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Abstract: Currently, the importance of autonomous operating devices is rising with the increasing
number of applications that run on robotic platforms or self-driving cars. The context of social robotics
assumes that robotic platforms operate autonomously in environments where people perform their
daily activities. The ability to re-identify the same people through a sequence of images is a critical
component for meaningful human-robot interactions. Considering the quick reactions required by a
self-driving car for safety considerations, accurate real-time tracking and people trajectory prediction
are mandatory. In this paper, we introduce a real-time people re-identification system based on
a trajectory prediction method. We tackled the problem of trajectory prediction by introducing a
system that combines semantic information from the environment with social influence from the other
participants in the scene in order to predict the motion of each individual. We evaluated the system
considering two possible case studies, social robotics and autonomous driving. In the context of social
robotics, we integrated the proposed re-identification system as a module into the AMIRO framework
that is designed for social robotic applications and assistive care scenarios. We performed multiple
experiments in order to evaluate the performance of our proposed method, considering both the
trajectory prediction component and the person re-identification system. We assessed the behaviour
of our method on existing datasets and on real-time acquired data to obtain a quantitative evaluation
of the system and a qualitative analysis. We report an improvement of over 5% for the MOTA metric
when comparing our re-identification system with the existing module, on both evaluation scenarios,
social robotics and autonomous driving.

Keywords: person re-identification and tracking; trajectory prediction; computer vision; machine
learning; social robotics; pedestrian tracking

1. Introduction

The research work in the current context is allocating a lot of resources to the field
of autonomous operating devices, given its vast spectrum of applications. As recent
studies [1,2] proved that social robotics and self-driving cars may impact human lives both
economically and personally, there is an obvious increase in interest in developing systems
that can be implemented on autonomous platforms. A thorough analysis of circumstances,
adaptability to situations and environments, safe and reliable behaviours, and fast decision-
making, are a few of the capabilities that need to be investigated to obtain robust and
stable systems.

The function of a social assistive robot [3] is to assist people in their activities by
engaging in meaningful interactions. Whether we are referring to offering information,
guidance, reminders, instructions, etc., or just keeping company and maintaining a simple
conversation, a social robot must be able to correctly identify and recognise the person it
interacts with. In the context of social robotics, a person detection and re-identification
component is imperative. In order for a robot to be able to analyse and understand the
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behaviour of the people it interacts with, it must be able to precisely map and model
their positions.

A self-driving vehicle must be capable of moving safely through its surroundings
without human input. It should navigate with or without passengers between two locations.
While moving, the autonomous car must ensure the safety of all participants in the traffic:
passengers, other drivers in its proximity or nearby pedestrians. While some studies
focus on traffic understanding and decongestion [4], other research projects focus on
implementing systems with robust capabilities [5]. In order to build a stable system, a
person tracking and trajectory prediction system is required, for the vehicle to be able to
analyse and prevent risky situations.

A person re-identification system is assigning the same identifiers to the exact same
people in a temporal series of images. The characteristics of such a component are not
limited only to social robotics and self-driving car applications but can be extended to
any autonomous device. Whether we are talking about autonomous vehicles, robots,
surveillance or smart home environments, being able to detect and recognise the same
person through a sequence of images as well as distinguish between multiple individuals
is a key constituent.

The problem of person re-identification has a complex nature as the performance
of such a system can be strongly impacted by multiple factors. To design a system that
performs well in a variety of scenarios implies creating a mechanism that is able to overcome
problems such as occlusions or appearance variation. These problems arise from natural
circumstances such as people passing behind obstacles while moving, similar styles in
terms of clothing and hairstyle or interactions between individuals. To handle these types
of problems our proposed method uses additional information generated by a trajectory
prediction system.

People trajectory prediction is the ability to analyse the behaviour of a person and
deduce their future movements based on the observations. Although it may seem straight-
forward, modelling the complex process behind human behaviour is a difficult task. The
trajectories followed by the people in the environment are influenced by the movement of
the other people in the neighbourhood, obstacles in the environment and points of interest
in the scene. Trajectory prediction systems are required to integrate multiple factors in
order to obtain an accurate result.

In this paper, we introduce a real-time people re-identification system based on a
trajectory prediction method. The goal of this research is to improve a standard online
tracking technique that we use in a robotic framework by incorporating information from a
trajectory prediction system. We propose a trajectory prediction system that includes both
social influence and visual information from the scene to estimate future positions. We
validated our approach by performing multiple experiments on two possible applications:
social robotics and autonomous driving. In the context of a social robotics application,
we integrated our system in the AMIRO [6] robotics framework to improve the general
behaviour of the Pepper (https://www.softbankrobotics.com/emea/en/pepper/, accessed
on 27 July 2022) robot. The AMIRO framework is a modular platform used to program
any Robot Operating System (ROS (https://www.ros.org/, accessed on 27 July 2022))
compatible robot. In the context of an autonomous driving application, we validated our
approach on self-acquired videos to simulate a real-life scenario. We reported the results
for the re-identification component and the trajectory prediction component individually,
on existing datasets and on streams of images acquired in real-time. We presented several
examples from our experiments, scenarios where the proposed system is overcoming
complex problems while existing online tracking techniques would not obtain the same
accurate results.

2. Related Work

The problem of person tracking and re-identification is a complex problem that has
been intensively researched for a significant amount of time [7]. One of the early approaches
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for person re-identification can be traced back to 1997 [8]. Traditional methods used feature
extraction and feature matching for people re-identification, while more recent approaches
use complex systems based on neural networks for more accurate results.

Conventional person tracking and re-identification methods were divided into tracking
by feature extraction and tracking by prediction to generate the results. The systems used
simple visual descriptors such as SIFT [9] or HOG [10], alongside Kalman filters [11] to be
able to re-identify a person in a sequence of images. The systems use approaches based
on the data association methods [12–14] to assign the correct identification numbers to the
right people. Such systems are susceptible to variations and occlusions of the people, as
their representation of the information is not powerful enough.

The current approaches propose complex systems to solve the problem of people
re-identification. In research such as [15,16], the architectures integrate temporal data to
identify the people, while systems such as [17,18] perform sophisticated feature matching
for re-identification.

The general applications of people re-identification systems usually require real-time
processing. Autonomous devices need low latency information to adjust their behaviour
according to the changes in the environment. One of the popular systems for online people
tracking is DeepSort [19,20]. It combines visual information extracted using a convolutional
neural network with a simple position estimation technique. The advantage of this system
is that it can perform multi-tracking in a very short period of time. Tracktor [21] is another
system which has a satisfactory performance on online multi-tracking. The simple technique
based on a regressor of an object detector makes it suitable for simple applications that
cannot implement a training phase. The disadvantages of these techniques, especially for the
Tracktor system, is that they require a high framerate of the images.

To design a robust real-time system for the problem of person tracking and re-
identification, we connected the existing methods with a more informed trajectory predic-
tion system. We combined the advantages of the DeepSort system with the advantages of a
trajectory prediction system that integrates environmental information and social influence,
for a more powerful technique. Our proposed system overcomes the limitations concerning
small framerates, as the introduced trajectory prediction module can adjust the estimation
of trajectories based on the speed of the target.

As trajectory prediction is a valuable method that improves user experience and safety
when talking about autonomous devices, the subject is widely researched in the field of
artificial intelligence.

Some of the first systems that were introduced to approach the problem of people
trajectory prediction, such as [22,23], were generating the results only based on the indi-
vidual movement of the tracked person. The complex nature behind the movement of a
person is not only determined by the inner state of the individual, but is dependent on
the interactions with the environment or with the other participants. Taking into account
these factors, a person may adjust their trajectory to avoid a collision or to move alongside
a group.

The pioneering work conducted in Social LSTM [24] was the starting point for many
directions in the research of person trajectory prediction. The key point introduced in their
system is the integration of a social pooling layer between multiple recurrent neural net-
works that corresponded to the participants in the scene. The idea was later developed and
improved in many papers, such as [25–27], by combining different networks to increase the
precision. To model the social influence, [25] introduced a generative adversarial network
(GAN) in combination with a pooling layer, while [26] combined recurrent networks with
deep neural networks. The main disadvantage of these systems is that the predictions do
not consider environmental information, which can alter the motion of an individual.

Papers such as [28–31] moved a step forward and improved the results of previous
systems by introducing scene information into their systems. By analysing and combining
both social influences and semantic information about the scene, the movement of a person
can be better understood and modelled for more accurate results.
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More recent approaches, such as systems in [32,33], are using goal-based prediction
methods that proved to be effective for trajectory prediction. These kinds of methods are
sampling multiple possible goal candidates for a person and choosing the best fit from that
set of candidates.

Our system is built upon the more classical approaches that use recurrent neural
networks to incorporate social and environmental interactions. We use grid images to
encode the semantic information and pass the information to a generative adversarial
network with a social pooling layer to encode the social influence. The system is using
visual data to generate future positions for an individual. The previously cited papers
assume a top-down view understanding of the scene, which is not always available in
autonomous operating platform scenarios. The main advantage of our proposed method
is that the system can predict trajectories using images acquired from an eye-level point
of view. The proposed method allows dynamic environments with changes in terms of
angles and visual cues. Moreover, the system generates quick predictions, using only image
information (pixel coordinates and semantic data).

3. Proposed Method

We propose a system that tackles the problem of real-time person re-identification
and tracking by combining a standard technique for people tracking with a people tra-
jectory prediction method. The people trajectory prediction method combines the inner
behavioural data of the people with external contextual information to predict the future
possible positions of the people in the images. The information generated by the people tra-
jectory prediction method is then combined with the information generated by a standard
tracking system to generate a more precise real-time re-identification system.

3.1. People Trajectory Prediction

The goal of the people trajectory prediction system is to estimate the future trajectories
of the people based on the observed information. In our approach, the observed information
of the people includes contextual information about the participants in the scene and
the scene settings. The model we propose generates the predictions by considering a
combination between the coordinates of a person (pixels in the image) and the scene where
the coordinates were recorded:

xi = (coordx, coordy, image), (1)

The trajectory of one person consists of a sequence of tuples, coordinates and corre-
sponding images, with respect to time. The social information between participants is
encoded using an additional layer in the network.

The problem formulation behind trajectory prediction is represented by the ability to
estimate Xgt based on Xobs. Xobs represents the observed trajectory of a person, from the
moment of time 1 to o, where 1 denotes the first element of the sequence and o is the number
of the observed positions. Xgt represents the real trajectory followed by the individual, from
the moment of time o+1 to o+p, where p is the number of elements in the prediction horizon.
Our system aims to generate Xpred, an estimation of Xgt, such that the errors are minimal.

The architecture of the system consists mainly of two modules: a module for scene
understanding and a module for generating the predicted trajectory. The structure of the
architecture is shown in Figure 1. The Scene Understanding module extracts the visual data
associated with the input image, generating information about the scene, such as obstacles
or pathways, alongside the corresponding position of the person. The Trajectory Generation
module integrates the generated visual data to estimate the most plausible trajectory, based
on the scene settings, the other participants and the movement of the person.

The proposed architecture integrates three factors that can influence the trajectory of
an individual: inner behaviour, social influence and scene settings. The inner behaviour of
a person refers to the previous positions in which the person was observed. In Figure 1, the
inner behaviour is modelled by the 2D coordinates alongside the corresponding coordinates
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matrices. Social influence refers to the movement of the other participants in the scene, that
can influence the trajectory of a person, by avoiding the intersection of trajectories. In the
architecture, the social influence is encoded by a pooling layer in the Trajectory Generation
module, which transfers information between the people in the neighbourhood. The scene
settings are represented by the layout of the environment, in terms of obstacles and possible
pathways. This information is encoded by the obstacle map, which is generated based on
the segmentation mask of the input image.

Figure 1. Social–GAN with Obstacle Map architecture. The aggregated data is computed for each
person in the images.

The information associated with a person which is passed as input to the system
is composed of a mix of the coordinates representing the position of the person at each
time step, alongside the RGB images of the scene acquired at that exact time. Based on
this information, the system computes two additional pieces of information: the pixel
coordinates matrix of the person and the obstacle map of the environment.

3.1.1. Obstacle Map

The obstacle map integrates the shape of the scene in terms of obstacles and walking
areas. We use a segmentation network to determine all the object classes in the image. We
applied a ResNet50 network [34] combined with a Pyramid Pooling Module [35] to compute
the segmentation mask of the image. The ResNet50 network is a deep convolutional neural
network that uses multiple residual blocks for the accurate classification of the images.
The skip connections introduced by the residual blocks pass the information unaltered to
deeper layers to reduce the errors caused by vanishing gradients. The Pyramid Pooling
Module [35] is used to further improve the overall performance of the Resnet by adding
more information into the network, considering different scales and sub-regions from the
images. The network was trained on MIT ADE20K scene parsing dataset [36,37] as it
includes classes of objects that can be found both indoors and outdoors. As a trajectory
prediction system can be utilised in multiple scenarios, such as an indoor assistive robot
or an autonomous car, the segmentation mask should be able to detect the obstacles in all
possible areas.

As the dataset used for training the segmentation network has a large number of
classes, we simplified the segmentation mask by grouping the classes into three main classes:
obstacle, preferable walking area and possible walking area. The segmentation network
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will generate an output for an image considering only these three classes. To eliminate
the problem of different image sizes between datasets, we applied a transformation of the
image into a grid matrix. We split the segmentation mask into a fixed number of grids on
both axes, horizontally and vertically, and we assigned each grid the value of the class with
the highest number of appearances in that patch.

3.1.2. Pixel Coordinates Matrix

The pixel coordinates matrix consists of a grid representation of the position of the
person in the image, according to the obstacle map. Our method uses the coordinates
expressed in pixels to predict future trajectories. Some of the datasets integrated into the
validation phase do not contain the image positions of the people, but only include the
real-world coordinates relative to the scene (values represented in meters). To be able to
apply the proposed method to those specific datasets, we applied an extra processing step
to derive the required pixel information, based on the proportion and correlation between
real coordinates and the people in the image. We determined the size of the area that
is visible in the images by computing the values of the width and height expressed in
meters, based on the coordinates of the people that appear on the edges of the images. We
estimated the pixel coordinates considering the following formulas:

coordx = ((scenex + displacementx)/scenewidth)× imagewidth (2)

coordy = ((sceney + displacementy)/sceneheight)× imageheight (3)

The variables displacement on the axis x and y are used in the cases where the origin of
the scene, based on which the real-world coordinates are computed, is not visible in the
image, so a translation of the coordinates is required.

To have homogeneous dimensions between all the datasets used in the training phase
regardless of the size of the images, we compute a squared grid matrix for each image. We split
the original image into a fixed number of grids (horizontally and vertically) and we assign 1
for the grid where the person is located and 0 in the rest, according to the following formulas:

gridx = coordx/(imagewidth/gridsize) (4)

gridy = coordy/(imageheight/gridsize) (5)

3.1.3. Social-GAN

The Trajectory Generation module is processing the observations generated by the Scene
Understanding module, to generate the most plausible future trajectory. The observed data
consists of a sequence of consecutive obstacle maps, coordinates matrices and corresponding
coordinates, combined into a single volume input, which is passed to the Social-GAN component.

The structure of the Social-GAN component is similar to the architecture presented
in [25]. We use a generator-discriminator structure to predict the trajectory of a person. The
generator uses a pooling module placed between an encoder and a decoder to integrate
social information about the movement of the people in the neighbourhood. The social
information is represented by the coordinates of the other participants in the scene relative
to the person, encoded by a Multi-Layer Perceptron. The pooling layer exchanges this
information between all the participants in the environment. The main difference between
the system in [25] and ours is that our system predicts obstacle maps alongside the trajectory
coordinates for a person. The output of the generator includes the predicted obstacle maps
corresponding to each predicted position in the estimated trajectory, to be able to penalise
the incorrectly placed coordinates. The loss function used to train the network is obtained by
combining the errors obtained on the trajectory coordinates and the errors of the estimated
positions of the person on the predicted obstacle maps.
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3.2. Real-Time People Re-Identification and Tracking

The end goal of our system is to be able to track and re-identify people in an image
stream. The system needs to be able to recognise (re-identify) the people by associating the
same numbers to the exact same persons through a succession of images.

The architecture we propose takes as input a stream of images and predicts an identifier
number for each person detected in the image. Figure 2 presents the layout we designed
for the real-time re-identification system. The proposed architecture can be integrated into
both a robotic platform system and an autonomous vehicle as it requires only RGB data to
generate results.

Figure 2. Real-time Person Re-identification and Tracking architecture based on a People Trajectory
Prediction component.

We combined five modules for the real-time person re-identification task: object
detection, person tracking, image segmentation, trajectory prediction and data aggregation.

The object detection module generates bounding boxes representing the positions
of the people for each acquired image. There are multiple networks that obtain accurate
results for the task of object detection. In our real-time experiments, we used the YOLO
architecture [38], as it matches our performance and speed requirements. For the rest of
the experiments, we handled the pre-computed detections available inside the datasets
we used.

The person tracking module is a standard tracking technique that computes identifi-
cation numbers for each person in the images. It uses the system introduced in [19,20]. It
combines a simple technique for estimating future positions with a convolutional network
that computes deep visual features for the detected people. The module generates real-time
results for the task of re-identification.

The image segmentation and trajectory predictor modules are the constituents of
the person trajectory prediction method described in Section 3.1. The image segmentation
module computes fairly accurate results in a short span of time, necessity introduced by the
real-time requirement of the application. However, to further reduce the computation time
in real-time scenarios, the segmentation module is run in parallel with the object detector,
as shown in the architecture in Figure 2.

The trajectory prediction module generates future possible positions for the people
tracked in the images. To compute the results, it requires sequences of consecutive observed
positions of the people in the images, alongside visual data from the scene. The required
positions are determined by the bounding boxes extracted by the object detector and the
environmental information is extracted by a semantic segmentation network. In the real-
time re-identification architecture the trajectory prediction module requires additional
information to be able to generate trajectories. For the initial observed positions of the
people, the module uses the data generated by a tracking predictor, and for the rest of the
process, it completes the missing information with the previously generated results.

For each image acquired by the autonomous platform, the system computes the
identifiers and the future trajectories for the detected people. To transform trajectories into
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identification numbers, we take into consideration the current people detections (bounding
boxes) and the trajectories predicted at the previous frame. Each future trajectory generated
by the module in the previous step is associated in the current step with one of the bounding
boxes extracted by the object detector. The association is achieved by computing the
Euclidean distances between the positions of the bounding boxes and the first estimated
future position of the trajectory. If the minimum Euclidean distance is within a predefined
threshold, then that person, who is represented by the closest bounding box, is associated
with the identification number which corresponded to that particular trajectory at the
previous step. If there is a trajectory that has no corresponding bounding box, which
may be the case in which a person is occluded, then the module completes the current
information and adds as the current position of the occluded person, the estimated position
from the previously predicted trajectory. By completing the information for the occluded
people with the estimated positions, the module can still predict their future possible
positions, and when the people are no longer occluded it can re-associate their correct
previous identifier.

The data aggregation module combines the results obtained by the trajectory predic-
tion and person tracking to generate more accurate re-identification IDs for the people in
the images. Each of the two modules, trajectory prediction and person tracking, estimate
separate identification numbers for the people in the image at a moment of time. The data
aggregation module computes the final IDs based on the confidence and results of the two
modules. With every image, the trajectory predictor gains more confidence as it acquires
more information about the previous trajectories. In the case that the trajectory predictor
fails to associate feasible IDs to the detected people, the estimated IDs are exclusively the
ones obtained by the person tracking module.

4. Experiments

We tested and analysed the performance of the proposed system in various scenarios
and applications. The purpose of our project is to implement the re-identification system
on an autonomous platform, whether we talk about robots or self-driving cars. All the
executed experiments were conducted from the point of view of an autonomous platform.
The design of the architectures and the processed results were obtained considering the
real-time requirements of such an application. We presented the results considering the two
possible use cases: social robotics and self-driving vehicles. We divided the experiments
into two parts, to evaluate objectively and independently the performance of the full re-
identification system in different scenarios and the performance of the trajectory prediction
on existing datasets.

4.1. People Trajectory Prediction

We analysed the people trajectory prediction component considering the two case
studies relevant for our project, from the point of view of a robot and from a point of
view of an autonomous vehicle. The network was trained based on the corresponding
presented datasets, using observation and prediction sequences of length 8. The network
was trained for 200 epochs, using a global pooling mechanism. For both case studies, the
errors reported for one subset were obtained by training the network against the rest of
the subsets.

4.1.1. Validation in the Context of Social Robotics

The context of social robotics assumes interactions between people and robots for
meaningful interactions. The re-identification system is a key component for a robotic
platform to exhibit a precise behaviour. The information generated by the trajectory
prediction module has two objectives: one is to generate accurate tracking identification
numbers for the detected people, and one is to help the robot to be able to meet or avoid
the people in the environment.
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To obtain a more precise evaluation of our system with respect to the end goal of a
social robotics application, we used the JRDB [39] dataset. The JRDB dataset is a data col-
lection of images acquired by a robotic platform, in both indoor and outdoor environments.
It contains multiple subsets, with different scene settings, various lighting and different
numbers of participants. We chose to integrate this dataset into our evaluation because it
simulates conditions closer to the real ones. The robotic platform used to acquire images
moves through the environment and some people stop to interact with it.

Figure 3 presents an example trajectory generated based on a sequence of images
extracted from the JRDB [39] dataset. In the image, the blue dots represent the observed
trajectory of the person, the red dots represent the trajectory predicted by the system and
the green dots represent the real trajectory followed by the person. The example image
that is presented is acquired in an indoor environment, from the point of view of a robotic
platform. The person tracked in this scenario walks from the door on the left of the image
to the door on the right of the image. The trajectory predicted by our system is predicting
the correct direction, with a higher moving speed than the actual speed. Even though the
person is following the same predicted path to the right door, we can observe a higher
reduction in the speed when reaching the stairs than the one anticipated by our system.

Figure 3. Visualisation of a predicted trajectory based on previous observation in an image extracted
from the JRDB [39] dataset. The blue dotted line represents the observed positions of the person,
the green dotted line represents the real positions followed by the person, and the red dotted line
represents the future predicted positions estimated by our system.

Table 1 presents a detailed report of the results obtained by the system for the subsets
contained in the JRDB dataset. The values represent the errors obtained at the testing
phase for one subset while training the system on the rest of the subsets in the dataset. We
only considered the datasets that included 3D information about the people in the images,
besides the position of the bounding boxes. The table presents the values in pixels obtained
for two metrics, ADE, average displacement error, and FDE, final displacement error. The
metrics compute the difference between the estimated pixel coordinates and the actual
coordinates of the people in the images. The average displacement error is computed as the
average of the root mean squared error between every point in the predicted trajectory and
every point in the ground truth trajectory. The final displacement error is computed as the
Euclidian distance between the final points of the predicted trajectory and the ground truth
trajectory. The metrics were reported for predicted trajectories of length 8. Each subset was
pre-processed to simulate a frame rate of 2.5 frames per second. The size of the images
is 752 × 480 pixels. The subsets in the table are grouped into two classes, corresponding
to the two possible scene settings, indoor and outdoor. As it can be observed, there is
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no significant difference between the results of indoor and outdoor subsets. What can
be noticed is that in some subsets the values of the errors are very small, with a final
displacement error of 7 pixels, while others have a final displacement error of around
60 pixels. The difference comes from the image conditions of the subsets. For example,
in the case of the cubberly-auditorium_0 subset, the images include a lot of people that
are being tracked while the robotic platform is moving through the environment. This
particular case makes it difficult for a more accurate trajectory prediction, as the ego-motion
of the platform needs to be taken into consideration. Regardless of the type of scene,
the average error values obtained for the trajectories are small enough for a satisfactory
behaviour of the robotic platform.

The values reported in Table 1 and the example represented in Figure 3 present the errors
obtained between the estimated and ground truth trajectories as pixel positions in the images.
Classical trajectory prediction methods report the results obtained based on the real position
in the scene. To be able to position our work with respect to other existing methods, we also
included in our evaluation the two classical datasets for trajectory prediction, UCY [40] and
ETH [41]. UCY [40] and ETH [41] datasets are data collections that contain tracking data
about the people in the images as real positions in the scene, but without the pixel positions
in the images. The datasets also contain the associated images which are acquired from a
bird’s-eye point of view. As the datasets include only the information regarding the world
coordinates and associated images, they were pre-processed in order to estimate the positions
of the individuals in the images based on the world coordinates, in order to generate the grid
matrices. To have an objective comparison we considered the same two scenarios for trajectory
prediction as in previous work [25,28]: we observe 8 positions for a person and predict the
trajectory for the next 8 and 12 positions. We used the same architecture to predict the world
coordinates with the same principle of obstacle maps by estimating at each moment of time
the position of the world coordinates on the obstacle map. The results of our experiments
in relation to other systems are reported in Table 2. Each cell contains the two error values
expressed in meters for the prediction of 8 positions, respectively, 12 positions.

Even though our method is not designed to improve the world coordinates trajectories,
we performed the comparison to position and assess our method with respect to the other
existing systems in trajectory prediction. We can observe that the system obtains smaller
errors on the UCY [40] when compared to the ETH [41] dataset. The difference comes
from the results of the segmentation technique applied to the images. The segmentation
network we used is specialised in eye-level view images, and when applied to bird’s-eye
view images it is not as accurate. In particular, for the ETH dataset the results of the
segmentation technique are not as good as in the case of the UCY dataset. For the UCY
dataset, we obtain similar results to the existing techniques.
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Table 1. Values of ADE (Average Displacement Error) and FDE (Final Displacement Error) metrics
for each subset in JRDB [39] dataset.

Scene Type JRDB Subset
Pixel Coords

ADE FDE

indoor

bytes-cafe_0 22.38 36.66

clark-center_0 23.62 34.88

cubberly-
auditorium_0 42.96 65.64

forbes-cafe_0 29.75 40.44

gates-159-group-
meeting_0 32.21 52.37

gates-ai-lab_0 12.24 20.95

gates-basement-
elevators_1 42.54 69.33

huang-2_0 26.46 39.48

huang-basement_0 31.97 49.85

jordan-hall_0 32.44 48.30

nvidia-aud_0 30.53 45.81

packard-poster-
session_0 25.59 35.53

packard-poster-
session_1 7.77 13.61

packard-poster-
session_2 4.61 6.45

stlc-111_0 21.72 38.18

svl-meeting-gates-
2_0 15.22 23.62

svl-meeting-gates-
2_1 16.08 25.39

tressider_2 15.07 21.67

outdoor

clark-center_1 35.77 53.31

clark-center-
intersection_0 24.19 34.64

gates-to-clark_1 27.45 33.03

hewlett-packard-
intersection_0 10.60 20.24

huang-lane_0 21.97 40.58

memorial-court_0 29.97 36.70

meyer-green_0 29.78 49.26

tressider_0 17.23 28.76

tressider_1 9.71 16.70

Average error 23.69 36.34
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Table 2. Comparison considering ADE (Average Displacement Error) and FDE (Final Displacement
Error) metrics on UCY [40] and ETH [41] datasets on existing systems.

Metric Dataset S-LSTM S-GAN SoPhie Ours[24] [25] [28]

ADE

ZARA 1 [40] 0.27/0.47 0.21/0.34 __ /0.30 0.29/0.45

ZARA 2 [40] 0.33/0.56 0.27/0.42 __ /0.38 0.33/0.55

Students03 [40] 0.41/0.67 0.36/0.60 __ /0.54 0.96/1.05

Hotel [41] 0.49/0.79 0.48/0.72 __ /0.76 1.57/1.47

ETH [41] 0.73/1.09 0.61/0.81 __ /0.70 2.38/1.92

FDE

ZARA 1 [40] 0.56/1.00 0.42/0.69 __ /0.63 0.55/0.91

ZARA 2 [40] 0.70/1.17 0.54/0.84 __ /0.78 0.63/1.12

Students03 [40] 0.84/1.40 0.75/1.26 __ /1.24 1.60/1.91

Hotel [41] 1.01/1.76 0.95/1.61 __ /1.67 2.73/2.62

ETH [41] 1.48/2.35 1.22/1.52 __ /1.43 4.11/3.03

4.1.2. Validation in the Context of Autonomous Driving

The context of autonomous driving implies detecting pedestrians on the side of the
road and estimating their future positions. Trajectory prediction is a very important
component for a self-driving car as it needs to understand the movement of the pedestrians
to be able to safely move past them.

To have an objective evaluation of the people trajectory prediction component for
self-driving cars we used the Caltech-Pedestrians dataset [42]. Caltech-Pedestrians is
a data collection that includes 11 subsets of videos acquired from a moving car in an
urban environment at a framerate of 30 frames per second. As the trajectory prediction
needs 8 observed positions to predict the future trajectory, a high framerate is not suitable
for our system. To observe the movement of a person for less than 300 milliseconds is
not informative enough to make a reliable prediction. Consequently, we applied a pre-
processing step to simulate a lower framerate of the videos in the dataset.

Figure 4 shows an example of predicted trajectories in a sequence of images extracted
from the Caltech-Pedestrians dataset. The blue dots represent the observed trajectories of
the people, the green dots represent the real trajectories followed by the people and the red
dots the estimated trajectories. This particular example demonstrates the performance of
the system when the camera is not static. In this video, the vehicle is moving forward, and
it can be noticed that both trajectories are predicted correctly, in both directions.

Table 3 presents a more detailed view of the performance of the system in a self-
driving car context. We computed the ADE, average displacement error, and FDE, final
displacement error, for each subset included in the Caltech-Pedestrians dataset, as previ-
ously performed in Section 4.1.1. The error values are reported in pixels, for observed and
predicted trajectories of length 8.

The errors reported in Table 3 prove that there is no significant difference between the
subsets. The only FDE that has a slightly higher value compared with the rest of the subsets
is obtained for set00, but the ADE for the same subset is comparable with the other values.
The evaluation of the system obtained small errors for the trajectory prediction component,
with the highest FDE of 21.35 pixels and the smallest FDE of 7.20 pixels, considering that
the size of the images is 640 × 480 pixels. The Default split line presents the ADE and FDE
values obtained using the split point for the train-test suggested by the authors in [42]. The
recommended training subset is composed of the subsets set00 to set05 and the testing
subset consists of the subsets set06 to set10. The values do not diverge from the computed
average errors, proving that the functioning of the system is robust and reliable.
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Figure 4. Visualisation of two pedestrians predicted trajectories based on previous observation in
a sequence of images extracted from the Caltech-Pedestrians [42] dataset. The blue dotted lines
represent the observed positions of the people, the green dotted lines represent the real positions
followed by the people, and the red dotted lines represent the future predicted positions estimated
by our system.

Table 3. Values of ADE (Average Displacement Error) and FDE (Final Displacement Error) metrics
for each subset in Caltech-Pedestrians [42] dataset.

Caltech-Pedestrians Pixel Coords

Subset ADE FDE

set00 11.05 21.35

set01 7.19 13.17

set02 6.70 11.73

set03 9.68 17.79

set04 5.61 9.74

set05 7.40 13.85

set06 4.20 7.17

set07 7.03 12.82

set08 4.42 7.20

set09 7.01 13.52

set10 6.80 13.10

Average error 7.00 12.85

Default split [42] 6.29 11.78

4.2. People Re-Identification and Tracking

The real-time people re-identification and tracking component is evaluated on the
same case studies relevant for our project, social robotics and autonomous driving. Parts of
the information presented in Section 4.2.1, namely processing time, experiments settings,
and missing information approach, are also applicable for Section 4.2.2. The evaluation of
this component is also performed on an additional use case, considering images acquired
from a bird-eye view angle, to demonstrate the generalisation of the solution.
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4.2.1. Validation in the Context of Social Robotics

To evaluate the results considering a social robotics application, we integrated the
system into the AMIRO framework [6], a platform for operating robots in the context of
social robotics, with the goal of improving the performance of the general behaviour of the
Pepper robot. The basis of our integration was performed considering the architecture of
the framework presented in Figure 5.

Figure 5. Architecture of the AMIRO framework for Social Robotics [6]. The green boxes correspond
to cloud-egde components, the orange boxes correspond to cloud services, while the blue boxes
represent the modules running on the robot.

The architecture of the AMIRO framework, as presented in Figure 5, is built as a
composition of independent modules which operate in parallel. The data generated by
each main component is processed independently and then sent to the Planning module.
Our proposed system is integrated inside the Vision component of the AMIRO framework
and is generating identification numbers associated to each person in an image. The aim of
our system is to re-identify the people in a sequence of images, by associating the same
numbers to the exact same persons. The re-identification by identifier of a person is more
reliable than recognition by face, as it does not require face visibility and recognition
during the full interaction. The improvement of the re-identification component should
considerably improve the general behaviour of the robot, considering sub-modules such as
activity recognition or object finding.

Considering Figure 2, the integration inside the AMIRO framework is straightforward.
The images passed to our proposed system are acquired from the robot by the Image
Acquisition module. We use the existing detection module inside the Vision component
to compute the bounding boxes of the people, and we associate each bounding box an
identification number generated by our proposed system. The rest of functionalities of
the AMIRO framework continue to operate in the same manner, with the improvement of
recognising the people by identification number.
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One of the objectives of our project is to improve the robustness of the behaviour of
the Pepper robot in the context of social robotics applications. One of our goals is to design
a robust architecture that can successfully tackle the challenges of ambient assisted living.
We intend to use the Pepper robot in the kind of applications where the environment is not
very crowded, in such a manner that the robot can focus its attention on one person at a
time, for meaningful interactions. The robot may interact with a person at home or can
also function as an information point or a guide in a museum. Considering the possible
scenarios for such a robot, we evaluated the proposed tracking and re-identification system
in real-time by reproducing the same potential conditions. We analysed the results obtained
by the system in different environment settings. The system was tested both in indoor and
outdoor environments, with one or multiple people in the images.

The experiments we performed tested various scenarios that can appear while a
robot tracks a person. The scenarios vary in terms of environmental conditions, such as
background, light, distance or obstacles that may cause full or partial occlusions, but also
in terms of movement of the people, such as interactions, occlusions by movement, sudden
change in the movement of the people.

Both the standard tracking and our trajectory prediction-based tracking handle simple
circumstances well, with no switch of the identifiers for the tracked people. The situations
that involve no occlusions or no change in the visual appearance of the people are not
difficult to manage by both systems. However, the current tracking system used in the
AMIRO framework exhibits problems when a person is occluded for a number of frames,
or the visual cues are changing. Figures 6–9 are examples of situations where the standard
tracking technique is not performing as expected. In all four figures, the blue rectangles
represent the bounding boxes of the detected people generated by the object detector
module, the yellow number above a bounding box represents the re-identification number
associated by the standard tracking technique to a person and the red number inside a
bounding box represents the re-identification number associated with the proposed system.
Every reported frame also contains the expected future trajectories for the people that were
observed for a minimum number of positions. The figures contain only a subset with the
relevant images from the full experiment.

Figure 6 shows an example of a person that is being fully occluded for multiple
consecutive frames. The person is moving from the left of the image to the right while
passing behind an obstacle. The person, who initially is identified as p1 by the standard
tracking system, is switched to p2 when re-detected after the missing frames. Our system
corrects this behaviour and assigns the same identifier p1 despite the missing detections.
The predicted trajectory associated with the person before the occlusion, which is shown
in the second image of Figure 6, was estimated that p1 will go straight and will pass
the obstacles. When the person was re-detected, as the detection matched the estimated
position at the correct time, it was assigned the same identification number.

Figure 6. Person re-identification based on trajectory prediction in the case of a person being fully
occluded for a sequence of images. The yellow ID represents the identification number estimated by
the standard tracking technique, and the red ID represents the one generated by our system.

Figure 7 presents a scenario where a person is going to a particular location then
changes the direction and returns to the initial position. This scenario produces sudden
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changes in the trajectory followed by the tracked person and in the visual information
extracted from the person. In this scenario, the person, who is going to the plant on the
right of the image and then returns, is initially assigned the identification number p9. The
standard tracking technique switches to p10 when the person stops moving and leans
towards the plant, and switches again to p11 when the person rotates and faces the camera.
Our proposed system overcomes these problems and keeps the same initial identifier, p9,
for the whole sequence of images. The images also present the predicted future trajectories
during the experiment, for a better understanding of how they dynamically adapt.

Figure 7. Person re-identification based on trajectory prediction in the case of a person changing
the initial direction. The yellow ID represents the identification number estimated by the standard
tracking technique, and the red ID represents the one generated by our system.

Figures 8 and 9 present images from experiments we performed with multiple people
in the images. In the images, as the people are moving considerably, there are occlusions
and variations in trajectories and appearance.

Figure 8 is an example of an experiment with four tracked people. The people p3, p11,
who are in the back of the image, and p5 are initially tracked correctly by the standard
tracking system. When target p11 is no longer visible as it is being occluded by p5, the
tracking system is switching the identifier for p3 to p11. When p11 becomes visible again,
the identifier for p3 switches to the initial value of p3, p5 switches to p11 and p11 is assigned
a new identifier, which is p16. Moreover, the baby in the cart, which initially is assigned the
identifier p14, is switched to p17 while moving to the right of the image. The performance
of the tracking system in this scenario would extremely impact the performance of a robotic
system, as it would not be able to focus on a person properly. Our trajectory prediction-
based system correctly re-identifies all the people in the scenario, regardless of being
occluded or not. As the trajectory for target p11 was estimating that it will move towards
the initial position of p5 after a number of frames, when it was re-detected, it was correctly
re-assigned the same identification number. The predicted future trajectories for p3, p5 and
p14 offered the system the information needed to maintain the right identification numbers
for the people during the experiment.

Figure 8. Person re-identification based on trajectory prediction in the case of people overlapping.
The yellow ID represents the identification number estimated by the standard tracking technique,
and the red ID represents the one generated by our system.
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Figure 9. Person re-identification based on trajectory prediction in the case of people overlapping
and occlusions generated by the environment. The yellow ID represents the label estimated by the
standard tracking technique, and the red ID represents the one generated by our system.

Figure 9 presents another example of multi-tracking. This particular example presents
how the system performs for a longer and more complex scenario. Person p4 is walking
towards the left of the image, after avoiding a tree. While p4 is following this route, a group
of people is passing in front of the camera covering p4 for a number of frames. In this
scenario, p4 is occluded by both an obstacle and other participants in the environment. The
standard tracking system is initially assigning the correct identification number when inter-
secting with p3, but after being occluded for multiple frames, the system switches the ID to
p15. Moreover, we can observe that person p3 is changed to p5 after intersecting with p4.
Our proposed system correctly tracks both p3 and p4, given the predicted trajectories. This
example also shows how the trajectories of the people are adapting with every detection,
from initially going towards the centre of the image for person p4, to then adjusting the
trajectory towards the left of the image.

The accuracy of the full re-identification component is strongly dependent on the other
components of the AMIRO framework: image acquisition, object detection, tracking. The
Pepper robotic platform we use provides images at a resolution of 640 × 480 with a varying
framerate. To have a more objective assessment of the performance of the system we used the
MOT17 [43] dataset to compute [44] several tracking metrics. The MOT17 dataset contains
images acquired from an eye-level point of view in multiple environments, both indoor and
outdoor. We used this dataset as it is the most referable when talking about people tracking. The
metrics we computed are MOTA (Multiple Object Tracking Accuracy) [45], IDF1 (Identification
F1) [46] and HOTA (Higher Order Tracking Accuracy) [47]. Table 4 reports the tracking values
obtained based on the available detections files computed using the SDP [48] network. The
proposed system obtains a higher value for the MOTA metric and similar values for IDF and
HOTA. These values were obtained by using a trajectory prediction model trained on the
JRDB dataset. The JRDB dataset was pre-processed to simulate a framerate of 2.5 frames per
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second, to match the framerate of our robot. If trained on the MOT17 dataset, using the correct
framerate as the subsets in MOT17, we expect the results to be better.

Table 4. Tracking metrics values for the trajectory-based re-identification system on MOT17 dataset [43].

Metric Standard Tracking Proposed System

MOTA [45] (%) 55.05 61.04

IDF1 [46] (%) 55.62 52.24

HOTA [47] (%) 45.57 43.79

Table 5 presents the mean processing time of the system considering a different number
of tracked people. The time is measured from the moment when the trajectory prediction
module receives the input until the moment the data aggregation module generates the
result. As it can be observed, the system obtains similar speed values regardless of the
number of people being tracked. This proves that the system can perform multi-tracking
in the same processing time as it would require for single-person tracking. Moreover, the
processing time is reasonably small, making it suitable for real-time applications.

Table 5. Mean processing time of the trajectory-based re-identification system considering different
numbers of tracked people.

Number of Tracked People Proposed System (Milliseconds)

1 102.06

2 106.55

3 106.63

4+ 108.22

All the experiments we performed used trajectory predictions of eight future positions.
We decided upon this constant by taking into consideration the framerate of the Pepper
robot and the observations we made on how often people change the apparent trajectory.
The network we trained and integrated into the AMIRO framework predicts trajectories
based on observations of length 8. Considering that the Pepper robot integrated into our
AMIRO framework has a smaller framerate, to be able to estimate trajectories quickly
we decided to initially simulate the observed trajectory of a person starting from three
observed positions. When a person is observed for three consecutive frames, we fill the
rest of the missing data with the first detected position, creating a trajectory that stays on
the same first observed position for six frames, then goes to the direction represented by
the last two observed positions. As the system receives more and more data, for every
detection received by the system for a person, one of the simulated positions is removed.
Using this mechanism, the system can generate trajectories faster and it does not require
waiting for eight consecutive detections for the same person to generate a trajectory. The
reported results include the speed-up technique.

The system tackles the problem of missing continuous observations by using the
positions of previously predicted trajectories. If a person that was being tracked is not
detected in a frame, it is assumed that the person is occluded and that the current position
of the person is coinciding with the first position of the predicted trajectory. This method
allows the system to complete the information for eight missing frames which correspond
to the eight predicted future positions. If the person is not re-identified during eight
frames, then the information associated with that person is removed. We added several
videos (https://drive.google.com/drive/folders/1jjOmzQQH2n5AlPhdXTYohvkoNgSh3
Kun?usp=sharing, accessed on 27 July 2022) to prove the performance of our system.

https://drive.google.com/drive/folders/1jjOmzQQH2n5AlPhdXTYohvkoNgSh3Kun?usp=sharing
https://drive.google.com/drive/folders/1jjOmzQQH2n5AlPhdXTYohvkoNgSh3Kun?usp=sharing
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4.2.2. Validation in the Context of Autonomous Driving

Re-identification and tracking in the context of autonomous driving is a more chal-
lenging problem than in the context of social robotics. To be able to correctly re-identify
a person through a succession of images, the system requires a model that can encode
camera movement, scale variation and multiple occlusions. The movement of the camera is
an important constraint in the problem of re-identification, as it implies not only changes
in the angle views, but also fluctuations in the speed of movement. The fluctuations that
appear in terms of movement speed can significantly influence the physical appearance
of a person when considering scaling or observed positions. These limitations are not a
relevant factor in the context of social robotics, as usually, the robots move slowly through
the environment for safety reasons.

The experiments we performed proved that the standard tracking system is very
susceptible to errors when tested on videos acquired from a moving car. The tracking
system has an acceptable performance in situations where the car moves very slowly and
the pedestrians are close to the camera. However, there are a lot of identity switches
when the car moves at a normal speed, or the pedestrians are at a greater distance, or
the car is turning and is changing the angle view of the camera. Figures 10–12 are three
examples extracted from our experiments to demonstrate the performance improvement of
our system.

Figure 10 presents a scenario where the vehicle turns right and the pedestrians cross
the street in front of the car. The vehicle has a normal speed while moving, so the vehicle
makes a fast approach to the pedestrians. As the car advances rapidly in the direction
of the target, the standard tracking system switches the identification number associated
with the detected pedestrian from p4 to p7 between the first and the second image. This
problem appears as a result of the small size of the detection and the fast increase in
scale. Our system correctly predicts that the detected person is the same one as in the first
image. Moreover, in the third image, it can be noticed that our system maintains the same
identification number for the person even after being occluded by the street light pole and
after the change of the camera angle. We can observe that between the second and third
image the standard tracking identifier changed from p7 to p20.

Figure 10. Person re-identification results in a scenario where the car is moving right and the
pedestrians are crossing the street. The yellow ID represents the identification number estimated by
the standard tracking technique, and the red ID represents the one generated by our system.

Figure 11 is an example of a situation where the vehicle is moving to the left and the
pedestrians are walking in two different directions on the sidewalk. In the initial image, we
can observe the two pedestrians p4 and p2 going to the left and, respectively, to the right of
the image. As the car is approaching the pedestrians and is turning left, pedestrian p2 is
wrongly re-identified in the second image by the standard tracking technique to p11, while
our proposed system correctly assigns the same identifier. In the third image pedestrian p4
is tracked correctly by our system and incorrectly by the standard system. The limitations
in terms of scaling and angles of the standard tracking technique are overcome by our
proposed method. What we can observe in this example is the way the trajectory predictor
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adapts depending on the movement of the vehicle. In the first image, the trajectory of
the pedestrian p4 is indicating that the pedestrian will move to the left of the image. The
trajectory in the first image is generated based on observations made while the vehicle
was moving straight. As the vehicle starts to turn left, in the second image the predictor
combines the movement of the camera with the movement of the person and estimates
that the position in the image of the person will remain the same. In the third image, we
can observe that the predicted trajectory implies that the position of the pedestrian will be
shifted to the right of the image, as the speed of the vehicle is higher than the speed of the
pedestrian. The predicted trajectory correctly estimates the future positions of the person
in the image, taking into consideration the movement of both vehicle and pedestrian.

Figure 11. Person re-identification results in a scenario where the car is turning left and the pedestrians
move on the sidewalk. The yellow ID represents the identification number estimated by the standard
tracking technique, and the red ID represents the one generated by our system.

Figure 12 presents the results of an experiment where the car is moving slower and
is following a straight direction. The characteristic of this experiment is that the vehicle
is moving slowly until the pedestrian crosses the street, then it starts to accelerate. As the
pedestrians p76 and p77 are relatively close to the camera and there is no substantial move-
ment of the vehicle, the standard tracking technique correctly re-identifies the pedestrians.
When the pedestrians come in proximity to one another and the car starts moving a bit
faster, which is the case in the third image, both people are assigned different identification
numbers by the standard tracking method. Our proposed system is correctly re-identifying
both pedestrians, maintaining their same identification numbers, with no identity switches.

Figure 12. Person re-identification results in a scenario where the car is moving straight and the
pedestrians are in front of the car. The yellow ID represents the identification number estimated by
the standard tracking technique, and the red ID represents the one generated by our system.

To also have a legitimate testing phase based on standard tracking metrics, we com-
puted the MOTA [45], IDF1 [46] and HOTA [47] values to prove the improvement of our
system. We reported the metrics on the Caltech-Pedestrians dataset [42] using the same
computation technique [44] used in Section 4.2.1. We generated both the ground truth
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data and the testing data based on the same bounding boxes extracted from the dataset, so
the values of the metrics are strictly determined by the identification numbers assigned
to the detections. The obtained values are reported in Table 6. The model uses the people
trajectory predictor trained on the subsets s00 to s05 and is tested on the subsets s06 to s10.
The dataset was pre-processed to simulate a lower framerate of 6 frames per second, for a
more informed trajectory prediction.

Table 6. Tracking metrics values for the trajectory-based re-identification system on Caltech-
Pedestrians dataset [42].

Metric Standard Tracking Proposed System

MOTA [45] (%) 89.22 94.92

IDF1 [46] (%) 78.36 90.10

HOTA [47] (%) 78.96 89.15

The values reported in Table 6 demonstrate a significant improvement in our system
when compared with the existing tracking technique. Our proposed system obtains greater
values for all three metrics. This result is due to the complex nature of the people re-
identification and tracking problem in the context of autonomous driving. In the case
of autonomous driving, there are more complex factors that can impact the behaviour
of the system than compared with the case of social robotics. To be able to have robust
and reliable performance, the system needs to integrate changes in speed and direction of
the camera, alongside appearance variations, such as scale and occlusions. While these
elements are harder to predict by the standard tracking technique, our proposed system
overcomes a considerable number of limitations and displays a satisfactory performance.
The integration of a people trajectory prediction into the re-identification system produces
a more informed and stable system.

4.2.3. Validation in Bird’s-Eye View Scenarios

The previously presented scenarios assume that images are acquired from an eye-level
point of view. Both a robotic platform and an autonomous vehicle would have the cameras
placed to acquire images seen in perspective. The proposed system for person re-identification
and tracking is also applicable for images acquired from a bird-eye point of view. Figure 13
shows an example of the performance of the re-identification system when applied to images
captured from a bird’s-eye point of view, in both indoor and outdoor environments.

In Figure 13, the left image presents the result on an outdoor scene, while the right
image presents the result on an indoor scene. The red dotted lines represent the predicted
trajectories for each person in the image, after observing their previous positions. The
advantage of processing images collected from a top view angle is that the people do
not overlap while moving, so there are less occlusions and fewer cases of missing data.
Moreover, the trajectory prediction system can have a more precise view of the interactions
between the participants in the environment, manifesting better modelling of the behaviour
of the people. In the right image of Figure 13 it can be noticed how the trajectories of person
p29 and p31 are slightly curved, due to the social influence between the participants. This
kind of performance of the trajectory prediction system would considerably improve the
general functioning of the re-identification system when applied to bird’s-eye view images.
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Figure 13. Person re-identification based on trajectory prediction in indoor and outdoor environments
from a bird’s-eye point of view. The yellow ID represents the identification number estimated by the
standard tracking technique, and the red ID represents the one generated by our system.

This validation scenario alongside the scenarios with social robotics and autonomous
driving proves that the system can be utilised in a variety of applications. The system can
be generalised and applied to any autonomous device. Moreover, the property of being
suitable even for bird’s-eye view scenarios is important for applications where there are
multiple streams of images coming from different angles. The information processed by
the proposed system and combined from all the view angles should generate a stable and
reliable people re-identification and tracking system.

5. Conclusions

The problem of person re-identification and tracking is a complex problem with large
applicability in various domains. Autonomous devices rely on accurate results for safe and sta-
ble performance. In particular, social robots and self-driving cars depend on the performance
of such a system for meaningful human-robot interactions and harmless navigation.

The person re-identification and tracking problem consists of the ability of a system to
correctly recognise the same people over time in a sequence of images. For better results,
tracking systems incorporate trajectory prediction methods to estimate the movement
of the people. Trajectory prediction implies modelling the movement of an individual
and predicting their next steps based on previous observations. The model behind the
movement of a person needs to blend three pieces of information in order to obtain accurate
results: the inner state of the person, social influence and scene understanding.

In this paper, we introduced a system for real-time people re-identification based on
trajectory prediction. We designed a modular architecture for the re-identification part,
composed of an object detector, a segmentation network, a person tracker and a trajectory
predictor. For the trajectory predictor, we introduced a method that generates an image
trajectory based on visual data and image coordinates. The semantic visual information
associated with the scene is extracted using a semantic segmentation network. We use
grid images to represent the movement of the individuals through the environment and
the scene configuration. We pass the grids and the observed coordinates of the people to
a generative adversarial network that incorporates a social pooling layer to generate the
predicted trajectory.

The trajectory prediction system we introduced has two purposes: to improve the
performance of a re-identification system and to anticipate the movement of the people,
information that will help the autonomous platform to avoid collisions and safely navigate
to a specific target. Our approach improves the capacity of re-identification as compared to
other similar approaches by giving more reliable predictions. During the evaluation phase,
the values obtained for the MOTA metric, for both social robotics and autonomous driving
cases, demonstrate an improvement of over 5%.
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We evaluated our approach individually for the introduced systems, people re-
identification system and trajectory prediction component. We evaluated the performance
of the systems on relevant existing datasets, with images acquired from the point of view
of an autonomous platform, and on self-acquired data. We validated our approach in two
different contexts: social robotics and autonomous driving. We integrated our work into the
AMIRO robotic framework to validate our approach by improving the overall behaviour
of a Pepper robot. In addition, we presented the applicability of the proposed system to
scenarios where the images are acquired from a bird’s-eye point of view. The three settings
that we used to verify our approach prove their suitableness for a variety of applications.
We illustrated several scenarios from our experiments to demonstrate the behaviour of
the proposed system. The presented method obtains more reliable re-identifications of
the detected people, in more complex situations, overcoming problems such as occlusions,
missing data or movement of the camera.

The proposed system deals with occlusions and missing detections by using the
estimated motion of the people. The system can match one person that was not detected in
a sequence of images by associating the estimated future position with the later detection.
The system can integrate dynamic environments through the visual information about the
scene, as the segmentation mask is computed for every input image. The continuously
processed information also helps in the cases of moving cameras, as the system adjusts
the trajectories based more on the recent data. The scaling problem is handled by the
2D coordinates representation of the people. Regardless of the size of the bounding box,
the person is encoded by the center of the bounding box, making the system invariable
to detection sizes. This approach, however, can present some problems with unstable
people positions, considering the situations when the bounding boxes are not consistent
and significantly vary in terms of detected area.

In the future, we are going to improve our work by including the influence of all
the moving objects in the images, such as cars or animals. We further intend to extend
the semantic information passed to the system, to include more relevant data, for more
accurate re-identifications.
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