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Abstract: Thermal imaging is an important technology in low-visibility environments, and due to the
blurred edges and low contrast of infrared images, enhancement processing is of vital importance.
However, to some extent, the existing enhancement algorithms based on pixel-level information
ignore the salient feature of targets, the temperature which effectively separates the targets by their
color. Therefore, based on the temperature and pixel features of infrared images, first, a threshold
denoising model based on wavelet transformation with bilateral filtering (WTBF) was proposed.
Second, our group proposed a salient components enhancement method based on a multi-scale
retinex algorithm combined with frequency-tuned salient region extraction (MSRFT). Third, the
image contrast and noise distribution were improved by using salient features of orientation, color,
and illuminance of night or snow targets. Finally, the accuracy of the bounding box of enhanced
images was tested by the pre-trained and improved object detector. The results show that the
improved method can reach an accuracy of 90% of snow targets, and the average precision of car and
people categories improved in four low-visibility scenes, which demonstrates the high accuracy and
adaptability of the proposed methods of great significance for target detection, trajectory tracking,
and danger warning of automobile driving.

Keywords: infrared image; wavelet transform; multi-scale retinex algorithm; salient region; deep
learning; target detection

1. Introduction

Driving safety always has the power to fuel wide discussion among society and
automatic industries. The state-of-art sensor kit of automobiles which involves a camera,
lidar, radar, global positioning system (GPS), and sonar is instrumental in the current
autonomous driving epoch. To enable automobiles to drive safely all day and in all weather
is challenging [1]. One of the most critical issues in the development of autonomous driving
sensor technologies is their poor performance under adverse weather conditions [2,3], such
as nighttime, rain, snow, and fog, which is called low-visibility scenes in this paper.

Retrospective past decades, the grave problems of safety and security in adverse
conditions have drawn the attention of society, and numerous studies have been performed,
which have exposed the vulnerability of the functioning of transportation services in
adverse conditions [4]. For example, rainy and foggy conditions can cause significant atten-
uation to the functions of the camera and lidar [5]. In snowy conditions, cool temperature
affects a camera system because of optical and mechanical disruptions.

Thermal infrared technology (or IR technology) can overcome poor portability and
difficulties in detecting objects in adverse conditions. Moreover, the far-infrared camera
(8–15 µm wavelength) filters out most blooming (from headlights and other light sources)
and shadows (as long as the shadow does not linger) by adding different polarizers to the
lens, which allows IR radiation to pass through fog and dust particles better than the visible
light [6]. Meanwhile, IR technology is widely used in military, cultural heritage, industrial,
medical, biological, and civilian applications [7–12].
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In low-visibility environments, the thermal reflection of pedestrians and vehicles in
infrared cameras can easily distinguish living targets from the ambient background, as
is shown in Figure 1, which is a prominent advantage of infrared technology over other
sensors [13]. However, as far as low contrast and universe noise of infrared images, the
same image enhancement method unanimously performs badly in different low-visibility
environments. The pixel-level information and temperature distribution should be con-
sidered gravely as the input of the image, which requires image enhancement and edge
enhancement for the first step of infrared image processing. For easier analysis of image
features, images are converted to grayscale in this paper.
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Figure 1. Normal samples of thermal imaging in different applications. (a) IR surveillance in
hurricane weather; (b) detect pedestrians at nighttime; (c) quality inspection of iron and steel parts.

The biggest contribution of work described in this paper proposes three algorithms
and effectively enhances infrared images based on the temperature distribution characteris-
tics of infrared image pixel points in four different low-visibility environments. Moreover,
it improves the low signal-to-noise ratio of infrared images and the accuracy of objective
detection. The infrared image datasets from different environments and devices are col-
lected, including the open-source datasets and the data collected in this paper, which are
called low-visibility infrared (LVIR) datasets. The remainder of this article is organized as
follows: Section 2 reviews the related studies. Section 3 describes the steps of the proposed
enhancement methods and the infrared target detection method. Section 4 presents and
analyzes the experimental results. Finally, Section 5 summarizes the findings of the study
and explores directions for future work.

2. The Related Work

In recent years, the infrared camera has been a promising resolution to relieve the
impact of rainfall and snowflakes. For visual cameras, an unshielded camera can easily be
damaged by ice. Raindrops and snowflakes can be filtered out by pixel-oriented evalua-
tion [14], but there is a large extent resulting in higher false detection rates, poor real-time
performance, and inaccurate positioning data [15]. Heavy fog also reduces the recognition
and accuracy rate of existing traffic sensors [3]. Moreover, these further lead to wrong
judgments and operation errors in unmanned vehicles, causing significant risks.

In the perception of the environment, camera and radar sensors have illustrated their
benefit in the visible spectrum domain, in adverse weather conditions, changing luminance,
and dim backgrounds [16]. The dim target detection in an infrared image with complex
background and low signal-to-noise ratio (SNR) is a significant yet difficult task in the
infrared target tracking system. Technologies to deal with this issue can be classified into
two main categories: restraining the background and enhancing the targets.

To restrain the background, Dong et al. [17] combined three mechanisms of the Human
Visual System (HVS) [18–20]. Difference of Gaussians (DOG) filters which simulate the
contrast mechanism were used to filter the input image and compute the saliency map
which then simulated visual attention through a Gaussian window to further enhance the
dim small target. Li et al. [20] adopted an improved top-hat operator to process the original
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image which can restrain the background well, and then processed the enhanced image
with a spectral residual method. A classification preprocessing strategy system [18] was
also adopted to remove noise, suppress the background, and improve the target signal-
to-noise ratio. Figure 2 shows the diagram of proposed image enhancement algorithm.To
enhance the dim targets, Li et al. [21] proposed a cascade method to resolve the low SNR
issue in the long-range distance detection tasks of infrared dim target detection, which
takes advantage of the movement continuity of targets. Zhang et al. [22] proposed a novel
enhancement algorithm based on the neutrosophic sets to enhance the contrast of infrared
images. In other fields, the image enhancement and reconstruction methods are also
applied in active dynamic thermography (ADT) to visualize the superficial blood vessel
with high contrast [23]. In practice, these small dim targets often lack detailed information
or have low signal-to-noise ratios. IR images in different harsh environments have different
characteristics, and using the same enhancement method applied to these images may not
achieve the desired results.
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Figure 2. Diagram of the proposed image enhancement algorithm.

For target detection and diagnosis, Fidali et al. [24] proposed a fusing method of global
machine condition assessment for infrared condition monitoring and diagnostics systems.
Deep learning technology has been used in the field of visible light image segmentation as
well as far-infrared images [25]. For object detection in the nighttime, features of visible
images become invalid and deep learning based on traffic vehicle detection is used to fuse
data obtained from multi-sensors [26]. The majority of methods-based neural networks are
only using visual sensors to improve the accuracy of target detection, but they generally
do not function well in harsh conditions [27]. Plenty of convolutional neural network
(CNN) detectors are applied and optimized for object detection in the thermal domain.
Researchers have benchmarked the performance of You Only Look Once (YOLOv3) [25]
with Faster-RCNN [28], Single Shot Multi-Box Detector (SSD) [29], and Cascade R-CNN [30],
or augmenting the thermal image frame with the corresponding saliency maps to provide
an attention mechanism [31] for pedestrian detection in the thermal domain using Faster-
RCNN.

Except for deep neural networks, classical image processing approaches are also
applied for thermal object detection. Miethig et al. [4] applied the histogram of oriented gra-
dients (HOG) and local binary pattern for feature extraction and trained the support vector
machine (SVM) classifiers for object detection in the thermal domain. Currently, multi-
scale transferring learning is becoming more and more outperformed. Munir et al. [32]
proposed Self Supervised Thermal Network (SSTN) to explore thermal object detection to
model a view-invariant model representation by employing the self-supervised contrastive
multi-scale encoder-decoder transformer network.

However, detectors scarcely perform well in low-visibility conditions. Considering
that the poor infrared images may cause the lack of small targets and make the detection
accuracy decrease, it is necessary to explore the detection performance of the detection
algorithm under low visibility after infrared target enhancement.
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3. Proposed Methods
3.1. Threshold Denoising Based on WTBF
3.1.1. Wavelet Coefficients Analysis

In rainy weather, the target pedestrian occupies fewer pixels, and the high-frequency
part such as noise mainly comes from the ground and umbrellas. In the rainy condition, the
wavelet transformation (WT) enhancement has a better enhancement effect on the human
target. The core of wavelet image enhancement is to decompose the image signal into
different sub-bands after using a two-dimensional wavelet transformation on the image
and to enhance or reduce the noise of the wavelet coefficients of each band.

In infrared images, visual targets are mostly present in the low-frequency part, while
noise and details are more present in the high-frequency part. In the beginning, a bilateral
filter is used to reduce the environmental noises of IR images. Then the threshold denoising
is adapted for high-frequency coefficients and nonlinear enhancement of low-frequency
coefficients. Finally, the enhanced image is reconstructed by a two-dimensional inverse
wavelet transform. The structure of wavelet transformation algorithm based on a bilateral
filter (WTBF) is shown in Figure 3.
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3.1.2. Threshold Denoising

The thresholding method can use hard and soft thresholding methods to perform
nonlinear enhancement of wavelet coefficients in a certain range to effectively suppress
noise while performing image enhancement, mainly with hard and soft thresholding
enhancement functions. The hard thresholding function is defined as follows:

W ′(x, y) =

{
W(x, y), |W(x, y)|≥ λ

0, |W(x, y)|< λ
(1)

Soft thresholding function:

W ′(x, y) =

{
[sgn(W (x, y)) ∗ (|W(x, y)|−λ)], |W(x, y)| ≥ λ

0, |W(x, y)|< λ
(2)

where W(x,y) denotes the coefficients of the image after wavelet decomposition, W′(x,y)
denotes the output coefficients after threshold filtering, λ is the selected threshold value,
N is the number of wavelet coefficients on the corresponding scale, and σ is the standard
deviation of the additional noise signal, and the selection formula is:

λ = σ
√

2ln N (3)
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3.2. Salient Components Enhancement Based on MSRFT
3.2.1. Multi-Scale Retinex Algorithm

The retinex algorithm is a part of the wavelet transform enhancement methods, which
are widely utilized and improved. When the temperature of buildings and streets is close
to living targets, it can cause false detections. The retinex algorithm is to remove the
illumination component related to environmental factors from the image and obtain the
reflection component that can reflect the essential characteristics of the object, by processing
the RGB channels separately and then synthesizing the final enhanced image. For infrared
images, it can be treated as a single-channel grayscale image, so this algorithm is also
effective for infrared images.

Single Scale Retinex (SSR) is the basic retinex algorithm. A given image can be
decomposed into the product of the reflection component Reflection and the light component
Light in the basis of the imaging process of the object.

I(x, y) = Light(x, y) × Reflection(x, y) (4)

Compared with the SSR, the multi-scale retinex algorithm (MSR) algorithm can effec-
tively avoid the limitation of the overall effect of the image and the detailed information
due to the multiple scale components used to process the image, and then the result is
obtained by weighted average. Furthermore, to improve the enhancement effect of the
image. The mathematical expression of MSR is:

IMSR(x, y) =∑s
s−1 Ws ISSR

s (x, y) (5)

where the IMSR(x,y) stands for MSR processing image, s is the scale range, Ws is the weight
of each scale, and ISSR

s (x, y) is the SSR processing image of s.

3.2.2. Light Filtering and Reflection Smoothing

The halo effects appear in areas where the brightness distribution changes drastically
after the original retinex algorithm is used [33]. To reduce the halo effects of light component
Light, a low-pass filter operator, the bilateral filter (BF) can maintain edge maintenance
robustness, which utilizes the spatial similarity and gray value similarity between the
current point and neighboring pixels, to overcome the halo phenomenon to a certain extent.
Bilateral filtering estimates the brightness of the image:

Light(x, y) =k−1(x)∑(m,n)∈w d(x, y, m, n) λ(x, y, m, n) f (x, y, m, n) (6)

k(x) =∑(m,n)∈w d(x, y, m, n) λ(x, y, m, n) (7)

d(x, y, m, n) = e−
1
2 (

m2+n2
σd

) (8)

λ(x, y, m, n) =

{
e−

1
2 (k× f (x,y))2

, | f (x, y)− f (x, y, m, n)|< k× f (x, y)

e−
1
2 (| f (x,y)− f (x,y,m,n)|×σr)

2
, otherwise

(9)

where w is the window size, σd is the distance scale, f (x,y,m,n) is the value of the pixel in the
area centered at the current point (x,y), k is the threshold, and σr is the illuminance scale.

For the problem of the dark tone of reflection component Reflection, the Gamma
function is commonly used to smoothly expand the light and shade of an image and is
defined by a power function.

Reflection(x, y) = [Reflection(x, y)]
1
γ γ ∈ [1, 10] (10)

3.2.3. Frequency-Tuned Salient Region Extraction

In this paper, the MSR algorithm is improved by adapting the frequency-tuned (FT)
saliency detection, which analyzes images from a frequency perspective and uses more
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information from the low-frequency targets with higher temperatures. Figure 4 shows
the structure of multi-scale retinex algorithm based on frequency-tuned saliency detection
(MSRFT). In the actual calculation, it uses the center-periphery operator of color features to
obtain the saliency map.

I(x, y) =‖ Iµ − Iwhc(x, y) ‖ (11)

where Iµ is the arithmetic mean of image pixels, Iwhc(x, y) is the original image after
Gaussian blur with a window of 5× 5, and ‖ ∗ ‖ is the Euclidean distance, which can be
further revised as:

I(x, y) =‖ IMSR
µ (x, y)− IMSR

whc (x, y) ‖ (12)
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3.3. Global Contrast Based Saliency Map Detection (LCHE)
3.3.1. Global Contrast Based Salient Region Extraction

In environments where image pixels are low, target pedestrians and vehicles are too
small to be distinguished from the background. Moreover, along with a lot of noise, the
saliency detection algorithm can effectively detect and extract the region of interest (ROI) of
the image. Under the condition of low resolution, it can effectively highlight the foreground
objects and weaken the background information. It analyzes and processes the image
through three salient features which are orientation, color, and illuminance, as shown in
Figure 5. The feature map is generated through the center-periphery operator, and the
three feature saliency maps are generated after merging and normalization. Finally, the
final map is obtained by using linear weighting [34].
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The global contrast-based salient region detection (LC), performs better than the RC
algorithm (region-based contrast) and HC algorithm (histogram-based contrast). This
algorithm is designed with a linear computational complexity concerning the number of
image pixels. The saliency map of an image is built upon the color contrast between image
pixels. The saliency value of a pixel in an image Ik is defined as:

S(I k) =∑n
j−1 f j ‖ Ik − Ii ‖ Ii ∈ [0, 255] (13)

Final(k) =
S(I k)− Smin

Smax − Smin
×255 (14)
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where the ‖ ∗ ‖ represents the grayscale distance metric, the f j represents the frequency of
a certain color, and the number of all colors is n, Final(k) is the final gray value.

3.3.2. Grayscale Distribution Equalization

As an important parameter of infrared images, the gray level can effectively distinguish
the foreground object and background environment of the infrared image. The equalizing
histogram (HE) adjusts the grayscale distribution of the image by increasing the grayscale
and expanding the grayscale range concerning pixels with larger grayscale density. At the
same time, it assigns fewer gray levels concerning pixels with lower grayscale density to
achieve the purpose of enhancing the image contrast.

H(k) =∑k
j=0 H(j) (0 ≤ k ≤ 255) (15)

Final′(k) =

⌊
255× H(k)

P(255)

⌋
(16)

where Final′(k) stands for the new gray value of the pixel with gray level k after equalization,
H(k) is the cumulative histogram of the image, and H(j) is the statistical histogram of
the image.

In this paper, a global contrast-based salient region detection (LC) is used to highlight
objects of interest in the foreground under prosthetic vision based on the HE algorithm,
and then Gaussian Filter is used to decrease the noise of the saliency map.

3.4. Object Detector Based on Deep Learning
3.4.1. Network Structural Improvement

As a one-stage network, (You Only Look Once) (YOLOv4) has many better properties
compared with the previous versions of YOLO. In the backbone part, the CSPDarknet53 is
selected as the backbone network to solve the problem of the large volume of calculations in
reasoning from the perspective of network structure design. For the head part, this network
applies Complete IoU loss (CIoU loss) to evaluate the performance of the detection, which
makes the bounding box more accurate and has a high object recall. For data augmentation,
the definition of Bag of Freebies in YOLOv4 (BoF) can ensure that the object detector
achieves higher robustness to the images obtained from different environments. Moreover,
in the YOLOv4 structure, the cross-stage-partial is added to Darknet-53 compared with
YOLOv3, which can gain a higher accuracy as well as a high speed [35]. The cross-stage
connection and the residual part can maintain these small-scale features, thus this paper
did not need to change the connection relationship of the original YOLOv4 structure.

3.4.2. Pre-Trained Models

In this paper, the FLIR dataset, which contains 8862 training images and 1366 testing
images with 640 × 512 pixels, and pre-trained YOLOv4 weights via MSCOCO were used to
train the initial model, model with modified active function, and model with both modified
active function and network batch size. The performance of object detectors in inclement
weather such as nighttime and rainy day is shown in Table 1. The initial parameters of the
YOLOv4′s training stage were set as follows: the activate function was the Swish activation
function; the training epoch was 120; the batch size was 64 using the Cosine Annealing
Algorithm; the initial learning rate was 10 × 10−3; the max batch was 8862; the steps
were 7090 and 7976, and the momentum was 0.9; Intersection over Union (IoU) threshold
was 0.5.

As is shown in Figure 6, the YOLOv4 network rectified of the activating function
and other parameters performed better over the other detectors such as YOLO, YOLOv2,
YOLOv3, YOLOv3-tiny, and YOLOv4-tiny [22]. Our group chose the YOLOv4 network
to detect the infrared images in this paper, which contain 215 nighttime images, 215 fog
images, 209 rain images, and 625 snow images.
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Table 1. Performance of different YOLO network detectors trained before experiments.

Version Backbone Precision Recall F1

YOLOv4 CSPDarknet53 0.82 0.82 0.82
YOLOv3 Darknet-53 0.84 0.73 0.78

YOLOv3-Tiny Darknet-53 0.72 0.60 0.66
YOLOv4-Tiny CSPDarknet53 0.81 0.57 0.67
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4. Experiments and Results
4.1. Low-Visibility Infrared Datasets

In this paper, to reflect the comparison of differences in infrared images in different
harsh environments, the Low-visibility Infrared (LVIR) datasets were selected to be acquired
according to different locations and different devices, thus illustrating the advantages
and disadvantages of infrared image enhancement algorithms. Figure 7 shows some
example images of LVIR datasets. Furthermore, our study provides a new orientation to
conduct intelligent transportation research and comprehensive infrared image enhancement
methods based on infrared features under different extreme weather conditions.

Low-visibility Infrared Datasets include:

• Datasets collected in heavy rain in this paper, a total of 209 infrared images of rainy
environments;

• Open-source datasets proposed by Miethig et al. [6], a total of 625 infrared images of
snowy environments are used in this paper due to the hardly accessible snowy scenes;

• Open-source datasets introduced from GUIDE SENSING INFRARED database, a
total of 215 infrared images each for nighttime and foggy weather. All the detailed
information of each dataset and their uses in this paper are detailed in Table 2.

Table 2. Information on the LVIR datasets and their uses in enhancement and detection phases.

Data
Source

Ambient
Temperature

Weather
Condition Resolution Enhancement

Phase Detection Phase

This paper 15 ◦C Heavy rain 640 × 512 209 100
Open source 13 ◦C Heavy fog 384 × 288 215 100
Open source 17 ◦C Nighttime 384 × 288 215 100
Open source 0 ◦C Heavy snow 875 × 700 625 100
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4.2. Performances of Improved Enhancement Methods

To improve the detection accuracy of infrared targets in low-visibility conditions
such as rainy days, the specific enhancement algorithms were readjusted to adapt to
infrared features in different environments. After the improvements of three mainstream
enhancement algorithms, infrared images of nighttime, rain, snow, and fog were enhanced
effectively, which highlights the targets and dampens the backgrounds of these images.

Compared with the classic wavelet transform, original images after bilateral filtering
show comparable performance in enhancement steps using wavelet transform. As is
shown in Figure 8, pedestrians in the rain can be better enhanced after improvement of the
bilateral filter.

Relatively, based on bilateral filtering, the retinex algorithm adjusts images with darker
tones and balances the overall brightness distribution while enhancing the proportion of
the region of interest in the image. Figure 9 shows the results of SSR, MSR, and MSRFT
algorithms. The retinex algorithm combined with FT saliency detection can highlight the
infrared target, and this improved algorithm is effective in foggy environments.

The saliency map detection (Figure 10) can effectively detect and extract the region of
interest (ROI) of the image and highlight the foreground objects and weaken the background
information. Among them, FT algorithm and LC algorithm both have better effects on
infrared target enhancement at nighttime and in snow weather, while the HC algorithm
performs otherwise. And the LC algorithm is utilized and improved in this paper.

Through experiments, first, the improved wavelet transforms (WTBF) performed well
in rainy weather, where the high-frequency coefficients and background information which
became wetted similar to umbrellas were almost weakened by threshold denoising to
enhance the infrared targets such as pedestrians; second, the improved MSR algorithm
(MSRFT) had a better performance for low-contrast and dim targets in foggy weather;
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third, the global contrast based salient region extraction (LCHE) could strongly enhance
the infrared targets at nighttime and in snowy weather.
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Figure 9. The enhancement results of SSR, MSR, and MSRFT. The first row is the results of the SSR
method of the four scenes (rain, fog, night, and snow), the second row is the results of the MSR
method, and the third row is the results of the MSRFT method.



Sensors 2022, 22, 5835 11 of 16

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

The saliency map detection (Figure 10) can effectively detect and extract the region 
of interest (ROI) of the image and highlight the foreground objects and weaken the back-
ground information. Among them, FT algorithm and LC algorithm both have better ef-
fects on infrared target enhancement at nighttime and in snow weather, while the HC 
algorithm performs otherwise. And the LC algorithm is utilized and improved in this pa-
per. 

 
Figure 10. The enhancement results of LCHE, HC, and FT. The first row is the results of the LCHE 
method of the four scenes (rain, fog, night, and snow), the second row is the results of the HC 
method, and the third row is the results of the FT method. 

Through experiments, first, the improved wavelet transforms (WTBF) performed 
well in rainy weather, where the high-frequency coefficients and background information 
which became wetted similar to umbrellas were almost weakened by threshold denoising 
to enhance the infrared targets such as pedestrians; second, the improved MSR algorithm 
(MSRFT) had a better performance for low-contrast and dim targets in foggy weather; 
third, the global contrast based salient region extraction (LCHE) could strongly enhance 
the infrared targets at nighttime and in snowy weather. 

4.3. Evaluation Indicators 
4.3.1. Peak Signal-to-Noise Ratio 

The peak signal-to-noise ratio (PSNR) is calculated in this paper to represent the ratio 
of the maximum possible power representing the signal to the destructive noise power 
that affects the accuracy of its representation, which further indicates the quality of the 
enhanced image compared with the original image. To calculate PSNR, the calculation of 
Mean Square Error (MSE) is needed. Two monochrome images I and K, if one is a noisy 
approximation of the other, then their MSE is defined as: 

MSE= 1
mn

∑ ∑ [ I(i,j) − K(i,j)]2  nି1 j=0
  mି1  i=0   (17)

RMSE= √MSE (18)

The concept of RMSE is a root mean square error, and PSNR is obtained through 
RMSE in this paper: 

Figure 10. The enhancement results of LCHE, HC, and FT. The first row is the results of the LCHE
method of the four scenes (rain, fog, night, and snow), the second row is the results of the HC method,
and the third row is the results of the FT method.

4.3. Evaluation Indicators
4.3.1. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is calculated in this paper to represent the ratio
of the maximum possible power representing the signal to the destructive noise power
that affects the accuracy of its representation, which further indicates the quality of the
enhanced image compared with the original image. To calculate PSNR, the calculation of
Mean Square Error (MSE) is needed. Two monochrome images I and K, if one is a noisy
approximation of the other, then their MSE is defined as:

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j) − K(i, j)]2 (17)

RMSE =
√

MSE (18)

The concept of RMSE is a root mean square error, and PSNR is obtained through
RMSE in this paper:

PSNR = 20× log10

(
PIXEL_MAX

RMSE

)
(19)

For monochrome or gray-level images, the PIXEL_MAX is 255.0. The evaluation rules
of PSNR are shown in Table 3:

Table 3. The evaluation rules of PSNR value.

PSNR

Value (dB) Evaluation

≥40 Excellent
30–40 Good
20–30 Worse
≤20 Unacceptable
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In this paper, the PSNR results of enhanced infrared images are calculated, and the
plot in Figure 11 shows the results of PSNR values of each condition. The “Official” means
the infrared raw images without any processing. Exceptionally rainy targets, a dash of
PSNR values in nighttime, snow, and fog scenes appear abnormal due to low-clearance
infrared objectives, and lack of edge information.
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Figure 11. The scatter plot of PSNR values in four scenes, (a) PSNR values of rain images; (b) PSNR
values of fog images; (c) PSNR values of nighttime images; (d) PSNR values of snow images. WTBF
is applied in rainy scenes, MSRFT detection is applied in the foggy scene, and LCHE is applied in
nighttime and snowy scenes.

Based on the plots, firstly, after augmenting improved LCHE, the PSNR values of
enhanced images in fog weather rarely increased due to the substantial increase in only a
small range of grayscale value of thermal images which further brought about the overall
decrease in adjacent pixel correlation when calculating SSIM. Secondly, the improved
WTBF is predominant in augmenting infrared targets in rainy weather, corresponding to
a mean PSNR(WTBF)/PSNR(WT) pair of 38.58 dB/22.20 dB. Finally, the PSNR values of
foggy infrared images increase from 42.10 dB to 42.24 dB after being augmented by MSRFT.

4.3.2. Structural Similarity Index

To measure the structural correlation between two images, the Structural Similarity
Index (SSIM) defines structural information as independent of brightness and contrast
from the perspective of image composition, reflecting the correlation between adjacent
pixels. Moreover, the correlation expresses the structural information of objects in the scene
which is calculated among the enhanced images. Distortion is modeled as a combination of
three different factors, brightness, contrast, and structure. The variables of formula (20) are
explained in Table 4.

SSIM(x, y) =

(
2µxµy + c1

)(
σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (20)
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Table 4. The definition of variables of the above SSIM formula.

Variables Definition

µx The mean of x
µy The mean of y
σ2

x The variance of x
σ2

y The variance of y
σxy The covariance of x and y

c1, c2 c1 = (k1L)2, c2 = (k2L)2

L The scale of the pixel, L = 255.0
k1, k2 k1 = 0.01, k2 = 0.03

As is indicated above in Figure 12, the SSIM value of enhanced images mostly arises,
which interprets the validity of enhanced images in structural similarity compared with
original images. Table 5 shows the mean SSIM value of fog condition dropped by 0.03,
there are compacter values of SSIM unveiled by a lower standard deviation of 0.024.
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Figure 12. The scatter plot of SSIM values in four scenes, (a) SSIM values of rain images; (b) SSIM
values of fog images; (c) SSIM values of nighttime images; (d) SSIM values of snow images. WTBF
is applied in rainy scenes, MSRFT detection is applied in the foggy scene, and LCHE is applied in
nighttime and snowy scenes.

Table 5. The mean SSIM values and standard deviation.

Low-Visibility Scenes
SSIM

Mean Standard Deviation

Rain_Official 0.21 0.008
Rain_WTBF 0.96 0.007
Fog_Official 0.64 0.026
Fog_MSRFT 0.61 0.024

Nighttime_Official 0.74 0.029
Nighttime_LCHE 0.81 0.017

Snow_Official 0.81 0.053
Snow_LCHE 0.90 0.029
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4.3.3. Target Detection Performance

To verify that the enhanced image can obtain higher detection accuracy, the article
used the detector to detect the original infrared image and the enhanced image separately.
The number of randomly selected detection images in different scenes is 100 each, which
means 100 original images and 100 enhanced images each, for a total of 800 images in four
scenes, and the detection categories are mainly cars and people.

Table 6 shows the accuracy results of detecting the original IR image and its enhanced
image with the same detector separately, where the main categories are “people” and “car”.
The “Official” is the infrared raw images without any processing. Compared with the
detection of official infrared images, the detection accuracy of “car” and “people” on rainy
days increases by 12% and 1%, respectively. Since the “people” category is already brighter
than the backgrounds of “Official” images, the improved accuracy is smaller.

Table 6. The accuracy in detection of “car” and “people” categories under four low-visibility scenes.

Low-Visibility
Scenes

Object Detector
(Backbone)

Accuracy

Car People

Rain_Official

YOLOv4 Network
(CSPDarknet53)

0.360 0.850
Rain_WTBF 0.480 0.860
Fog_Official 0.87 0.46
Fog_MSRFT / /

Nighttime_Official 0.844 /
Nighttime_LCHE 0.856 /

Snow_Official 0.870 0.760
Snow_LCHE 0.90 0.740

In the foggy environment, the results show that the enhanced image is unable to detect
“people” and “car”. One of the main reasons is that MSRFT enhances the building lights,
streetlights, and even white lane lines in the background along with the enhancement. So
that the enhanced images have overlapping lights with “people” and “car”, the detector
trained using the FLIR dataset cannot accurately distinguish the targets of enhanced fog
images.

In the night environment, “car” detection accuracy improves by 1.2%, while the night
images are mainly of expressways, so the “people” category is missing. The night image
enhanced by LCHE has more room for improvement, for example, in the detection of
long-range targets.

Finally, in the snowy environment, due to the low resolution of the Official image
itself, the foreground target brightness is enhanced and the background is darkened by the
algorithm enhancement, improving the final detection accuracy by 3% and reaching 90%
accuracy. However, there is a decrease in accuracy when detecting “people”, considering
that it may be because most of the external clothing temperature of pedestrians blends with
the environment, and the enhancement only enhances the part of the bright temperature
area, which cannot be accurately judged during “people” target detection. This slight
decrease in accuracy for “people” detection requires more research.

When performing target detection, both the size and the resolution of the input image
have an impact on the final detection result. In general, the detection effect of infrared
images after enhancement is not as high as that achieved by visible images, such as up to
99% accuracy in the field of semantic segmentation, which also indicates that there is more
room for improvement in infrared target detection.

5. Conclusions

The results show that the temperature information and pixel distribution information
of infrared images are the key factors to be considered in image enhancement algorithms.
For objective enhancement, the MSRFT methods achieve the highest PSNR value of 42.24
dB in fog weather and the WTBF methods appear steep to increase PSNR by 16.38 dB of
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rainy targets. SSIM indicates the excellence of improved enhancement methods overall.
The SSIM values are 0.96, 0.61, 0.81, and 0.90 in rain, fog, nighttime, and snow, respectively.
After detection of the target by the YOLOv4 deep learning detector, it can be concluded that
the enhanced IR images generally improve in target detection accuracy. In rainy weather,
the detection accuracy of cars and people on rainy days both increased. At nighttime,
enhanced images with some improvement in car detection reach 85.6%. In snowy weather,
the detection accuracy of cars in snowy environments is improved by 3%, which achieves
better results in the image detection field.

Moreover, the proposed WTBF enhancement method needs less time than the other
three methods and saves more computer memory usage. For object detection, compared
with the Official images, the enhanced infrared images save about 20% of detection time
with an accuracy improvement of rain, nighttime, and snow images.

In conclusion, the enhancement algorithms designed according to the image charac-
teristics can effectively improve the accuracy of the target detection, which demonstrates
the high accuracy, adaptability, and efficiency of the proposed methods. Future research
directions of this paper may include the saliency region reflected by the target temperature
difference and enhancing the color representation of this region so that the target is salient.
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