. In this process, it
was necessary to use SCG or other signals (e.g., impedance cardiogram, ICG) as a reference
to define a correct labeling of the GCG signal.

In [63], GCG signal and its first derivative (denoted as DGCG) were considered for
both comparison and similarity analyses with SCG. Using impedance cardiography (ICG)
and ECG as reference signals, a method for the identification and annotation of GCG and
DGCG in both x- and y-directions was designed.

First, 14 time differences between GCG/DGCG and SCG peaks were computed using
pre- and post-exercise recordings. Results of the comparison analysis showed that the
correlation between the annotated fiducial points (i.e., IM, AO, and AC) and the reference
points is relatively high. Moreover, there were no significant differences between pre-
exercise and post-exercise measurements regarding the identification of these fiducial
points, which suggests that the identification is stable under mild heartrate variations. In
addition, it was found that the DGCG_Y provides the best estimation of LVET and PEP.

Then, GCG and DGCG recordings were compared for similarity with SCG in both
the time (i.e., correlation coefficient) and the frequency (i.e., frequency response assurance
criterion, FRAC) domains using the most common measures in the area of vibration
analysis.

Results of the similarity analysis showed that taking the first derivative of GCG_X
increases the similarity with SCG in both the time and the frequency domains. This means
that, when a gyroscope is used to record precordial vibrations, the output signal can
be derived one time to obtain a signal that is more similar to the standard SCG and its
fiducial points.

Another viable option for signal processing consists of accelerometer and gyroscope
signal fusion. For instance, in [75], a standalone (i.e., ECG-independent) technique for
heartbeat detection that benefits from fusing SCG and GCG signals was proposed. The
algorithm removes motion artefacts, selects the best axis from multiaxial accelerometric
and gyroscopic signals, detects the location of beats using two detection techniques based
on the signal envelope and morphological characteristics for both signal types, and finally
merges the detected beat locations using both SCG and GCG signals to obtain the final
estimate of beat positions. The algorithm removes artefacts by dividing each signal into
10 s epochs, computing the FFT for each epoch, and smoothing the signal with a moving
average filter of 10 samples. The beat detection method includes two sub-algorithms,
namely, wavelet enhancement and clustering. The algorithm performance was tested on
both healthy subjects and patients with heart disease, and the average sensitivity and
precision of the beat detection were 99.9% and 99.6% for the healthy subjects and 96.1% and
95.6% for the heart disease patients, respectively. In this study, the ECG signal was used
for the validation task only and the average root-mean-square error (RMSE) between the
mechanical and ECG inter-beat intervals was 5.6 ms for the healthy patients and slightly
higher for the heart disease patients.
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From this analysis of the literature, it emerges that GCG signal processing for fiducial
point identification is still facing the following limitations: the lack of a standard filtering
technique in terms of type of filter and range of frequencies, and the lack of a standard
sensor positioning protocol. However, early studies on automated methods for a human
and reference-independent GCG annotation demonstrated the feasibility of HR extraction
from standalone SCG/GCG and the validity of sensor fusion/combination to enhance the
performance in heartbeat detection.

3.2.3. Application Scenarios and Influencing Factors

As for the SCG signal, the most investigated influencing factor is the sensor position-
ing. Gyroscope-based wearable systems in the literature have predominantly been attached
to the patient’s chest in correspondence of three anatomical landmarks: the xiphoid pro-
cess [11], the middle of the sternum [60,72,75], and along the second and third rib on
the sternum [63]. Sensor locations investigated in the literature for GCG monitoring are
reported in Figure 3b.

Although, in the literature, there are limited examples of experimental trials involving
the use of a gyroscope, signal acquisition has been explored under various experimental
conditions. For instance, data collection has been performed both with the subject in a
resting position [72] and before and after a few minutes of physical activity [63]. Moreover,
Kaisti et al. decided to thoroughly evaluate the performance of the method they proposed
for standalone heartbeat detection using mechanocardiograms, not only on signals collected
from healthy subjects but also on more challenging signals recorded from heart disease
patients in a clinical environment. The promising results obtained in this study [75] suggest
further analysis on signals acquired in a clinical scenario.

Several studies did not build up an experimental protocol for data acquisition but
exploited readymade GCG signals available in public databases. For instance, Siecinski
et al. performed data analysis on the “Mechanocardiograms with ECG Reference” dataset
by Kaisti et al. [75] publicly available from the IEEE DataPort data repository [80]. The
dataset contains 29 simultaneously recorded ECG, SCG, and GCG signals collected from
29 healthy male volunteers with the following demographic data (expressed as minimum,
maximum, mean, and standard deviation): age (23–41, 29.5 years), height (170–190, 179,
5 cm), weight (60–98, 76.11 kg), and BMI (18–30, 24.3 kg/m2). The details of the main
studies that used gyroscopes or IMU platforms for recording precordial vibrations are
schematically reported in Table 3.
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Table 3. Details of the main studies that measured precordial vibrations using gyroscopes.

Paper Recorded Signals Reference Signals Extracted Fea-
tures/Parameters Filtering Technique Acquisition Device Location of Device Application

Scenario Public Database Enrolled
Individuals

Yang et al. 2017
[63]

GCG and first
derivative of GCG
(DGCG) at 256 Hz

ECG, ICG, SCG

—Fiducial points
(IM, A0, AC)

—CTIs (LVET,
PEP)

BP 1 Butterworth filter
(0.8–25 Hz)

IMU (Shimmer 3 from
Shimmer Sensing): 3-axis

accelerometer (Kionix
KXRB5-2042, Kionix, Inc.) +

3-axis gyroscope
(Invensense MPU9150,

Invensense, Inc., San Jose,
CA, USA).

Along the second
and third rib at the

middle of the
sternum

Sitting on a chair
pre-exercise, steps

climbing and resting
post-exercise

— 5 healthy subjects
(3 male + 2 female)

D’Mello et al. 2019
[11]

SCG combined with
GCG (VCG 16) at 250

Hz
ECG

—Fiducial points
(AO)

—HR estimation

HP 3 brick wall filter
(0.4 Hz).

InvenSense Motion
Processing UnitTM 9250

consisting of a MEMS
gyroscope and
accelerometer

Xiphoid process

Resting supine, high
intensity physical

exercise and resting
post-exercise.

— 25 healthy male
subjects

Dehkordi et al.
2020 [76]

GCG standalone and
combined with SCG

at 1 kHz

SCG, ECG, ICG,
echocardiogram

—Fiducial points
(AO, AC, MO,

MC)
—CTIs (EMD, PEP,

ST, Q-MO, LVET,
IVCT, IVRT)
—Tei index

—

IMU (ASC GmbH, ASC
IMU 7.002LN.0750,

Pfaffenhofen, Germany):
low-noise 3-axis MEMS

joint
accelerometer-gyroscope

sensor

— — — 50 healthy subjects
(23 male + 27 female)

Tadi et al. 2017
[72] GCG at 800 Hz SCG, ECG,

echocardiogram

—Fiducial points
(AVO, AVC, MVO,

MVC)
—CTIs (LVET, PEP,

QS2, IVRT, IVCT,
Q-SPV, Q-DPV)

4th-order BP 1

Butterworth IIR 17 filter
(1–20 Hz)

Custom-made IMU: 3-axis
low-power capacitive
digital accelerometer

(Freescale Semiconductor,
MMA8451Q, Austin, TX,

USA) + low-power
low-noise 3-axis gyroscope

(Maxim Integrated,
MAX21000, San Jose, CA,

USA)

Middle of the
sternum

Lying down in the
supine position with

the upper body
slightly tilted.

— 9 healthy male
subjects

Kaisti et al. 2019
[75]

GCG combined with
SCG at 800 Hz ECG —HR estimation

Filtered with a
3rd-order BP 1

Butterworth IIR 17 filter
(0.5–20 Hz)

IMU: 3-axis capacitive
digital accelerometer

(Freescale Semiconductor,
MMA8451Q, Austin, TX,

USA) +
3-axis gyroscope (Maxim

Integrated, MAX21000, San
Jose, CA, USA)

Sternum
Lying either in the
supine position or

on left or right side.
—

Dataset 1: 29 healthy
male subjects.

Dataset 2: 12 patients
with coronary artery
disease (10 male + 2

female)
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Table 3. Cont.

Paper Recorded Signals Reference Signals Extracted Fea-
tures/Parameters Filtering Technique Acquisition Device Location of Device Application

Scenario Public Database Enrolled
Individuals

Sieciński et al.
2020 [77]

GCG and SCG at 800
Hz ECG —HRV analysis

3rd-order Butterworth
BP 1 filter (4–50 Hz)
with zero-phase FIR

moving average filter
with the window

width of 15 ms; to align
the baseline with zero,

the signals resulted
from beat detection

were filtered with the
3rd-order BP 1

Butterworth filter (1
Hz and 40 Hz)

— — —

Mechanocardiograms
with ECG

Reference data set
18

—

1 BP: bandpass. 3 HP: high pass. 16 VCG: vibrational cardiography. 17 IIR: infinite impulse response. 18 The “Mechanocardiograms with ECG Reference” dataset by Kaisti et al. is
publicly available from the IEEE DataPort data repository. This dataset consists of 29 mechanocardiogram recordings with ECG reference. The signals were recorded from 29 healthy
male subjects while in supine position. All data were recorded with sensors attached to the sternum using double-sided tape and a frequency of 800 Hz. Mechanocardigrams include
accelerometer signals (SCG) and gyroscope signals (GCG) recorded using a three-axis capacitive digital accelerometer (MMA8451Q from Freescale Semiconductor, Austin, TX, USA) and
a three-axis MAX21000 gyroscope (Maxim Integrated, San Jose, CA, USA), respectively. ECG signals were collected using ADS1293 from Texas Instruments.
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4. Precordial Vibrations Recording Using Fiber Bragg Grating Sensors
4.1. Strain-Derived SCG Signal

To overcome the limitations of traditional MEMS sensors in this application (e.g.,
stiffness, encumbrance, nonoptimal skin adherence, and compliance with the body surface),
the use of flexible sensors integrating different types of sensing elements into soft matrices
(e.g., conductive textiles and fiber optic sensors) has been proposed [81–84]. Usually,
substrates are thin plastic films made of polyester (PET), polyimide (PI), polyetherimide
(PEI), parylene, polyethylene naphthalate (PEN), or intrinsically stretchable elastomers
such as polydimethylsiloxane (PDMS), Ecoflex, Dragon Skin, thermoplastic urethane (TPU),
and styrene–ethylene–butylene–styrene (SEBS). These materials have excellent mechanical
properties under bending, folding, or crumpling. For instance, You et al. fabricated a
stretchable electronic skin made of Au nanoparticles and elastomer PDMS to sense the
deformations of the chest wall caused by the vibrations induced on its surface by the heart
apex [85]. However, most of these systems are not able to sense microstrains induced on
the chest surface by the heart beating. Therefore, there are a few studies which focused
on flexible wearable sensors for cardiac monitoring via strain sensing. The most popular
ones are those based on fiber Bragg gratings (FBGs), due to their intrinsic advantageous
properties, such as high sensitivity, frequency response, biocompatibility, chemical inertia,
and immunity to electromagnetic interferences, which make them usable even in harsh
environments (e.g., under high-pressure, high-temperature, and strong-magnetic-field
conditions).

In cardiac monitoring applications, the output of FBG sensors (i.e., the Bragg
wavelength—λB) shifts accordingly with precordial vibrations. The FBG encapsulation into
flexible configurations enables an optimal mechanical coupling between the sensor and the
skin, guarantying a better transduction of chest wall deformations into Bragg wavelength
shifts (∆λB). These fiber optic sensors are intrinsically sensitive to strain (ε); thus, they cap-
ture cardiac vibrations in the form of strain measurements induced by chest deformations
in response to the mechanical events of the cardiovascular system. State-of-the-art studies
refer to this signal as SCG even if strain-derived.

4.2. Strain-Derived SCG Signal Collection and Analysis

As in previously described cases, even SCG monitoring based on FBG sensors relies
on two main blocks (see Figure 6): a wearable system and a signal processing block for HR
extraction, which is the principal aim of FBG-based studies present in the literature.

The FBGs are the widespread fiber optic technology employed for monitoring pre-
cordial vibrations. They are preferred to traditional electrical and mechanical sensors
due to their advantageous metrological properties [86] and immunity to electromagnetic
interferences, which allows their use in harsh environments such as MRI procedures in the
clinical application [87]. For what concerns cardiac monitoring, the high ε sensitivity (up
to 1 pm/µε) and linearity in a wide range of ε values, short response time (<10 ms), and
proper frequency response of FBGs make them good candidate for detecting the small and
rapid heart-induced deformations of the chest surface. Other advantages in the use of FBG
sensors for cardiac monitoring via wearable systems are related to their miniaturized size,
ultralightweight, chemical inertness, capability to work in harsh environments, long-term
stability, and durability (i.e., the average lifespan of etched gratings is 30 years). Usually,
for SCG monitoring, FBGs are directly glued on smart textiles and, recently, encapsulated
into polymeric matrices to obtain more robust systems. The sensor positioning, as well as
the matrix shape and dimensions, can be carefully designed to optimize the FBG response
to ε.
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Figure 6. The two main blocks required to extract the information of interest: the wearable system
with its building blocks (sensing element and data transmission unit) for signal collection, and signal
processing for HR estimation and fiducial points extraction using FBGs.

The main building blocks for SCG monitoring using FBGs are the wearable system for
SCG acquisition from the subject and the signal processing stage for AO peak detection
and HR estimation. FBG-based wearables, in the most general case, are composed of
three main building blocks: the sensor, which is the grating inscribed into the core of the
optical fiber, the coating matrix, which confers the properties of flexibility, stretchability,
and robustness to the sensor, and the optical spectrum interrogator, which manages both
the processes of fiber light excitation and the examination of the reflected spectrum. The
post-acquisition stage with the use of a dedicated software then leads to the results of
the analysis performed, which is limited to HR estimation in the current state of the art.
In this paragraph, we describe the working principle of FBGs, and we give details about
the studies in the literature that exploit these sensors for cardiac monitoring, in terms of
wearable systems, signal processing and application scenarios, inclusive of the possible
influencing factors.
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4.2.1. Wearable Systems for Strain-Derived SCG Monitoring Using FBGs

Basically, an FBG sensor is an optical strain gauge and can be considered as a short seg-
ment of an optical fiber (usually 3–6 mm or smaller). When interrogated with a broadband
spectrum of light, it reflects a narrow spectrum centered around a specific wavelength (i.e.,
the Bragg wavelength, λB) and the resting part of the light traveling along the fiber is trans-
mitted. The back-reflected spectrum is centered around the so-called Bragg wavelength, λB,
which depends on the effective refractive index of the fiber core and on the grating spatial
period, Λ.

λB = 2Λ ηe f f . (2)

Both the terms in the Bragg condition are sensitive to ε and temperature (T); thus,
the use of a proper configuration and design allows the estimation of these parameters by
monitoring changes in λB (see Supplementary Materials Section S3). Indeed, when an FBG
is exposed to ε and T changes, a variation in Λ and ηeff occurs causing a shift of λB (∆λB).

∆λB = ∆λB
mech + ∆λB

therm. (3)

The first term in Equation (3) represents the ε effect on an optical fiber (∆λB
mech), and

the second term represents the effect of T (∆λB
therm). These terms can be expressed as

∆λB
therm = λB ST ∆T, (4)

∆λB
mech = λB Sε ε, (5)

where ST is the sensitivity to T changes, and Sε is the sensitivity to ε, which are determined
by means of a calibration process. Hence, FBG sensors are intrinsically sensitive to both
these parameters, but several strain–temperature discrimination techniques and particular
sensor encapsulation packages have enabled the development of sensors that are selectively
sensitive to only one of the two physical quantities [88,89]. For details see Section S3 of
Supplementary Materials.

During cardiac monitoring applications, the FBG should be highly sensitive to ε, and
the influence of T should be considered negligible [90,91].

The sensor response to ε is encoded in a spectral magnitude (i.e., λB); thus, the FBG
response is absolute and self-referential, and it does not depend on environmental noise
or power fluctuations in the light source. By interrogating the Bragg wavelength λB, the
physical quantity that acts as an input perturbation (e.g., strain) can be quantified.

In this application, the single-parameter sensor is adherent to the subject’s chest, and
the FBG’s output (i.e., ∆λB), which changes in response to the mechanical strain applied to
the sensor grating by precordial vibrations, can be displayed over time providing a similar
SCG signal.

Usually, FBGs are directly attached to smart textiles (e.g., T-shirts and bands) encapsu-
lated into polymeric PDMS [92], polymethyl methacrylate (PMMA) [88], Dragon SkinTM
20 silicon rubber [93,94], or more recently, into 3D printed materials [95]. These coating
matrices may have different shapes easily conferred by 3D molding injectable techniques
or 3D printing, from simple rectangular to the dogbone shapes. Each design, as well as the
FBG positioning into the matrix, can be customizable to emphasize the ε transmission to
the encapsulated grating. For instance, in [96], a custom cone-shaped structure made up of
polyvinyl chloride (PVC) was developed and attached to the moving end of a micrometer
and to a flexible diaphragm to reach the chest muscle with the minimum discomfort for
the subject. Not only single sensing modalities but also multisensor systems based on
FBG arrays have been proposed. These novel solutions exploit the multiplexing capability
of FBG sensors that allow having multiple sensing elements distributed along the same
optical fiber in an array configuration to perform quasi distributed sensing. The possibility
to customize the sensor by means of an ad hoc manufacturing process gives great freedom
in terms of dimensions, materials, and shapes, which allows adapting the sensor to the
needs of the specific application. When the FBG is embedded into the flexible coating, the
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elastic and thermal properties of the material influence the sensor sensitivity to temperature
and strain; thus, a static and dynamic characterization process is needed to determine the
novel properties of the ad hoc fabricated sensor. Chest deformations do not directly impact
the silica fiber, but they stretch the surface of the 3D printed polymer, which transmits the
stretching effect to the silica fiber leading to a change in the FBG sensor output (∆λB).

4.2.2. Signal Processing

In the literature, FBG sensors for SCG monitoring have been developed and used to
estimate HR by measuring the ε signal that results from the displacement (i.e., from 0.2 mm
to 0.5 mm) occurring on the subject’s chest during heart beating [5]. These displacements
are lower than those caused by the breathing activity. Hence, a filtering stage is required
prior to the actual signal processing and HR analysis to remove the respiratory contribution
and reveal the heartbeat signal. The filters used in the literature are bandpass filters with
lower cutoff frequencies [86] of 0.8 Hz, 3 Hz, and 5 Hz and higher cutoff frequencies of
2 Hz, 20 Hz, and 30 Hz [88,93–95]. Often, upper and lower envelopes are additionally
performed on the filtered signals to better emphasize the AO-related peak on the SCG
signal [86]. The filtered signals are processed by following two main approaches: time- and
frequency-domain analysis. In the first case, a typical approach consists of detecting the
local maxima in the processed signal and then computing HR as 60/Tc (where Tc is the time
elapsing between two consecutive maximum points). In the latter case, HR is calculated in
the frequency domain by performing a spectrum analysis based on fast Fourier transform
(FFT) or Welch’s method. HR is estimated from the dominant frequency of the power
spectrum.

From this analysis of the literature, it emerges that SCG signal processing and analysis
using FBG sensors is still lacking standardized filtering techniques, postprocessing analysis,
and sensor positioning guidelines. Moreover, the proposed studies estimated only HR,
while no waveform analysis was performed to identify fiducial points on the collected
signal.

4.2.3. Application Scenarios and Influencing Factors

FBG-based sensors are tightly fixed to the subject’s chest in correspondence with
the chosen measurement point using adhesive tape or a contact strip such as a Velcro
fasten belt, allowing the mechanical stress to be transferred to the sensing element. In
the literature, different measurement points on the frontal plane have been investigated
(see Figure 3c): xiphoid process [94,95], the area of the sternum below the nipple [94],
the area above the umbilicus [86,94], lower thorax [93,96], and pulmonic area near to the
heart [88]. As for SCG recording with accelerometers, FBG-based SCG monitoring is still
lacking for standard measurement locations and filtering stages. Moreover, the majority of
the studies focused on single sensing modalities consisting of a single FBG element, bare or
embedded into polymer matrices, to collect the SCG signal from a single measurement site
on the chest surface. Recently, Lo Presti et al. proposed the use of a multi-sensor system
consisting of an array of four FBGs and investigated the influence of sensor positioning on
the SCG recording. In particular, they placed the array on three different positions to obtain
simultaneous SCG recordings from 12 total measurement sites and observe waveform
variations among the different recording sites [86]. In this study, the performance of the
wearable system was evaluated through a comparative analysis between the single-sensor
and the multi-sensor approach, and results showed that the signal obtained by averaging
the signals collected from all the FBGs provided a better performance in HR estimation than
each FBG sensor considered individually. These results demonstrated that a multi-sensor
approach obtained by summing the outputs of multiple sensors can improve the system
performance in HR estimation.

Until now, the feasibility of noninvasive FBG-based SCG monitoring has been demon-
strated on stationary subjects only and mainly during apnea stages to automatically dis-
charge the respiratory contribution on the FBG raw data. In general, if signal acquisition
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is performed during normal breathing, the sensor is strained by chest wall deformations
induced by both respiratory and cardiac activities; therefore, a more challenging signal
processing is required to exclude the respiratory effects [96]. Otherwise, if the subject is
asked to hold their breath during the acquisition session, only the cardiac contribution is
registered.

Together with the multiplexing capability and the high metrological properties, an-
other interesting feature of FBGs is their immunity to electromagnetic interferences that
enables the cardiac monitoring even in harsh environments (e.g., during magnetic reso-
nance imaging (MRI) procedures). For instance, Nedoma et al. carried out experimental
tests of SCG monitoring in MRI environment and found that the metal-free design of FBG
sensors does not pose any threat to the patients undergoing MRI exam and has no influence
over the quality of imaging [88]. Moreover, the FBG output signal is identical to that ne
obtained without any electromagnetic interference; thus, the measured signal is not affected
by the 1.5 T magnetic field. Although the use of FBG sensors for cardiac monitoring is at
the beginning, all these advantages make such a sensing technology very promising in
the field of SCG monitoring. The details of the main studies that used FBGs for recording
precordial vibrations are schematically reported in Table 4.
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Table 4. Details of the main studies that used FBGs to measure precordial vibrations.

Paper Recorded
Signals

Reference
Signals

Extracted
Features/Parameters Filtering Technique Acquisition Device Location of Device Application

Scenario Public Database Enrolled
Individuals

Lo Presti et al. 2019
[93] SCG PPG —HR estimation

2nd-order BP 1

Butterworth filter
(0.8–2 Hz)

A commercial FBG (λB of 1547 nm,
grating length of 10 mm, and
reflectivity of 90%; AtGrating

Technologies) encapsulated into a
frame of Dragon skin®20 silicone

rubber (Smooth-On, Inc.,
Macungie, PA, USA) of dimensions

90 mm × 24 mm × 1 mm.

Lower thorax

Each volunteer was
asked to perform

two tests consisting
of a stage during

both quiet breathing
and apnea

— 2 healthy subjects (1
male + 1 female)

Chethana et al. 2017
[96] SCG Stethoscope

—HR estimation
(average HR per

minute)
HP 3 filter (0.5 Hz)

The sensor is made of a
cone-shaped structure whose end

is made up of polyvinyl chloride, a
micrometer, and a flexible silicon

diaphragm. A 9/125 µm diameter
germania-doped photosensitive

silica fiber was used in the
fabrication of FBG sensors of 3 mm
gauge length. The fabricated FBG
sensor was tightly bonded across
the diaphragm using a thin layer

of cyanoacrylate adhesive.

Around 2nd and 3rd
interspace of

pulmonic area

Under different
breathing conditions

(slow, automatic
inhalation and

exhalation, forced
inhalation and

exhalation)

— 4 healthy subjects (2
male + 2 female)

Nedoma et al. 2019
[88] SCG at 1 kHz ECG —HR estimation

3rd-order
Butterworth BP 1

filter (5–20 Hz)

The sensor (dimensions 30 × 10 ×
0.8 mm and weight 2 g) is made of
a fiberglass structure (type Epikote

Resin MGS LR 285 and Curing
Agent MGS LH 285) of length 1.8
mm, which encapsulates a Bragg
grating with a λB of 1550.218 nm.

The sensor was designed as part of
a contact elastic belt.

Around the
pulmonic area near

to the heart

During MRI
procedures — 10 healthy subjects

(6 male + 4 female)

Nedoma et al. 2017
[92] SCG at 300 Hz — —HR estimation BP 1 Butterworth IIR

17 -filter (1–5 Hz).

The measuring probe consists of
the uniform FBG with polyamide
protection with λB of 1554.1207
nm. The width of the reflecting
spectrum was 2.3241 nm, and
reflectivity was 95.7%. It was

encapsulated into a PDMS
polymer of rectangular shape.

Left side of the
upper chest in an
area of the heart

standing, sitting and
supine — 5 healthy subjects

Tavares et al. 2022
[95] SCG at 1 kHz ECG —HR estimation BP 1 filter (0.8–2.0

Hz)

The sensor consists of an elastic
material (Flexible, Fish box mini

model, Avistron, Bergheim,
Germany) printed by a 3D printer

(Ultimaker 3D Extended,
Ultimaker, Utrecht, Netherlands)
and a single optical fiber with a

single FBG.

Left side of the chest

During apnea and
normal breathing

while lying down on
a physiotherapy bed

— 3 healthy subjects

1 BP: bandpass. 3 HP: high pass. 17 IIR: infinite impulse response.
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5. Conclusions

In the present review, we described wearable systems, signal processing techniques,
and application scenarios for the recording of precordial vibrations. The aim was to go
into detail about these three interrelated aspects that are fundamental in this research
field and, if well-modulated, contribute to achieving a highly performant wearable system.
Indeed, the use of wearables in this field is gaining increasing interest for the possibility
to extract diagnostic indicators, thus enabling an early diagnosis of different types of
cardiac dysfunctions. In this work, we focused on wearable systems for monitoring cardiac
mechanics, and we identified three main approaches for monitoring precordial vibrations
according to the measurand: acceleration (by accelerometers), angular velocity/rotation
(by gyroscopes), and strain sensors (especially FBGs). For each technique, we gave details
about the output signal, because their characteristic features are still not fully known.
Moreover, we presented the sensors embedded in wearable systems for signal collection,
the processing techniques explored for data analysis, and the main application scenarios in
which the technique has been tested.

According to the current state of the art, SCG monitoring using accelerometer-based
wearables is the most well established technique. Several commercial or custom-made
wearable systems integrating accelerometers have been tested for SCG recording, and many
signal processing techniques have been explored for HR extraction, waveform annotation,
and signal recognition/matching tasks. Moreover, different application scenarios in various
conditions (e.g., at rest, during exercise) have been investigated. Several studies also
focused on the use of this technique on HF patients, and its feasibility to assess the clinical
status of these patients has been successfully demonstrated.

GCG has a shorter history than SCG, but it may provide additional understanding
about the mechanical aspects of the cardiac cycle. The validity of SCG/GCG sensor fusion
or combination has been assessed in the estimation of HR, HRV, CTIs, and annotation of
waveforms. In addition, the GCG has been explored in various application modalities,
including challenging dynamic conditions (e.g., during physical activity).

Lastly, FBG sensors for SCG recording are at an early stage; the analysis of strain-
derived SCG is still limited to HR estimation, and no waveform analysis has been performed
to identify fiducial points on this signal. However, FBG-based wearables are customizable,
allowing a great freedom of design and adaptability to the application scenario. Further-
more, the immunity to electromagnetic interferences makes this technique advantageous to
be used in harsh medical environments such as MRI. This application scenario has been
promptly explored, although experimental protocols in the literature are usually limited to
static conditions (i.e., quiet breathing and apnea in a resting position).

To date, the use of these techniques is limited to the research field. However, they
are all very promising tools to be introduced into clinical practice for different purposes.
For instance, they could be used to complement ECG-derived information, for remote
monitoring of patients, and for applications in harsh medical environments (e.g., MRI),
where the use of ECG and electrical sensors is forbidden. The use of these techniques in
a clinical scenario is still hindered by several limitations and open challenges, regardless
of the specific technique considered. The first reason is that wearable devices are highly
sensitive to motion and breathing-related artefacts. Hence, it is necessary to minimize
the noise induced in the signal by motion artefacts that may cover the peaks and features
of interest. In this specific application, movement is particularly critical because it can
vary greatly with the sensor position and because precordial vibrations to be detected are
of microscopic dimensions. Hence, noise removal is still an open challenge at both the
hardware and the software design levels. This limitation may be overcome by performing
spot acquisitions instead of a 24 h monitoring. Indeed, although these wearables cannot
be used to monitor a person’s heart function during actual movement or physical activity
(i.e., real dynamic conditions), they can still be useful to perform random acquisitions to
monitor the subject at rest (e.g., during pre- and post-exercise resting). This would allow
assessing the cardiac performance not only under controlled conditions and in a limited



Sensors 2022, 22, 5805 34 of 38

period of time (i.e., during medical examination), but also in daily living situations where
the heart has been put under stress and its compliance can be evaluated.

These techniques would be very advantageous and could open up new scenarios
in clinical settings such as the possibility to monitor HR and the cardiac function during
MRI examinations. Indeed, a correlation has been found between MR-quantified flow and
function parameters and SCG energy levels or other features. These findings may encourage
the development of an easy clinical test to identify potential valves flow abnormalities.

Supplementary Materials: The following supporting information can be downloaded at: https:
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