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Abstract: In recent years, image segmentation based on deep learning has been widely used in
medical imaging, automatic driving, monitoring and security. In the fields of monitoring and security,
the specific location of a person is detected by image segmentation, and it is segmented from the
background to analyze the specific actions of the person. However, in low-illumination conditions, it
is a great challenge to the traditional image-segmentation algorithms. Unfortunately, a scene with low
light or even no light at night is often encountered in monitoring and security. Given this background,
this paper proposes a multi-modal fusion network based on the encoder and decoder structure.
The encoder, which contains a two-branch swin-transformer backbone instead of the traditional
convolutional neural network, fuses the RGB and depth features with a multiscale fusion attention
block. The decoder is also made up of the swin-transformer backbone and is finally connected via
the encoder with several residual connections, which are proven to be beneficial in improving the
accuracy of the network. Furthermore, this paper first proposes the low light–human segmentation
(LLHS) dataset of portrait segmentation, with aligned depth and RGB images with fine annotation
under low illuminance, by combining the traditional monocular camera and a depth camera with
active structured light. The network is also tested in different levels of illumination. Experimental
results show that the proposed network has good robustness in the scene of human segmentation
in a low-light environment with varying illumination. The mean Intersection over Union (mIoU),
which is often used to evaluate the performance of image segmentation model, of the Swin-MFA in
the LLHS dataset is 81.0, is better than those of ACNet, 3DGNN, ESANet, RedNet and RFNet at the
same level of depth in a mixed multi-modal network and is far ahead of the segmentation algorithm
that only uses RGB features, so it has important practical significance.

Keywords: multi-modal fusion network; segmentation; low light environment; depth-sensing

1. Introduction

Image segmentation is an important subject in the field of computer vision, the purpose
of which is to segment specific objects from various backgrounds [1,2]. The edge, color,
texture and many other features of the image are used as the standard to segment the image
into different regions by the traditional methods. For example, based on threshold [3],
edge [4] and clustering [5,6], these traditional segmentation methods are relatively simple
but cannot segment images accurately in complex scenes. Therefore, image segmentation
based on deep learning with a higher accuracy has become a research hotspot.

Starting from the proposal of a fully convolutional neural network (FCN) [7], semantic
segmentation algorithms based on neural networks have appeared on the stage. An FCN
extends the image classification task to the image segmentation task with the pixel level,
which lays a foundation for the current image semantic segmentation research. At present,
in order to enhance the effect of semantic segmentation, there is more and more research
on new semantic segmentation based on neural networks.

With the improvement of the efficiency and accuracy of image segmentation, image
segmentation, especially human segmentation, has shown a wide application prospect in

Sensors 2022, 22, 6229. https://doi.org/10.3390/s22166229 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166229
https://doi.org/10.3390/s22166229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0116-3234
https://orcid.org/0000-0003-4362-1555
https://doi.org/10.3390/s22166229
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166229?type=check_update&version=1


Sensors 2022, 22, 6229 2 of 15

many fields. However, in order to ensure safety and reliability in the fields for automobile
navigation and security monitoring, image segmentation is often required to have the
ability to process the images of various scenes during the whole day and even at night. In a
night scene, the RGB image often has uneven illumination, low light intensity or even no
light at all. An image segmentation algorithm only based on the RGB feature usually cannot
work well in this situation. Therefore, many recent studies have also carried out attempts
to solve this problem, including using mixed datasets of day and night for adversarial
training [8] and the introduction of thermal images for multi-modal fusion [9]. However,
these studies are all passive imaging, still subject to environmental constraints. The RGB-D
cameras that have been developed in recent years can collect the depth data of scenes
through active structured light, which means they are less dependent on the environment
itself, providing a new possibility for night-time image segmentation.

At present, research on RGB-D image segmentation mainly focuses on solving the
fusion problem of the RGB image and depth image and the inaccurate measurement
problem of depth images [10], while little research notices its potential application in low-
illumination scenes. Therefore, this paper conducts research on image segmentation at night
and proposes a transformer-based neural network and feature-fusion attention mechanism.
The self-attention mechanism is used to replace a traditional convolutional neural network
(CNN), with the purpose of realizing compensation for the loss of information in RGB
images with depth information and, finally, achieve the goal of image segmentation in
low-illumination scenes. Notice that the existing RGB-D datasets, such as SUN RGB-D,
Cityscapes and NYU Depth V2, are not dedicated datasets for low-illuminance conditions
as shown in Figure 1. In addition, unfortunately, the existing low-light datasets have either
a single background or poor quality. This paper introduces a human segmentation dataset
in low light scenes.
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2. Relative Work

At present, single-mode image segmentation has made great progress in segmentation
accuracy and efficiency. In ref. [11], U-net uses the short channels to splice encoding and
decoding parts, which retain more original information, solving the problem of gradient
disappearance to some extent. In ref. [12], ICnet, which uses multi-scale images as input
and a cascaded network to improve efficiency, was proposed. Moreover, ICnet limits the
input size of images by scaling, thus increasing the reasoning speed of the network.

A transformer was initially applied in natural language processing (NLP) [13]. Re-
cently, many works have transplanted the transformer to CV tasks and achieved good
results [14]. In ref. [15], a Vision Transformer was proposed, which cut the serialized data
of images into small pieces as the input of the transformer, demonstrating the powerful
capability of a transformer in the field of computer vision. In ref. [16], a Vision Transformer
using shifted window was proposed, which has strong performance in image classification.
Moreover, a Dense-Transformer was proposed to capture the sequence spectral relationship
in ref. [17], realizing hyperspectral image (HSI) classification. Some reinforced transform-
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ers, such as RTN [18], were used for the automatic quality evaluation of medical images.
Transformers were used in the image segmentation in the earlier period in ref. [19], where
the transformer was used to completely replace the encoding part of a traditional FCN with
the attention mechanism. However, its application in multi-mode and multi-feature was
still lacking. Moreover, the transformer’s performance in variable lighting and low-lighting
conditions remains to be seen.

At present, there has been much research on RGB-D image segmentation, but little
research on RGB-D complementarity in low-illumination conditions. Moreover, some
RGB-D datasets are of low quality and without fine annotation. In ref. [20], NIN network
was used to extract depth image features and integrate them into the GoogLeNet network.
In ref. [21], the LDFNet was proposed, which incorporates luminance, depth and color
information by a fusion network. In ref. [22], a 3D graph neural network (3DGNN) was
proposed to construct a k-nearest neighbor graph based on a KNN pair 3D-point-cloud
graph. In ref. [23], three ResNet network branches are adopted, in which two branches
are used to extract RGB and depth image features, and the other branch is used to fuse
RGB and depth image features. However, the relevant performance of network image
segmentation at night and other complex scenes has not been studied, which needs further
research and confirmation.

In short, in order to solve the problem that the existing image-segmentation methods
cannot be applied to low illumination scenes, the contributions of this paper are as follows:

• Human body images are segmented in the multi-modal and multi-feature way in
low-illumination scenes, by using the fusion information of the depth image and RGB
image as the segmentation basis.

• A multi-modal end-to-end segmentation network based on swin-transformer is pro-
posed, which realizes end-to-end RGB and depth feature-fusion attention by combin-
ing swin-transformer features that are demonstrated to be stable under changeable-
lighting conditions. It can totally replace the traditional convolutional neural network
and improve the accuracy of segmentation.

• Aiming at the shortcomings of traditional image segmentation under low illumination,
a modified and pre-processed body semantic segmentation dataset (LLHS) with fine
annotation for a low-light scene is proposed, which is much larger in scale and scene
than the previous dataset, filling the gap in the semantic segmentation dataset in the
low-illuminance condition.

3. Materials and Methods

Swin-MFA proposed in this paper is an end-to-end multi-modal segmentation network
with low illumination optimization. This network adopts encoder and decoder structure
with transformer backbone, which has good noise tolerance and accuracy for human
segmentation in low light conditions. In addition, the dataset LLHS was produced for
the deep multi-modal method to solve the problem of human body segmentation in low-
illumination scenes, which has good advantages in terms of the size and quality.

3.1. Low Light Human Segmentation Dataset

Low light–human segmentation dataset is a new portrait dataset in low-light scenes,
which adopts active ranging sensing method to collect depth images based on structured
light principle and collect RGB images by a traditional RGB camera. Due to the black
vacancy at the edge of the portrait in the depth image and the registration problem between
the depth image and RGB image, the dataset is preprocessed as follows.

(1) The physical location of the camera of RGB image and depth image results in different
spatial-coordinate systems. The images taken by RGB camera and depth camera are
not matched by pixels, so it is necessary to register RGB image and depth image.
The internal parameter matrix and external parameter matrix in different scenes
are obtained by calibrating RGB camera and depth camera, respectively. Then, the
transformation matrix of two coordinate systems is calculated by Equation (1):
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prgb = Hrgb(RH−1
ir pir + T) (1)

where, pir is the coordinates of pixels in the depth image before processing, Hir is
the internal parameter matrix of the depth camera and Hrgb is the internal parameter
matrix of the RGB camera. R and T are rotation matrices and shift vectors, respectively,
derived from the outer parameter matrix.

R = RrgbR−1
ir (2)

T = Trgb − RrgbR−1
ir Tir (3)

where Rir(Rrgb) and Tir(Trgb) are rotation matrix and shift vector of depth camera
(RGB camera) in external parameter matrix, respectively.

(2) In depth images, due to camera shooting angle and objects blocking, black gaps
appear in the image, resulting in the interference of the image edge information,
which needs to be processed. The depth camera of Realsense device is set on the left
side, and the imaging algorithm is realized by referring to the left camera. Therefore,
the upper and lower five pixels of the left side adjacent to the black gap can be used
as the processing neighborhood to fill the vacancy. In order to maintain image-edge
information, it is necessary to make the filled pixels contain background information
rather than foreground information. Therefore, the pixel of the farthest point with the
largest pixel value in the neighborhood is used to fill the black vacancy. The specific
calculation formula can be expressed in Equation (4).

P′(i,j) = MAX
{

P(i−1,j), P(i+1,j), P(i,j−1), P(i−1,j−1), P(i−1,j+1)

}
(4)

where P(i,j) is the pixel value of the i-th row and j-th column in the filling kernel, and
P’(i,j) is the corresponding pixel value of the i-th row and j-th column in the image
after processing.

The corrected RGB images are shown in Figure 2a, and the collected depth images are
shown in Figure 2b. RealSense D455 was used as the acquisition device. The processed
depth images are shown in Figure 2c. To better cover all kinds of scenes at night, the dataset
of this paper contains pedestrian images taken in different scenes and under different
lighting conditions on streets and squares at night. The dataset includes 2226 RGB images
and their corresponding depth images.
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3.2. Swin-MFA

Swin-MFA is an improved multi-feature fusion network model based on swin-transformer
and Unet structure, which retains the basic structure of the encoder and decoder of Unet.
The encoder of the Swin-MFA has two input images, namely the depth image and RGB
image. During fusion, the two features, respectively, go through feature fusion mechanism,
and the final network features are obtained through the attention calculation and the
weighted addition. The decoder uses linear layer amplification and rearrangement for up-
sampling, and there are residual connections between the encoder and decoder, which can
effectively improve the convergence speed of the network. The specific network structure
is shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 3. The structure of Swin-MFA network. 

3.2.1. Swin-Transformer Base Backbone Network 
Due to the condition of low illumination, obvious feature information such as color 

is missing seriously. It leads to the situation, when extracting features, that the backbone 
network needs to be insensitive to illumination to ensure the reliability in low-illumina-
tion conditions. Therefore, it is meaningful to compare the feature extraction structures of 
mainstream network structures under different lighting conditions in the same scene. 
Among them, swin-transformer feature extraction layer performs better than Vision 
Transformer, ResNet, VGG, MobileNet and the encoder of the Unet structure without ad-
ditional feature extraction layer in the low illumination conditions. Specific experiments 
are shown in Figure 4. 

Figure 3. The structure of Swin-MFA network.

3.2.1. Swin-Transformer Base Backbone Network

Due to the condition of low illumination, obvious feature information such as color
is missing seriously. It leads to the situation, when extracting features, that the backbone
network needs to be insensitive to illumination to ensure the reliability in low-illumination
conditions. Therefore, it is meaningful to compare the feature extraction structures of
mainstream network structures under different lighting conditions in the same scene.
Among them, swin-transformer feature extraction layer performs better than Vision Trans-
former, ResNet, VGG, MobileNet and the encoder of the Unet structure without addi-
tional feature extraction layer in the low illumination conditions. Specific experiments are
shown in Figure 4.
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Using the weights of training on ImageNet, the same image was selected for classifica-
tion test at different brightness levels, and draw thermal maps by using the grad-CAM [24],
which was used to compare the accuracy and concentration of network feature maps at
different brightness levels. A score calculation method is defined to measure the feature
matching degree of the thermal map on the original image.

L =

M
∑

i=1

N
∑

j=1
GijYij

M
∑

i=1

N
∑

j=1
Gij

(5)

where, Gij is the two-dimensional output array of grad-CAM. Yij is the feature matching
area of the original image, and, more specifically, it is−1 when it is background and 1 when
it is foreground. The score L can be transformed through linear mapping to obtain the
result shown in Figure 5.
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3.2.2. Self-Attention Mechanism

Swin-transformer’s structure contains the form of two multi-headed attention mech-
anisms, windows multi-head self-attention (W-MSA) and shifted windows multi-head
self-attention (SW-MSA). In multi-modal tasks, we also hope to replace the traditional
convolutional neural network with the total self-attention. Using the W-MSA module,
the network only performs self-attention calculation in windows, and no information is
transmitted between windows. Combining with SW-MSA module, the windows slide up
to realize information communication between windows, which improves the accuracy
and mIoU performance of the network. The specific structure and an illustration of the
shifted-window approach are shown in the Figures 6 and 7, respectively.
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Moreover, in each swin-transformer block, the sliding-window partition mechanism
and calculation can be expressed as the equations in (6).

x̂l = W −MSA(LN(xl−1)) + xl−1

xl = MLP(LN(x̂l)) + x̂l

x̂l+1 = SW −MSA(LN(xl)) + xl

xl+1 = MLP(LN(xl+1)) + x̂l+1

(6)

where W-MSA and SW-MSA are the formula expression of W-MSA and SW-MSA in Figure 5,
respectively. The LN represents the LayerNorm operation. More precisely, the self-attention
mechanism can be a query with a series of key-value pairs mapped to a specific output. It
can be expressed by Equation (7).

attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (7)

where Q K V represents three independent matrices, which are the results of different linear
transformations of the original sequence X, and all of these can be used as representatives
of X. dk is the dimension of feature.

3.2.3. Feature-Fusion Attention Mechanism

For the features of the RGB image and depth image generated in the same scene, there
are different processing methods on the feature fusion layer. Inspired by ResNet, an additive
operation can be used for the feature fusion. Moreover, concatenate operation is used in
DenseNet. For confirming the effect of the feature fusion of the RGB and depth images
in low illumination conditions, the experiments on addition operation and concatenate
operation are conducted, respectively, which can be identified by Figure 8a,b.
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attention mechanism.

The addition operation increases the amount of information that describes the image,
but the feature dimension of the image does not change. With more feature sources
contained, the increased amount of information in each dimension is obviously beneficial
to image segmentation. However, the concatenate operation is the combination of the
channels, in other words, the feature dimension of the image has changed. As the dimension
of the concatenate operation is increased, the amount of information under each feature
has no essential transformation compared with the addition operation. From another
perspective, the addition operation is actually a convolution kernel with the corresponding
channels sharing the same weight after concatenate.



Sensors 2022, 22, 6229 10 of 15

Inspired by SKnet [25], we designed a fusion attention mechanism for depth features
and RGB features. Through reshaping and the global average pooling of the two features,
the convolution kernel activation function operation is used to generate the weight matrix
of the two channels, respectively. Moreover, the SoftMax processing is carried out in the
horizontal dimension of the features by two independent multi-layer perceptrons and,
finally, multiplied with the original input; then, the fusion attention of the two features is
realized. More specifically, the structure is shown in Figure 8c, and it can be expressed by
the Equations (8)–(11).

Xc = Wconv2 · δ(Wconv1 · Fgp(xc)) = Wconv2 · δ(Wconv1 ·
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j)) (8)

Yc = Wconv′2 · δ(Wconv′1 · Fgp(yc)) = Wconv′2 · δ(Wconv′1 ·
1

H ×W

H

∑
i=1

W

∑
j=1

yc(i, j)) (9)

ac =
eXc

eXc + eYc
, bc =

eYc

eXc + eYc
(10)

zc = ac · xc + bc · yc, c ∈ [1, C] (11)

where x and y are derived from RGB and depth features with the dimensions H ×W × C,
respectively. xc and yc are the c-th subfeature of x and y. δ is the ReLU activation function,
and z = [z1, z2 · · · zC] is the fused attention matrix of the final output. Wconv and Fgp stand
for convolution and global pooling operation.

3.3. Loss Function

The loss function of the network adopts the cross-entropy loss function, which can be
expressed by Equation (12). The mask of the loss function calculation is set to ensure the
accuracy of itself. At the same time, Adam is used as the optimizer to train on the LLHS
dataset proposed in this paper.

Loss(p, q) = −
C

∑
i=1

pi log(qi) (12)

where C represents the number of categories, p is the ground truth and q is the predicted result.

4. Results

In this section, based on the results from previous experiments in Section 3.2.1, which
prove that the swin-transformer backbone maintains relatively stable feature extraction
performance in low-illumination scenes, we performed experiments on the LLHS dataset.
In Section 4.1, we compare Swin-MFA with various feature-fusion methods, and the experi-
ment proves that the feature-fusion attention block performs better than other traditional
methods. In Section 4.2, ablation experiments were performed in the residual connections
between the encoder and decoder network. In Section 4.3, we compare our methods with
classic image segmentation methods, such as Lraspp Deeplabv3, HRNet, Trans-Unet, and
Swin-Unet, as well as with ACNet, RFNet, 3DGNN, ESANet, FuseNet, CEN, etc. RGB-D
multi-modal image segmentation methods are also compared. It shows that our network
and multi-modal fusion attention mechanism are effective and reliable. In addition, global
acc and mIoU, which are commonly used in image segmentation, are also used to evaluate
the results. In addition, more specifically, they can be written by Equations (13) and (14).

global acc = ∑i nii

∑i Ni
(13)

mean IoU =
1

nclass
∑

i

nii
Ni + ∑j nji − nii

(14)
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where nij is the number of pixels with an i-th category that is predicted to be the j-th
categories. Ni is the number of total pixels of the i-th category.

4.1. Network Fusion Mechanism Experiments

For the fusion mechanism mentioned in Section 3.2.3, we carried out experiments
including addition, concatenate with linear cascade and our feature-fusion attention mech-
anism. The experimental results are shown in Table 1.

Table 1. The results in the experiment of fusion mechanism.

Fusion Method Global acc mIoU

Add 93.4 80.7
Concat 92.8 80.8
Ours 93.6 81.0

It is generally believed that the concatenate operation can cover the addition operations
in the effect in improving the segmentation accuracy of the model. However, it is difficult
to train the network due to the deep level of the network and the difficulty of convergence.
In addition, we notice that the training methods and pre-training weights have an impact
on the effect of the feature-fusion methods in the deep network.

4.2. Network Connections between Encoder and Decoder Experiments

Considering the connection forms of encoder and decoder and referring to the way of
encoder and decoder of Unet, we verified the function of connections between encoder and
decoder after the feature-fusion attention mechanism, which are tested in the situations
of no connection, single connection and multiple connections, respectively. The specific
results are shown in Table 2.

Table 2. The results in the experiment of the number of connections.

Number of Connections Global acc mIoU

0 89.2 73.7
1 91.8 76.6
2 92.3 78.8
3 93.4 81.0

4.3. Network Comparative Experiments

We compared our methods with Lraspp, Deeplabv3, TransUnet, SwinUnet, ACNet,
RFNet, 3DGNN ESANet, FuseNet, LDFNet, etc. The specific results are shown in Table 3
and Figure 9. The experimental results show that our method is effective and accurate.

Table 3. The mIoU and global accuracy results of the comparison experiment.

Method Global acc mIoU

Lraspp [26] 73.5 63.4
Deeplabv3 [27] 84.1 54.3

Unet [11] 81.0 71.7
HRNet [28] 46.7 59.1

TransUnet [29] 88.0 75.5
SwinUnet [30] 87.5 69.8

ACNet [23] 92.7 75.7
RFNet [31] 82.4 72.3

3DGNN [22] 92.2 77.6
ESANet [32] 92.2 80.4
FuseNet [33] 84.3 75.3
RedNet [34] 88.5 75.0
LDFNet [21] 89.9 78.3

Swin-MFA (Ours) 93.4 81.0
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4.4. Experiment of the Combining Datasets of Different Light Intensities

For the low-illuminance monitoring at night, there are occasional lights such as car
lights, so it is necessary to conduct data analysis on different brightness conditions. We
added five levels of high and low brightness mixing datasets to the LLHS dataset, with
high brightness accounting for 10%, 15%, 20%, 25% and 30%, respectively. The specific
results are shown in Table 4.
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Table 4. The results of experiment in datasets of different light levels.

Method
10% 15% 20% 25% 30%

mIoU acc mIoU acc mIoU acc mIoU acc mIoU acc

ACNet 75.6 92.6 75.0 92.4 75.2 92.0 75.1 92.5 75.1 92.1
RFNet 72.3 82.7 71.5 82.3 71.5 81.8 71.3 82.4 72.1 82.5

3DGNN 77.7 92.5 77.4 92.5 77.1 92.0 77.3 92.1 76.9 91.1
ESANet 80.3 92.2 80.0 92.1 79.8 91.7 80.6 92.2 79.9 91.8
FuseNet 75.1 84.2 74.0 84.4 74.2 84.0 75.5 86.4 74.6 84.7
RedNet 74.8 88.3 71.8 88.4 72.9 87.6 70.6 88.5 73.4 87.4

Swin-MFA 80.8 92.9 80.6 92.9 80.1 92.4 80.5 92.6 80.2 92.9

5. Discussion

We demonstrate the robustness of a swin-transformer network in low-illumination
conditions through comparative experiments and introduce a total self-attention mecha-
nism to replace the traditional convolutional neural network, to improve the ability of the
model’s attention to depth images and RGB images. Moreover, a fusion attention mecha-
nism is proposed, to make the overall network have better performance. At present, we
are implementing semi-supervised learning on the network, which has made preliminary
progress. In the future, we will continue to expand the performance of the network and the
active learning ability on datasets without a label.

6. Conclusions

In this paper, an end-to-end multi-modal image segmentation transformer network is
proposed. Through the multi-modal fusion attention of the depth images and RGB images,
the human-segmentation problem in the conditions of low illumination is solved, which
can be well-applied in the monitoring and security fields. Depth image and RGB image
were used as complementary inputs, and the neural network structure of the multi-modal
encoder and decoder was used to realize the segmentation task in complex low-illumination
conditions, which improved the robustness and learning performance of the network. In
addition, we first propose a low-illuminance human-segmentation dataset, which fills
the gap of the multi-modal low-illuminance dataset. Experimental results show that
the proposed method is far superior to the advanced single-mode segmentation method
as well as the depth and RGB multi-modal network method, with better performance
in low-illumination conditions. In the future, we will also realize semi-supervised and
unsupervised active-learning strategies by the network, so that the network can still have
excellent performance without accurate annotation.
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