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Abstract: Underwater ghost imaging based on deep learning can effectively reduce the influence
of forward scattering and back scattering of water. With the help of data-driven methods, high-
quality results can be reconstructed. However, the training of the underwater ghost imaging requires
enormous paired underwater datasets, which are difficult to obtain directly. Although the Cycle-
GAN method solves the problem to some extent, the blurring degree of the fuzzy class of the paired
underwater datasets generated by Cycle-GAN is relatively unitary. To solve this problem, a few-shot
underwater image generative network method is proposed. Utilizing the proposed few-shot learning
image generative method, the generated paired underwater datasets are better than those obtained by
the Cycle-GAN method, especially under the condition of few real underwater datasets. In addition,
to reconstruct high-quality results, an underwater deblurring ghost imaging method is proposed.
The reconstruction method consists of two parts: reconstruction and deblurring. The experimental
and simulation results show that the proposed reconstruction method has better performance in
deblurring at a low sampling rate, compared with existing underwater ghost imaging methods based
on deep learning. The proposed reconstruction method can effectively increase the clarity degree of
the underwater reconstruction target at a low sampling rate and promotes the further applications of
underwater ghost imaging.

Keywords: few-shot learning; underwater deblurring ghost imaging; paired underwater datasets;
low sampling rate

1. Introduction

The mainstream technology of underwater imaging is sonar imaging based on acous-
tic waves. However, due to the long wavelength of an acoustic wave, sonar imaging has
difficulty overcoming the gap of the multipath effect and low imaging resolution, which
limits the development of sonar imaging in the field of underwater target imaging. Due to
high imaging resolution, underwater active optical imaging [1] has become an important
technology for underwater imaging. With the development of underwater active opti-
cal imaging, more and more underwater active optical imaging approaches have been
proposed to improve the quality of the underwater imaging and decrease the noise of
reconstructed results at a low sampling rate. In order to reduce the backscattering, po-
larimetric imaging technology [2,3] was developed by Liu, F. et al. to solve the problem.
However, it also blocks some of the light that hints the detector, which decreases the quality
of the underwater imaging results. Range-gated imaging technology [4] was developed by
Mariani et al. to eliminate the backscattering effect. However, due to the high complexity
of underwater environments, the reconstructed results based on conventional underwater
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imaging technology are facing low contrast, fuzzy details, information loss, color distor-
tion, and many other problems. It has become a research focus of underwater vision and
underwater image processing to improve the quality of underwater imaging.

Recently, ghost imaging (GI) [5] has attracted much more attention. Compared to
the traditional underwater imaging technology including polarimetric imaging and range-
gated imaging, GI technology has the advantages of long imaging distance, high resolution,
high detection efficiency, low noise, strong anti-interference ability, easy integration, and
miniaturization. GI was first proposed by Pittman et al. in 1995 with entangled photon
pairs [6]. Since then, GI has been a popular topic in many fields, such as remote sensing [7],
fluorescence imaging [8], terahertz imaging [9], lidar [10], etc. In 2008, Shapiro proposed
the computational GI scheme with a single path [11], where the reference path is removed.
Since then, more and more GI improvement schemes have been applied, such as iterative
denoising GI [12], scalar matrix structure with GI [13], differential GI [14], and Hadamard
GI [15].

However, enormous measurements are needed to reconstruct an image with high qual-
ity, which will increase the time of sampling and decrease the efficiency of the experiment.
In order to solve the issue, more and more highly effective reconstruction methods are being
developed. Compressive Sensing Ghost Imaging (CSGI) [16,17] has been demonstrated
to be a useful method to solve the issue. CSGI can reconstruct images with high quality
and intensity at a low sampling rate by utilizing the sparse characteristics of the image in
the orthogonal variable domain. Owing to these improvements, CSGI has been used to
reconstruct underwater objects. However, CSGI demands a long time to reconstruct an
underwater image [18]. In addition, the underwater image reconstruction by compressed
sensing needs a lot of computing resources, which also leads to poor real-time data process-
ing in practical applications. Although CSGI can achieve the purpose of a low sampling rate
to a certain extent, enormous measurements are still required to reconstruct high-quality
images. Therefore, the contradiction between the number of measurements and image
quality is still very large.

Deep learning, which has become popular in machine vision, has been used in the
field of image reconstruction. In recent years, more and more methods have applied deep
learning in GI [19–25] to reconstruct high-quality results at low sampling rates. In early
studies, the input image of the GI based on deep learning was obtained by conventional
GI. In 2019, Wang et al. proposed a neural network for CGI [22] which reconstructs the
target image directly from the one-dimensional signal collected by the bucket detector [26].
Compared to previous methods, deep learning algorithms are more efficient and require
fewer measurements for reconstruction. Based on these, more and more people applied
deep learning in underwater ghost imaging [27].

However, in order to reconstruct high-quality results, the training of the underwater
ghost imaging requires enormous paired underwater datasets, but it is difficult to obtain
paired underwater datasets directly. Although the Cycle-GAN method can solve the
problem of dataset mismatch to some extent, there exist two problems. (1) The training
of Cycle-GAN requires a huge amount of underwater blurring data. (2) The blurring
degree of the fuzzy class of the paired underwater datasets generated by the Cycle-GAN is
unitary. Due to the disadvantages of Cycle-GAN, it cannot meet the training requirements
of the reconstructed network. In order to solve these problems, the few-shot underwater
image generative network (FUIGN) method based on the FUNIT method is proposed in
this study. The FUIGN method can generate a paired “Clear-Fuzzy” dataset under the
condition that the number of real underwater fuzzy datasets is relatively small. Specifically,
the proposed FUIGN is trained with the asymmetric underwater dataset, which contains
15,000 underwater clear images and 1500 underwater fuzzy images. In addition, one part of
the training datasets was collected by a web crawler and the other part was collected from
ImageNet [28]. The number of fuzzy images is rather smaller than that of clear images,
which is a common problem of few-shot image to image translation. Meanwhile, in the
generated paired dataset, a clear image is corresponding to a large number of fuzzy images
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with different blurring degrees. Therefore, the fuzzy degree diversity of the generated
images is high, which is convenient for the reconstructed network to learn how to remove
various fuzzy features. It is helpful to utilize the paired underwater datasets generated by
the proposed method to train the network model to improve the generalization ability of
the reconstructed network model. The simulation results show that the paired underwater
datasets generated by FUIGN are better than those by the Cycle-GAN method, which meets
the training requirements of the reconstructed network.

To reconstruct results with a high clarity degree, an underwater deblurring ghost
imaging based on few-shot (UDGI-FS) at a low sampling rate is proposed to increase the
clarity degree of the underwater imaging. The UDGI-FS consists of two parts: reconstruc-
tion and deblurring. The reconstruction adopts the underwater ghost imaging based on
deep learning (UGI-DL) to reconstruct the underwater image, and the deblurring adopts
the G(F)

B2A generator of FUIGN to decrease the blurring degree of the reconstructed results of
the UGI-DL method. The generator of UGI-DL adopts a modified U-Net with res-net block
and double skip connections. The attention gate is added in each skip connection. The
input of the generator of UGI-DL is a 1D signal recorded by the bucket detector and the
output of the generator is the reconstructed underwater image. Then, the G(F)

B2A of FUIGN
is used to further decrease the blurring degree of the output of the generator of UGI-DL.
Simulation and experimental results demonstrate that the reconstructed underwater results
by the UDGI-FS method trained with the paired underwater datasets have a high clarity
degree and high generation ability. The proposed UGI-FS is suitable for the reconstruction
of an underwater image.

In general, the contribution of this work is mainly in three aspects:

(1) The FUIGN method is proposed to obtain paired underwater datasets whose fuzzy
class contains underwater images with different blurring degrees. Training FUIGN
requires only the asymmetric underwater dataset, which reduces the amount of real
underwater fuzzy data.

(2) The UDGI-FS method is proposed to obtain reconstructed underwater results with
high quality. The reconstruction method consists of two parts: UGI-DL used to
reconstruct the underwater image and the G(F)

B2A used to decrease the blurring degree
of the output of UGI-DL. The generator of UGI-DL adopts a modified U-Net with
res-net block and double skip connections, and the attention gate is added in each
skip connection. The G(F)

B2A is the generator of FUIGN.
(3) Simulation and experimental results demonstrate that the paired underwater datasets

generated by FUIGN are better than those of the Cycle-GAN method, which meets
the training requirements of the UDGI-FS. In addition, the reconstructed underwater
results generated by the UDGI-FS method at a low sampling rate have a high clarity
degree, which indicates that the proposed UGI-FS is suitable for the reconstruction of
an underwater image.

2. Method
2.1. UDGI-FS Imaging Scheme

Figure 1 shows the UDGI-FS system scheme. The light source emits the light to the
beam expander which can expand the light. Then, the spatial distribution of the light is
modulated by the spatial light modulator (SLM) [29] according to the pre-programmed
random speckle modulation modes, which are in the form of a 128 × 128 matrix. The
modulated laser emits on the target in the sink. The reflected laser is collected by a bucket
detector to measure the transmission intensity of each pattern. Then, the corresponding
light intensity is collected by the data acquisition system (DAS) and sent to the computer
via USB for reconstruction.
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Figure 1. Schematic of UDGI-FS system.

2.2. Theory and Forward Imaging Model

In the paper, the simulated underwater object is a two-dimensional image. The
reflectivity distribution of the object can be expressed as T (x, y), where (x, y) are the pixel
coordinates. The random speckle which is illuminated on the object can be denoted by
Im. The reflected light is focused on the bucket detector. Hence, the mth measurement of
bucket detector can be written as:

Sm = ∑
(x,y)

T(x, y)Im(x, y). (1)

According to the GI theory, the underwater object image T (x, y) can be restored by
a second-order intensity fluctuation correlation of the total light intensity with random
speckle patterns. Therefore, the reconstructed object image T′ (x, y) can be written as:

T′(x, y) =< Sm Im > − < Sm >< Im > . (2)

where < > denotes an assemble average.
The proposed method UDGI-FS trained by the paired underwater datasets is used to

reconstruct the underwater object image. Its reconstruction process can be expressed as:

x∗ = DL{y}. (3)

where DL{.} represents the trained neural network. The y and x* are the input and output of
the DL{.}, respectively. The paired underwater datasets are used to train the neural network
DL{.}. The network structure can be written as:

DLlearn = argmin
DLθ ,θ∈Θ

J

∑
j=1

L
(

x(j), DLθ

{
y(j)
})

+ ϕ(θ). (4)

where the x(j) and y(j) are the target image and the M one-dimensional measurements,
respectively, L(.) is the loss function, J is the total number of the dataset, and Θ is the set
of all possible parameters of the neural network. The function of the ϕ(θ) is used to avoid
overfitting [30].

2.3. Preparation of Paired Training Dataset with FUIGN

Different from the conventional ghost imaging based on deep learning trained with
the dataset captured in free space, the proposed UDGI-FS neural network needs the paired
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underwater datasets to train. The paired underwater datasets include two classes of dataset:
underwater clear dataset serving as the object image for network training and underwater
fuzzy dataset serving as an experimental object. However, it is hard to directly obtain paired
underwater datasets. In order to solve the problem, the Cycle-GAN neural network [31] is
proposed to generate paired underwater datasets through the style transform approach.
The experimental and simulation results show that the Cycle-GAN method can solve the
above problems to some extent. However, the fuzzy underwater dataset generated by
Cycle-GAN is facing the problem that the blurring degree of the underwater dataset is
unitary, which will decrease the generation ability of the UDGI-FS. The reason is that
the input of the generator of Cycle-GAN is only the source domain image, which cannot
instruct the generator to produce an underwater image with different blurring degrees.

In order to obtain an underwater fuzzy dataset with different blurring degrees, the
FUIGN method based on the FUNIT method [32] is proposed. The FUIGN method is
used to conduct style migration and transformation, which can be used to generate paired
underwater datasets. In this paper, the style of the underwater dataset is the blurring degree.
The dataset for training the FUIGN method contains two classes of datasets, including an
underwater clear dataset and underwater fuzzy dataset. The underwater clear dataset with
15,000 underwater images and the underwater fuzzy dataset with 1500 underwater images
are crawled from the internet. The fuzzy dataset contains different blurring degrees of the
underwater dataset.

The input of the generator of FUIGN contains two classes of images: content class with
clear images and style class with fuzzy images. The style class is the key that can control the
blurring degree of the output image. The goal of FUIGN is to map an underwater image of
content class to an underwater image of style class in terms of the blurring degree of the
style class.

Specifically, two generators, G(F)
A2B and G(F)

B2A, are used to generate paired underwater

datasets. The function of the generator G(F)
A2B is to convert the clear image IA to the fuzzy

image IA2B which should have the same blurring degree of the fuzzy image IB, which will
solve the problem of unitary blurring degree. The function of the generator G(F)

B2A is to
convert the fuzzy image IB to the clear image IB2A which should have the same blurring
degree with the clear image IA, which will further improve the quality of the reconstructed
results of UGI-DL. The experimental and simulation results verify the effectiveness of the
proposed FUIGN method.

The scheme of the FUIGN method is shown in Figure 2. As Figure 2 shows, FUIGN
consists of two generators and two discriminators. The training of FUIGN adopts the
method of unsupervised learning, which will have a broad application prospect. Figure 2a
shows the generative adversarial model (G(F)

A2B) converting from class A to class B. As
Figure 2a shows, the content image IA and style image IB are the inputs of the generator
G(F)

A2B. IA2B, which should have the same blurring degree as the style image IB, is the output

of the G(F)
A2B. Then, IA2B is the input of the generator G(F)

B2A and the output of G(F)
B2A is Cyc-IA,

which should have the same blurring degree as the content image IA. The process is called
cycle consistency, used to ensure the integrity of the content information of the output
image. Meanwhile, IA2B is judged by the discriminator DB to be determined a real image or
a generated image. The Ide−IA is the generated image by the G(F)

A2B. The process is called
identity and is used to ensure that the texture information of the content image and output
should be consistent.

Similarly, Figure 2b shows the generative adversarial model G(F)
B2A converting from

class B to class A. The process of Figure 2b is similar to Figure 2a.
The proposed FUIGN network structure is shown in Figure 3. The network structure

of FUIGN is presented below.
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Figure 3. Generator and discriminator of FUIGN. (a) architecture of the generator of FUIGN; (b) ar-
chitecture of the discriminator of FUIGN.

Generator: As the top network structure chart of Figure 3 shows, the generator takes
one content image and one style image as inputs. The generator is composed of two
encoders, a content encoder and style encoder, and one decoder. The content encoder
extracting structural information of the content image is composed of four 2D convolution
layers followed by two residual blocks. The style encoder extracting style information
of the style image is composed of five 2D convolution layers followed by one average
pooling layer. The decoder takes two inputs, the content code and style code. The content
code goes through two adaptive instance normalization residual blocks followed by four
upscale convolution layers. The style code is merged to the content code, by taking the
affine transformation of the features from a series of fully connected layers. The affine
transformation acts globally on the content image, thereby preserving its structure. After
training, the generator only needs two images, the content image and one is the style image,
to generate the output image during the test time.

Discriminator: As the bottom structure chart of Figure 3 shows, the discriminator is
composed of five 2D convolution layers and a fully connected layer. The five convolution
layers are used to extract the features of the input underwater image. The last fully
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connected layer is used to transform the output of the five convolution layers into a one-
dimensional eigenvector to output, which will easily achieve the goal of discrimination.

The loss function is used to improve the reconstruction quality of the generator. The
total loss of the generator can be expressed as:

Ltotal = αLadv + βLcyc + γLide. (5)

where the Ladv, Lcyc, Lide refer to the adversarial loss, cycle consistency loss, and identity
loss. The α, β, γ, the weighting coefficients of Ladv, Lcyc, Lide, respectively, are 1, 10, and
10, respectively.

Adversarial loss: The adversarial loss has the functions for the discriminator to
distinguish real images from the output images of generator and for the generator to fool
the discriminator by generating images as real images. Adversarial loss can be described as:

Ladv =
1
B

B

∑
b=1

(
(DB(GA2B(IA, IB))− 1)2 + (DA(GB2A(IB, IA))− 1)2

)
. (6)

where B is batch size.
Cycle consistency loss: The cycle consistency loss [31] is used to ensure the integrity

of structural information of the content image, which will ensure that the output image of
generator has the same structure as the content image. The cycle consistency loss can be
described as:

Lcyc =
∣∣∣∣GB2A(GA2B(IA, IB), IA)− IA

∣∣∣∣1+∣∣∣∣GA2B(GB2A(IB, IA), IB)− IB
∣∣∣∣1. (7)

Identity loss: The identity loss is used to ensure that the texture information of the
input content image and output image of the generator is consistent. The identity loss can
be described as:

Lide =||GA2B(IA, IA)− IA||1+||GB2A(IB, IB)− IB||1. (8)

2.4. Reconstruction of Network Structure

The network structure of the proposed UDGI-FS is shown in Figure 4. The UDGI-
FS consists of two parts: UGI-DL and G(F)

B2A. First, UGI-DL is used to reconstruct the

underwater image. Then, the generator G(F)
B2A of FUIGN is used to decrease the blurring

degree of the output of UGI-DL. The network structure of G(F)
B2A is the top network structure

chart of Figure 3. The network structure of UGI-DL is shown in Figure 5.
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B2A.

The proposed FUIGN network structure is shown in Figure 5.
Generator: Inspired by UGI-GAN [27], attention U-Net [33–35], and Res-Net [36], the

modified generator is proposed. As the top network structure of the chart of Figure 5
shows, the generator takes a one-dimensional vector with a size of M × 1 as input. As
the highest sampling rate in the experiment is 20%, the value of M is less than 3277. The
following two layers, the fully connected layer and reshape layer, are used to reshape
the one-dimensional vector to a channel underwater image size of 128 × 128. A pair of
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digits in the format of ‘128 × 128 1’ is placed at each module, where 128 × 128 denotes the
size of the underwater image and 1 denotes the number of the channel of the underwater
image. The following network is a modified U-Net structure consisting of an encoder
and a decoder. The main function of the encoder is to extract the feature image, while
the main function of the decoder is to recover the feature image. The encoder uses the
convolutional layers to extract the feature information, structural information, and content
information of the underwater image. Each convolutional layer is followed by a res-net
block, as shown in Figure 5c. Every res-net block is composed of two 2D convolution layers.
The res-net block is used to accelerate the training of the network model and improve
the generation ability of the neural network. In addition, every convolutional layer is
followed by a max-pooling layer. Furthermore, the double connection is used to connect
the encoder-decoder to achieve a better reconstruction effect. In addition, to each skip
connection is added an AG [37] to filter noise, and in order to further improve the ability of
generalization, the nonlinear mapping layer is added between the encoder and decoder, as
shown in Figure 5c. In a word, the generator of UGI-DL uses double skip connections with
adding AG in each skip connection and a nonlinear mapping layer to reconstruct object
image with high quality, which is better than UGI-GAN.
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tor of UGI-DL; (b) architecture of the discriminator of UGI-DL; (c) annotations of generator and
discriminator of UGI-DL.

Discriminator: As the bottom structure chart of Figure 5 shows, the discriminator is
composed of nine 2D convolution layers and a fully connected layer. The nine convolution
layers are used to extract the features of the input underwater image. The last fully
connected layer is used to transform the output of the nine convolution layers into a one-
dimensional eigenvector to output, which will easily achieve the goal of discrimination.

The training process of the network is to optimize the parameters in the set Θ including
weights and bias in two neighboring layers. The Adam optimizer [38] is used as the main
optimizer to optimize the network parameters. The epoch and batch size are set as 100 and
48, respectively. The initial learning rate (LR) is 0.0001, and when the epoch increases to 50,
the LR decreases to 0.00001.
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Learning rate (LR): The parameters of the model are relatively random at the begin-
ning. A relatively large learning rate was chosen, resulting in a faster decrease in the loss.
Therefore, LR was set to 0.0001. After a period of training, the value of the loss function
hovers around the minimum value and fluctuates greatly. It is always difficult to reach the
optimal value. Therefore, the method of learning rate decay [39] should be used and the
learning rate dropped from 0.0001 to 0.00001 after 50 epochs, which could avoid overfitting.
Batch size: A single 2080-Ti GPU used to accelerate the computation can support 48, the
maximum value of the batch size. Therefore, the batch size was set to 48. Epoch: In the
process of network training, the loss decreases with the increase in the number of the epoch.
By observation, the loss tends to stabilize as the number of the epoch approaches 100.
Therefore, the epoch was set to 100.

The loss function is used to improve the reconstruction quality of the generator. The
total loss of the generator can be expressed as:

Ltotal = αLperceptual + βLpixel + γLadversarial . (9)

where the Lperceptual, Lpixel, Ladversarial refer to the perceptual loss, pixel loss, and adversarial
loss. The α, β, γ, the weighting coefficients of Lperceptual, Lpixel, Ladversarial respectively, are
0.006, 1, and 0.001, respectively.

The function of the Lpixel, which plays the main role in the training of the network
model, is to enable the network model to generate high-quality reconstructed images. The
function of the other two loss functions, which play the supporting roles in the training
of the network model, is to further help the network model generate high-quality recon-
structed images. Therefore, β, the weighting coefficient of Lpixel, is set to 1, while α and
γ, the weighting coefficients of Lperceptual and Ladversarial, respectively, are set to 0.006 and
0.001, respectively.

In the training process, the mean square error (MSE) is implemented in loss functions.
Perceptual loss and pixel loss can be described as:

Lperceptual =
1

BHV

B

∑
b=1

H

∑
h=1

V

∑
v=1

( fvgg19(xg)− fvgg19 (x))2. (10)

Lpixel =
1

BHV

B

∑
b=1

H

∑
h=1

V

∑
v=1

(xg − x)2. (11)

where xg and x are the reconstructed image and the real underwater image, respectively,
and H, V are the width and height of xg and x. B is the batch size. In addition, f vgg19 is the
trained VGG19 network [40].

Adversarial loss can be described as:

Ladversarial =
1
B

B

∑
b=1

(D(G(y))− 1)2. (12)

where y is the input of the network model. G(y) is the output of the generator.
The model was trained on a python 3.8 version with PyTorch 1.5.1. A single 2080-Ti

GPU was used to accelerate the computation.
Under the same condition, the durations for the training and reconstruction of the

three methods at 20% sampling rate are shown in Table 1. As Table 1 shows, the training
times of the three methods are about the same. The reconstruction duration was the average
time of all test images. As Table 1 shows, although the reconstruction duration of UDGI-FS
is higher than that of the other two methods, the imaging quality of the UDGI-FS method
is better than that of the other two methods.
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Table 1. The training and reconstruction durations of UDGI-FS, UGI-DL, and UGI-GAN at 20%
sampling rate.

Method Training Duration Reconstruction Duration

UDGI-FS 24 h 65 ms
UGI-DL 24 h 35 ms

UGI-GAN 23 h 25 ms

3. Numerical Simulation Results
3.1. Generate Dataset Comparisons

In order to intuitively compare the FUIGN method with the Cycle-GAN method,
the sample images generated by the FUIGN and Cycle-GAN methods are shown in
Figures 6 and 7. Figure 6 shows the sample images generated by the generator G(F)

A2B

and G(C)
A2B, respectively. Figure 7 shows the sample images generated by the generator G(F)

B2A

and G(C)
B2A, respectively.
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Figure 6. Comparison of the underwater paired images generated by the G(F)

A2B of FUIGN and G(C)
A2B

of Cycle-GAN.

Figure 6 consists of two parts. The top of Figure 6 shows the generated results of the
G(F)

A2B of the FUIGN method and the bottom of Figure 6 shows the generated results of G(C)
A2B

of the Cycle-GAN method. As Figure 6 shows, the G(F)
A2B of FUIGN can generate the fuzzy

image with the same blurring degree as the corresponding style image and retain complete
structural information, which can meet the requirement of the training set. By comparison,
the blurring degree of the outputs of the G(C)

A2B of Cycle-GAN is the same, which cannot
meet the requirement of the training set.



Sensors 2022, 22, 6161 11 of 20

Figure 7 consists of two parts. The top of Figure 7 shows the generated results of the
G(F)

B2A of the FUIGN method, and the bottom of Figure 7 shows the generated results of the

G(C)
B2A of the Cycle-GAN method. As Figure 7 shows, the G(F)

B2A of FUIGN can generate the
underwater clear image and retain complete structural information, which can meet the
requirement. By comparison, the outputs of the G(C)

B2A of Cycle-GAN are still fuzzy, which
cannot meet the requirement.
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In order to verify the effectiveness of the paired underwater dataset (dataset-F) gen-
erated by FUIGN, a numerical simulation is performed. Furthermore, the UGI-GAN
method [27] is trained with dataset-F and the paired underwater dataset (dataset-C) gener-
ated by Cycle-GAN, respectively, to compare the advantages and disadvantages of FUIGN
and Cycle-GAN. The reconstructed results of UGI-GAN trained with dataset-F and dataset-
C at varied sampling rates are shown in Figure 8. The clear submarine image is the target
image for network training, and the fuzzy submarine image is used to simulate the M
measurements collected by the bucket detector. Under the condition of the same sampling
rate, the quality of the reconstructed results of the UGI-GAN method trained with dataset-F
is better than the results trained with dataset-C. The simulation results show that dataset-F
is more suitable than dataset-C to train UGI-GAN.

In order to compare the experimental results quantitatively, the SSIMs of PSNRs [41]
of a reconstructed submarine of UGI-GAN trained with dataset-F and dataset-C at varied
sampling rates are shown in Figure 9. The colored lines represent the reconstruction quality
evaluation indexes of the reconstructed result of the corresponding dataset. The red and
green lines represent dataset-F and dataset-C, respectively. The indexes of the reconstructed
results of the UGI-GAN method trained with dataset-F are better than the results trained
with the dataset-C under the condition of the same sampling rate. This indicates that the
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reconstructed quality of UGI-GAN trained with dataset-F is better than that of UGI-GAN
trained with dataset-C.
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of UGI-GAN; (b) SSIMs of the reconstructed submarine images of UGI-GAN.

3.2. Numerical Simulations

In the simulation, the UGI-GAN [27] and UGI-DL methods trained with the un-
derwater datasets generated by FUIGN are compared with the UDGI-FS method. The
reconstructed images by the three methods at four different sampling rates, 20%, 10%, 5%,
and 2.5%, are shown in Figure 10. The two images on the left of Figure 10 represent the
paired underwater images. The clear fish image is treated as the target image for network
training and the fuzzy fish image is used to simulate the measurements of the bucket detec-
tor. The reconstructed results of the three methods are shown on the right of the yellow
dotted line in Figure 10. As Figure 10 shows, the quality of the reconstructed results of the
three methods is getting better and better as the sampling rate increases from 2.5% to 20%.
When the sampling rate is 2.5%, the UGI-GAN method cannot recover a clear fish image; it
is still fuzzy, and the edge profile of the fish is distorted seriously. By comparison, the fish
reconstructed by UGI-DL is clearer, which contains complete construction. In addition, the
clarity degree of the fish reconstructed by UDGI-FS is better than that of UGI-DL. When
the sampling rate increases from 5% to 20, the reconstructed results of UDGI-FS have high
image contrast and a high clarity degree, which is better than those of the UGI-DL and
UGI-GAN methods. In addition, the PSNR and SSIM curves of the reconstructed fish are
shown in Figure 11. As Figure 11 shows, the UDGI-FS method performs best among the
three methods. Figures 10 and 11 show that the UDGI-FS network can reconstruct an image
with high clarity degrees at a low sampling rate.
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Figure 11. The PSNRs and SSIMs of the reconstructed fish images of UDGI-FS, UGI-DL, and UGI-
GAN at different sampling rates. (a) PSNRs of the reconstructed fish images of UDGI-FS, UGI-DL,
and UGI-GAN at different sampling rates; (b) SSIMs of the reconstructed fish images of UDGI-FS,
UGI-DL, and UGI-GAN at different sampling rates.

To further verify the generalization ability of the network, a submarine image was
selected for testing. The reconstructed results of UDGI-FS, UGI-DL, and UGI-GAN are
shown in Figure 12. The PSNRs and SSIMs of reconstructed images were calculated.
As Figure 12 shows, the reconstructed submarine of UDGI-FS has a relatively complete
profile and high clarity degree at the sampling rate of 2.5%, which is better than UGI-
DL and UGI-GAN. With the increase in the sample rate, the quality of the reconstructed
submarine of UDGI-FS becomes better and better, which is better than the other two
methods. The generalization test results verify that the proposed UDGI-FS method has the
best generalization ability among the three methods.
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4. Experimental Methods
4.1. Experimental Setup

Based on Figure 1, the schematic of the UDGI-FS system, an experiment setup was
implemented. The experiment setup in the lab is shown in Figure 13. As Figure 13 shows,
the laser source (OEM-I-532), the wavelength of which is in the range of 510 nm and 530 nm,
is a pulsed laser and its average pulse power is 5mW, which indicates it is a viable choice
of light source. Firstly, the emitted laser, of which the spot diameter is 10 mm, is directed
into the SLM (LC 2012) controlled by the computer. The spatial distribution of the laser is
modulated by the SLM. Then, the modulated laser light passes through the transmitting
lens, the diameter of which is 50 mm, to illuminate the underwater target in the sink. Then,
the reflected light passes the receiving lens, the diameter of which is 50 mm. The reflected
light is collected by the bucket detector, the model number of which is H11706P-01. The
data acquiring system (DAS), the model number of which is M4x.4450-x4, is used to record
the total light intensity. Finally, the total light intensity is transferred to the computer
for imaging. In the experiment, the toy shark and submarine are placed in a sink, the
size of which is 95 cm × 36 cm × 40 cm. In order to reduce the effect of environment on
imaging quality, the experiment was performed in a dark environment to avoid interference
from background.
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4.2. Experimental Results

The trained UDGI-FS model was used to recover the underwater shark images from
the measurements of the bucket detector under different sampling rates. The experimental
results are shown in Figure 14. As Figure 14 shows, the reconstructed shark of UDGI-FS is
relatively clear at the sampling rate of 2.5%, which is better than the UGI-DL and UGI-GAN
methods. With the increasing of the sampling rate, the quality of the results of the UDGI-FS
method is the best of the three methods. In addition, the PSNR and SSIM curves of the
reconstructed shark are shown in Figure 15. As Figure 15 shows, UDGI-FS performs the
best among the three methods. Figures 14 and 15 show that the proposed UDGI-FS method
has a good ability of deblurring at a low sampling rate, which is better than the UGI-DL
and UGI-GAN methods.
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Figure 15. The PSNRs and SSIMs of the reconstructed shark images of UDGI-FS, UGI-DL, and
UGI-GAN at different sampling rates. (a) PSNRs of the reconstructed shark images of UDGI-FS,
UGI-DL, and UGI-GAN at different sampling rates; (b) SSIMs of the reconstructed shark images of
UDGI-FS, UGI-DL, and UGI-GAN at different sampling rates.

A shark model was used to examine the reconstruction ability of the UDGI-FS model
for the underwater environment with different blurring degrees. As Figure 16 shows, the
three methods are trained at a 20% sampling rate. In order to obtain different blurring
degrees, 5 mL, 10 mL, and 20 mL of milk were poured into the sink, respectively. As
Figure 16 shows, the blurring degree has a great influence on the reconstructed results.
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As Figure 16 shows, the reconstructed quality of the proposed method becomes better
and better with the decreasing of the blurring degree. In the underwater environment
mixed with 20 mL milk, UDGI-FS can still reconstruct a clear shark image, which is better
than the UGI-DL and UGI-GAN methods. As the quantity of milk poured into the sink
decreases, the quality of the reconstructed results of UDGI-FS becomes better and clearer,
which is better than the UGI-DL and UGI-GAN methods. In addition, the PSNR and SSIM
curves of the reconstructed shark at different underwater blurring degrees are shown in
Figure 17. As Figure 17 shows, UDGI-FS performs the best among the three methods.
Figures 16 and 17 show that that the UDGI-FS method can achieve high-quality image
reconstruction at a high blurring degree, and the reconstruction ability is better than the
UGI-DL and UGI-GAN methods.
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Figure 17. The PSNRs and SSIMs of the reconstructed shark images of UDGI-FS, UGI-DL, and
UGI-GAN at different degrees of underwater blurring. (a) PSNRs of the reconstructed shark im-
ages of UDGI-FS, UGI-DL, and UGI-GAN at different degrees of underwater blurring; (b) SSIMs
of the reconstructed shark images of UDGI-FS, UGI-DL, and UGI-GAN at different degrees of
underwater blurring.
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To further verify the generalization ability of the network, an underwater submarine
model was selected for the experiment. The reconstructed results of the UDGI-FS, UGI-DL,
and UGI-GAN are shown in Figure 18. The PSNRs and SSIMs of the reconstructed images
were calculated. It can be seen that UDGI-FS performs the best among the three methods.
It can be concluded that the proposed UDGI-FS has good generalization ability under a
low sampling rate and the submarine can be reconstructed in high quality.
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different sampling rates.

An underwater submarine model was used to examine the reconstruction ability of
the UDGI-FS model for the underwater environment with different blurring degrees. As
Figure 19 shows, the three methods were trained at a 20% sampling rate. The PSNRs and
SSIMs of the reconstructed images were calculated. It can be seen that UDGI-FS can achieve
high-quality image reconstruction with a high blurring degree, and the reconstruction
ability is better than the UGI-DL and UGI-GAN methods.
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5. Conclusions

In conclusion, the FUIGN method based on the few-shot learning method is proposed
in order to obtain paired underwater datasets meeting the requirements for training the
reconstruction network. As the underwater fuzzy image is hard to obtain, an asymmetric
dataset containing 15,000 underwater clear images and 1500 underwater fuzzy images
was used in the training process. The simulation results show that the paired underwater
datasets generated by the generator G(F)

A2B of FUIGN are better than that of the Cycle-GAN
method. In addition, to reconstruct high-quality results, UDGI-FS is proposed. The UDGI-
FS consists of two parts: UGI-DL and G(F)

B2A. UGI-DL is used to reconstruct the underwater

image, and G(F)
B2A is used to decrease the blurring degree of the reconstructed results of

UGI-DL. In the UGI-DL model, the generator utilizes modified U-Net with the res-net block
as the main network architecture and adds double skip connections between corresponding
layers. In the double skip connections, the attention gate is added to each of the skip
connections to improve the reconstruction ability of the network.

The performance of dataset-F generated by FUIGN is analyzed and compared with
dataset-C generated by Cycle-GAN through numerical simulations. Simulation results
indicate that dataset-F has better performance than dataset-C. To compare the qualities of
the reconstructed results of UGI-GAN trained with the two datasets, the PSNRs and SSIMs
were also calculated. The quality indexes demonstrate that dataset-F has better performance
in training the reconstruction network. In addition, the performance of the proposed UDGI-
FS method is analyzed through numerical simulations and experiments. Experimental
results indicate that the UDGI-FS method has better reconstruction performance than the
UGI-GAN and UGI-DL methods. In addition, the PSNRs and SSIMs of the reconstructed
results demonstrate that the UDGI-FS method has the best reconstruction ability and
generation ability. Meanwhile, experimental results show that the reconstructed image of
UDGI-FS has the best visual effect in underwater environments with different blurring
degrees. Experimental results show that the FUIGN method can provide a promising
method for generating paired underwater datasets. In addition, UDGI-FS can be used to
reconstruct the high-quality underwater results.
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