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Abstract: Understanding the growth status of fruits can enable precise growth management and
improve the product quality. Previous studies have rarely used deep learning to observe changes
over time, and manual annotation is required to detect hidden regions of fruit. Thus, additional
research is required for automatic annotation and tracking fruit changes over time. We propose a
system to record the growth characteristics of individual apples in real time using Mask R-CNN. To
accurately detect fruit regions hidden behind leaves and other fruits, we developed a region detection
model by automatically generating 3000 composite orchard images using cropped images of leaves
and fruits. The effectiveness of the proposed method was verified on a total of 1417 orchard images
obtained from the monitoring system, tracking the size of fruits in the images. The mean absolute
percentage error between the true value manually annotated from the images and detection value
provided by the proposed method was less than 0.079, suggesting that the proposed method could
extract fruit sizes in real time with high accuracy. Moreover, each prediction could capture a relative
growth curve that closely matched the actual curve after approximately 150 elapsed days, even if a
target fruit was partially hidden.

Keywords: deep learning; automatic generation data; growth prediction; individual identification

1. Introduction

Precision agriculture involves detailed observation, control, and planning of farm-
land and crop conditions, and substantial research on precision agriculture has been
conducted to improve productivity by using information and communication technology
and the internet of things to understand the growth conditions of agricultural crops [1–3].
Kobayashi et al. [4] developed a high-resolution image comparison system to extract crop
growth information by observing the changes in their appearance. In addition, Genno et al. [5]
predicted the fruit radius from apple growth curves based on the green-blue vegetation
index leaf area in apple orchards. In Genno et al.’s study [5], the entire fruit tree was
evaluated based on a single growth curve, while growth curves for individual fruits were
not obtained. More precise management would be possible if the growth of individual
fruits could be predicted.

Research on the recognition of individual fruits using deep learning to support yield
mapping and harvesting robots is underway [6–11]. In addition, various attempts have
been made [12] on fruit detection for workload estimation. Gongal et al. [13] developed
image processing for apple identification, which can avoid repetitive counting of apples
using 3D information, and achieved an accuracy of 82% for crop load estimation. However,
these studies estimated the fruit area at a specific time and did not observe changes for
individual fruits over time. Understanding the growth status of a single fruit would enable
precise growth management and improve the quality of the products. Tracked detection
of individual fruits is necessary to capture changes over time. Wenli et al. [14] were able
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to track the detection of oranges from dynamic point images, but they only counted the
number of oranges and did not provide a follow-up growth prediction. Marini et al. [15]
developed a regression model to estimate fruit weight at the time of harvest using three
years of data on initial fruit diameters; however, they were unable to predict growth in real
time using machine vision.

Mask R-CNN is a method for predicting regions and classes for each object [16] and
has been used for strawberry [17] and blueberry detection [18]. Kaiming et al. [16] used
COCO [19] as the training data for Mask R-CNN. COCO is a large dataset consisting
of 200,000 annotated images with teacher labels and 120,000 images without teacher labels.
Only visible regions are annotated in the COCO dataset, which makes it unsuitable for
detecting hidden regions. In addition, automatic annotation methods for large datasets
using different types of fruits and vegetables have been proposed [20], but automatic
annotation in the case of hidden fruits has not yet been achieved.

Przemyslaw et al. [21] were able to detect hidden regions in the case of potatoes by
training Mask R-CNN on a dataset that was manually annotated with regions hidden by
other potatoes. However, in manual annotation, there exists a risk of learning incorrect
regions, as the operator has to guess the region information. However, if a large amount
of training data that can accurately determine the positional information of fruit can be
generated automatically, fruit in areas hidden by leaves and branches can be detected with
high accuracy.

In this paper, we propose a method for predicting the growth characteristics of individ-
ual fruits from fixed-point observation images of apples. The proposed method develops
a system that automatically generates training data for deep learning, which can identify
hidden fruit and enable observation of the same fruit from time-series images of apples, to
identify changes in fruit size over time.

The remainder of this paper is organized as follows. Section 2 describes the training
data generation method and individual fruit identification algorithm. It also describes the
accuracy validation of the proposed methods. Section 3 presents the accuracy validation
results of the proposed methods. The influence of automatically generated parameters of
the training data and accuracy of individual fruit identification and growth predictions are
also discussed. Section 4 provides concluding remarks.

2. Material and Methods
2.1. Monitoring System and Data Set

To periodically capture images from a fixed point at an apple orchard without a
commercial power supply, we developed an image monitoring device that operated au-
tonomously, based on previous research [4]. The setup of the monitoring device and its
structure are shown in Figure 1. This device was powered through a solar panel (140 W,
Looop Inc., Tokyo, Japan) and charged a 12 V battery (G&YU SMF31MS-850, Global Battery
Co., Ltd., Korea) via a charge controller (LP-12/24V50A_2.0, Looop Inc.). Two DC–DC
converters, via a charge controller, converted the electric power to 5 V and 7.4 V and
supplied a microcontroller (Raspberry Pi 2 Model B, Raspberry Pi Foundation, Cambridge,
UK) and a digital single-lens reflex (DSLR) camera (EOS Kiss X7, Canon Inc., Tokyo, Japan).
Images captured with the DSLR camera were temporarily stored on the microcontroller and
then transmitted to a web server via a USB long-term evolution (LTE) modem (L-02C, LG
Electronics Inc., Busan, Korea). The microcontroller performed actions such as acquiring
images with the DSLR camera and transferring them through the USB LTE modem.

Original images of apple orchards were acquired at regular intervals by the mon-
itoring system from a fixed point. The images were RGB images with a resolution
of 5184 × 3456 pixels. The existing COCO dataset and the original dataset generated from
the original apple orchard images were used in this study.
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converted electric power to 5 V and 7.4 V and supplied a Raspberry Pi 2 Model B microcontroller 
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training using existing large-scale datasets is common. However, in fruit tree images, it is 
desirable to detect fruit regions hidden behind branches and leaves, but there are no ex-
isting trained models that can detect hidden regions. In this paper, we propose a method 
to automatically generate a large amount of training data using images obtained from the 
monitoring system. Songyan et al. [22] showed that data expansion is possible by applying 
the cut-and-paste method. In this study, the cut-and-paste method is used to automati-
cally generate training data. The training data consist of a synthetic image of a farm and 
binary mask indicating the fruit area. Figure 2 shows the process of generating the syn-
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Figure 1. Monitoring device and its structure. The device sourced electric power from a solar panel
and charged a 12 V battery via a charge controller. Two DC–DC converters, via a charge controller,
converted electric power to 5 V and 7.4 V and supplied a Raspberry Pi 2 Model B microcontroller and
DSLR camera. Images captured with the DSLR camera were temporarily stored on the microcontroller
and then transmitted to a web server via a USB LTE modem.

2.2. Training Data Generation and Individual Fruit Identification System

Object detection in deep learning requires a large amount of training data, and such
training using existing large-scale datasets is common. However, in fruit tree images, it
is desirable to detect fruit regions hidden behind branches and leaves, but there are no
existing trained models that can detect hidden regions. In this paper, we propose a method
to automatically generate a large amount of training data using images obtained from
the monitoring system. Songyan et al. [22] showed that data expansion is possible by
applying the cut-and-paste method. In this study, the cut-and-paste method is used to
automatically generate training data. The training data consist of a synthetic image of a
farm and binary mask indicating the fruit area. Figure 2 shows the process of generating
the synthetic images.

In the proposed method, the fruit, leaf, and background images were manually
cropped and separated from the actual farm image. Fruit images were cut and sepa-
rated by hand, because tools such as the Hough transform are ineffective in detecting
apples [10,23]. The fruit and leaf images were then pasted at random positions on the
background image to generate a composite image of the canopy. When placing the fruit and
leaf images, the luminance, angle, magnification, and aspect ratio were randomly changed
within an arbitrary range (Table 1) to increase the diversity of the training data. The fruit
images to be placed contained randomly selected red and green apple images.
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composited over the fruit image as a shadow of the leaf. For the shadow images, the aspect 
ratio, magnification, and angle were also varied to represent shadows of various shapes. 
The examples of the generated training data are shown in Figure 3, and the binary mask 
and generated image are shown in Figure 4. From Figure 4, in the generated image, we 
can observe that the fruits were placed at the white positions on the binary mask. 

Figure 2. Generation process of synthetic images. First, fruit, leaf, and background images were
manually cropped from actual farm images. Second, black-and-white mask images were created from
the cropped fruit images to handle the shape information of the fruit. Third, fruit and leaf images
were then pasted at random positions on the background image to generate a composite image of the
canopy. Fourth, the generated fruit mask images were placed at the same position of the pasted fruit
images on a black image, which was the same size as the background image.

Table 1. Generation parameters. When placing the fruit and leaf images on a background image, the
luminance, angle, magnification, and aspect ratio were randomly changed within an arbitrary range
to increase the diversity of the training data.

Subject Height
[px] Width [px] Brightness

[%] Angle [◦] Number of
Fruits

Number of
Leaves on
the Fruit

Foreground

Number of
Leaves on
Fruit Back-

ground

Selection
Probability

of Red
Apple [%]

Fruit 140~190 140~190 60~120 −90~90 3~8 55.3

Leaf 60~90 60~90 60~120 −90~90 80 0, 100, 200,
400

The shape was extracted from the leaf image, and an image with low luminance was
composited over the fruit image as a shadow of the leaf. For the shadow images, the aspect
ratio, magnification, and angle were also varied to represent shadows of various shapes.
The examples of the generated training data are shown in Figure 3, and the binary mask
and generated image are shown in Figure 4. From Figure 4, in the generated image, we can
observe that the fruits were placed at the white positions on the binary mask.

In the generated composite image of the farm, the images of the leaves and branches
were placed after the images of the fruit were placed, resulting in partially hidden fruit
areas. Binary masks representing the exact fruit region were generated for each detected
fruit for training using Mask-R-CNN. By generating a large amount of data combining
synthetic images of the farm and binary masks, training data that could accurately identify
hidden fruit areas were obtained.
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The individual fruit identification system used a model trained on the proposed
training data. The model extracted a contour of each fruit and rectangle surrounding the
fruit from the actual farm image. The fruit size and center coordinates were calculated from
the contours and rectangles. These were used to identify the same fruit at different times.
The process flow of the fruit detection algorithm is shown in Figure 5.
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Figure 5. Flow chart of the fruit detection algorithm for tracking identical fruit in images captured at
different dates and times on a farm. A three-layer filter was used to detect the same fruit at different
times in part 5©: a distance filter, size filter, and contour filter. The distance filter considered the hanging
range of the fruit position caused by an increase in weight due to fruit growth; the size filter considered
size variation due to growth and depth movement; the contour filter excluded fruits with incorrect
contours and non-identical fruits with similar positions and sizes by calculating the contour similarity. T
is the number of non-detect days, and it increases when the identical fruit is not found to mitigate the
limitations of the distance and size filters in the search for identical fruit on the following day.
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A three-layer filter was used to detect fruit that simultaneously met the conditions
shown in part 5© of Figure 5. The three-layer filter consisting of a distance filter, size
filter, and contour filter were used to determine the same fruit at different times. The
distance filter considered the hanging range of the fruit position caused by increase in
weight due to fruit growth; the size filter considered size variation due to growth and depth
movement; the contour filter excluded fruits with incorrect contours and non-identical fruits
with similar positions and sizes by calculating the contour similarity. The distance filter
extracted only the fruits for which the Euclidean distance between the center coordinates
of each compared fruit was less than 40 + 2 × T, where T is the number of non-detect days.
The size filter extracted only the fruits whose size variability was within 10 + 0.1 × T [%].
The contour filter extracted only fruits for which the contour similarity of the fruit was less
than or equal to 0.05. The contour similarity was calculated using MatchShapes() in Opencv
of a Python library; MatchShapes() calculates a smaller value if the similarity is greater.
If no fruit satisfied the identical fruit condition, the number of consecutive non-detect
days T was added to mitigate the limitations of the distance and size filters in the search
for identical fruit on the following day. The number of consecutive non-detection days
T was set for each fruit and reset to 0 when it was detected to be the same fruit. The
above procedure was applied to the time series of farm images to obtain time series growth
information for each fruit.

2.3. Verification of the Accuracy of Fruit Detection

To validate the accuracy of fruit detection based on deep learning, the fruit recognition
accuracy was compared between a hidden fruit region detection model trained on the
proposed training data and the model trained on the COCO dataset. For creating the hidden
fruit region detection model, the model trained on the COCO dataset conducted transfer
learning using 3000 automatically generated training datasets (1088 × 1088 [px]). Nine
images (5184 × 3456 [px]), one for each day, were selected from the period 11 September
to 20 November 2018, as images for validation (Figure 6). An average of 77 detectable
target fruits are in the nine selected images.
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Figure 6. Generation of images for verification from observed images. Nine images
(5184 × 3456 [px]), one for each day, were selected from the period 11 September to 20 Novem-
ber 2018, as images for validation data. Since the proposed model requires 1088 × 1088 [px] images
as input data, each original image that is 5184 × 3456 [px] was cut and separated into 11 sections,
generating 99 images with a resolution of 1088 × 1088 [px]. The 93 images were used as validation
images because 6 of the images had no fruit.

As the proposed model requires 1088 × 1088 [px] images as input data, each original
image that had a resolution of 5184 × 3456 [px] was cut and separated into 11 sections,
generating 99 images with a resolution of 1088 × 1088 [px]. Subsequently, excluding
the 6 images in which the fruit was not visible, the remaining 93 images were used as
validation images. Annotation of the regions was done manually using the VGG Image
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Annotator (VIA). VIA can output the fruit contour in JSON format by enclosing the fruit
region in the image (Figure 7).
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Figure 7. Example of annotation using VIA. Annotation of the regions was performed manually
using the VGG Image Annotator, which could output the fruit contour in JSON format by enclosing
the fruit region in the image.

The hidden regions of the fruit were estimated by the operator, and 1813 fruit regions
were annotated. A visual inspection conducted by the operator found that 1605 of the 1813
annotated fruit regions had hidden regions.

The precision, recall, and intersection over union (IoU) were used as indices to evaluate
the accuracy of fruit detection. True positives (TP), which indicate the number of cases
where the prediction is positive and correct; false positives (FP), which indicate the number
of cases where the prediction is positive and wrong; and false negatives (FN), which
indicate the number of cases where the prediction is negative and wrong, are used to define
the precision, as shown in Equation (1), and recall, as in Equation (2). The correct area (CA),
which indicates the manually annotated area, and prediction area (PA), which indicates the
predicted area of the model trained by the proposed training data, were used to define the
IoU, as shown in Equation (3).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

IoU =
CA ∩ PA
CA ∪ PA

(3)

2.4. Verification of the Accuracy of Growth Curve Predictions

The radius of an apple fruit (Y) is shown in Equation (4) as the number of days X
elapsed from April 1 in the year of detection [5].

Y =
a

1 + b× ecX (4)

From Equation (4), a growth curve was generated in real time, and the radius at
harvest was predicted according to its convergence value. When validating the accuracy of
the growth curve predictions, the accuracy for radius detection and real-time prediction
of the radius at harvest were confirmed. To validate the accuracy of radius detection, the
automatically detected apple radius (detected value) was compared with the manually
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detected apple radius (true value), and the mean absolute percentage error (MAPE) and
Pearson’s product ratio correlation coefficients were calculated. The true values were
manually annotated with visual confirmation by the operator using VIA.

For the validation images, one image from each day in which the fruit was clearly
visible was selected from the 1417 farm images recorded over 137 days from 1 July
to 15 November 2016. Examples of validation images are shown in Figure 8. In the com-
parison, two fruit types in the farm image were targeted; the target fruits are shown in
Figure 9. Fruit 1 was partially hidden by leaves and other fruit in all images, while fruit 2
was partially hidden by leaves and other fruit in 23 images, which represent several images
per day ranging from 32 to 49 elapsed days.
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Figure 9. Target fruits to detect. Two fruit types (Fruit 1 and Fruit 2) in the farm image were targeted.
Fruit 1 was partially hidden by leaves and other fruit in all images, while fruit 2 was partially hidden
by leaves and other fruit in 23 of the 1417 images, which are several images per day ranging from 32
to 49 elapsed days.
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In the validation of the real-time prediction of the fruit radius at harvest, the respective
predictions obtained from the detection and true values were compared with the correct
harvest radius. In the derivation of the predictions, the detection and true values at the
number of elapsed days were used to identify each coefficient in Equation (3) using the
least squares method, and the growth curve for each elapsed day was derived. For the
derivation of the correct harvest radius, a growth curve was derived based on all true values
for elapsed days 1–227, assuming 227 days to be the optimum harvest time. Each predicted
value and the correct harvest radius were the convergence values of these growth curves.

3. Results and Discussion
3.1. Verifying the Accuracy of Fruit Detection

The validation results are shown in Table 2. The precision was 0.864 for the COCO
learning model and 0.955 for the proposed model, with the proposed model having a
higher value. The recall was 0.338 for the COCO learning model and 0.317 for the proposed
model, with the proposed model having a slightly lower value. The mean IoU was 0.554
for the COCO learning model and 0.653 for the proposed model, with the proposed model
having a higher value. The median IoU was 0.596 for the COCO learning model and 0.720
for the proposed model, with the proposed model having the higher value. The variance
of IoU was 0.065 for the COCO learning model and 0.046 for the proposed model, with
the proposed model having a lower value. The parameters of fruit height and width
(Table 1) affected the precision and recall values when generating synthetic farm images.
The precision decreased when the height and width were set lower than the values shown
in Table 1. Setting the height and width above the values shown in Table 1 did not improve
the precision and decreased the recall.

Table 2. The validation results.

Item Precision Recall IoU Average IoU Median IoU Variance

COCO model 0.864 0.338 0.554 0.596 0.065
Proposed model 0.955 0.317 0.653 0.720 0.046

An example of a false detection is shown in Figure 10, illustrating that the COCO learn-
ing model incorrectly detected leaves as fruit, while the proposed model rarely detected
them incorrectly.
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incorrectly detects leaves as fruit, while the green line that is the proposed model works correctly and
does not incorrectly detect leaves.
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In the proposed model, the recall improved and the precision and IoU decreased when
small fruits were included in the training data. An example of small fruit detection is
shown in Figure 11, which shows that the proposed model did not detect fruits of small
sizes. The proposed model outperformed the COCO learning model in terms of the mean
and median IoU, as it was able to accurately detect the hidden regions of the fruit. An
example of hidden fruit detection is shown in Figure 12, which shows that the proposed
model can accurately detect hidden regions caused by fruit leaves, branches, and shadows.
The mean and median of IoU did not improve when the leaf size was excessively large
relative to the fruit, or when the number of leaves in front was excessively greater than the
number of fruits. It is, therefore, essential to set the generation parameters appropriately in
order to detect the hidden regions with high accuracy. In addition, in fruit identification, if
the proposed method is applied to images with denser fruit, it becomes difficult to identify
the same fruit because the distance filter may not work as intended. Furthermore, previous
studies on apple detection using the Hough transform [24,25] reported that the precisions
were 93.5% and 92.0%, respectively, and the proposed method shows a higher value than
those reported. The proposed method is effective when applied to data with large volumes
and diverse state changes, such as time-series images, because the Hough transform does
not detect fruit correctly with fixed parameters.
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Figure 11. Example of small fruit detection. The proposed model outperformed the COCO learning
model in mean and median IoU because it could accurately detect hidden regions of fruit without
detecting parts of the fruit. The orange line is the result of the COCO as an existing method, and the
green line is the result of the proposed method.

3.2. Verification of the Accuracy of Growth Curve Predictions

The true and detected values for each elapsed day are shown in Figure 13, which also
shows the growth curves derived from the true and detected values up to 227 elapsed
days. For Figure 13, in Fruit 1, the values of a, b and c in the functional approximation are
a = 99.71, b = 7.848, and c = −0.024 for the detected value curve and a = 112.24, b = 6.428,
and c = −0.021 for the true value curve. In Fruit 2, the functional approximations are
a = 76.61, b = 8.595, and c = −0.027 for the detected value curve and a = 84.93, b = 7.001,
and c = −0.024 for the true value curve. The true and detected values for the same period
of elapsed days are shown in Figure 14. From Figure 14, the MAPE is shown to be 0.079 for
Fruit 1 and 0.072 for Fruit 2, while the coefficient of determination for linear regression was
approximately 0.96 for both Fruit 1 and Fruit 2. Examples of detections by the proposed
model on 2 July and 21 October 2016, are also shown in Figure 15.
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Figure 12. Example of hidden fruit detection. The proposed model can accurately detect hidden
regions caused by fruit leaves, branches, and shadows. The orange line is the result of the COCO as
an existing method, and the green line is the result of the proposed method.

Figure 16 shows the fruit radius at harvest predicted from the true and detected
values for each elapsed day. Each prediction can capture the relative growth curve that
approaches the value of the true curve after approximately 150 elapsed days, even if the
target is partially hidden. However, before 150 days, the predictions varied widely and had
relatively large errors. This suggests that the number of samples for prediction was not
sufficient up to approximately 150 days. In addition, observations from the early stages of
growth are required to ensure a sufficient number of samples. Furthermore, it is difficult for
the proposed method to predict the radius of harvested fruit before 150 days have elapsed,
and further improvement of the growth model and prediction algorithm is required for
an early prediction. Moreover, in order to avoid the large amount of processing in the
study, the validation was limited to two representative fruits that were detectable over a
long period of time. Therefore, although the difference in accuracy of growth prediction
between the different models is not clear, it can be expected from Table 2 that the proposed
model will improve prediction accuracy over the conventional model when all fruits in the
image are targeted.

Figure 17 shows a filtered and averaged IoU of each fruit for each elapsed day. The
filtered IoUs indicate the IoUs of the fruit recognized as the same fruit by the detection
algorithm shown in Figure 5. The averaged IoU shows the mean value of the IoU of all
fruits with the correct and overlapping regions. From Figure 17, the filtered IoUs for Fruit 1
and Fruit 2 are equivalent, but the averaged IoUs are lower for Fruit 1 than for Fruit 2.
In Fruit 1, the averaged IoU is lower than the filtered IoU for most elapsed days due to
overlap with other fruits. The averaged and filtered IoUs are similar in Fruit 2 as there is
no overlap with other fruits. The results of Figure 17 show that the proposed method is
able to track occluded fruit and accurately predict the region. Furthermore, the proposed
fruit detection algorithm shown in Figure 5 enables accurate fruit detection and growth
prediction even when the target fruit is occluded by other fruits and leaves, which suggests
the effectiveness of the proposed fruit detection algorithm.
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derived from the true and detected values up to 227 elapsed days. In Fruit 1, a, b, and c in the
functional approximation of Equation (4) are a = 99.71, b = 7.848, and c = −0.024 for the detection
value curve and a = 112.24, b = 6.428, and c = −0.021 for the true value curve. In Fruit 2, a = 76.61,
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true value curve.
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Figure 14. True values vs. detected values for the same elapsed days. The MAPE is 0.079 for Fruit 1
and 0.072 for Fruit 2, while the coefficient of determination for linear regression is approximately 0.96
for both Fruit 1 and Fruit 2.
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Figure 15. Examples of detections by the proposed model. Fruits detected are indicated by areas
of green lines painted orange, and the fruit targeted for tracking are indicated by purple rectangles.
Although there are some detection errors, the proposed method can detect individual fruits even
when they are in contact with each other or densely packed together, as in the image from 21 October.
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days, even if the target is partially hidden. Before 150 days, the prediction varies widely and has
relatively large errors.
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Figure 17. Filtered IoU and averaged IoU of each fruit for each elapsed day. The filtered IoUs indicate
the IoUs of the fruit recognized as the same fruit by the proposed detection algorithm shown in
Figure 5. The averaged IoU shows the mean value of the IoU of all fruits with the correct and
overlapping regions. Although the averaged IoU of Fruit 1 is lower than that of Fruit 2 for most
elapsed days due to overlaps with other fruits and leaves, the filtered IoUs of Fruit 1 and Fruit 2 are
equivalent. The averaged and filtered IoUs are similar in Fruit 2 because there is little overlap with
other fruits and leaves.

In addition, the information on the relative size change outputted by the proposed
method is important, and if the actual fruit size is measured at any desired time, it is
possible to easily graph the change over time and prediction results according to that
size. For example, when the predicted results of this study were normalized and the
harvesting fruit radius was assumed to be 4.5 cm based on the information from an apple
sales website [26], all the predictions had an error of less than 0.5 cm after 195 elapsed days
for both Fruit 1 and Fruit 2.

Furthermore, in actual management in an orchard using the proposed monitoring
system, skilled farmers may be able to empirically identify trees that are representative of
their farms and observations of a few representative canopies with a realistic number of
fixed cameras will be considered. In addition, in an application of the proposed method in
a mobile monitoring system, the composition of a mobile camera system changes, but the
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proposed method can cope with this by adjusting the detection range of the fruit tracking.
The appropriate operation method will also be considered with regards to the size of the
orchard and cost-effectiveness of the system.

4. Conclusions

In this study, an automatic training data generation method for hidden fruit detection
and a fruit identification system were developed to predict the growth characteristics of
individual apples in real time. To verify the effectiveness of the training data generation
method, a transfer learning method was applied to the Mask R-CNN model using the
automatically generated training data, and comparative experiments were conducted with
the existing models. In addition, to verify the effectiveness of the individual identification
system, individual fruit growth prediction was carried out on a series of farm images taken
over some time.

The following conclusions can be derived from this study:

1. The proposed model was capable of detecting hidden fruit with high accuracy, mea-
suring fruit size in real time, and predicting the radius at harvest based on fruit size
time series data.

2. The model using automatically generated training data results was higher in precision
and IoU compared to the existing model, which was affected by the parameters used
to generate the synthetic farm images.

3. In individual fruit identification, the same fruit could be identified at different dates
and times by using filters for the amount of change in fruit position, size, and contour
similarity.

4. In real-time fruit radius measurements, the MAPE of the true and detection values
was less than 0.079, and the coefficient of determination for linear regression was
more than 0.95 for both Fruit 1 and 2, indicating that the fruit radius can be measured
with high accuracy.

5. In the real-time prediction of the radius at harvest, each prediction can capture a
relative growth curve that is close to a true one after approximately 150 elapsed days.

6. The proposed fruit detection algorithm enabled the tracking of even partially hidden
fruit with sufficient prediction accuracy.

The present study enabled the detection of hidden fruit, which could not be detected
in studies that conducted rectangular detection of fruit [6–8]. It also enabled individual fruit
identification and fruit size measurements in real time. In addition, previously, annotating
hidden regions required a lot of manual work and guesswork by the operator [21]. However,
in this study, the cut-and-paste method was applied to automatically generate training
data. The proposed method enables learning of the exact regions of the fruit, including the
hidden regions, without the need for manual annotation.

In future studies, for more accurate fruit detection, the generation parameters of the
training data will be adjusted and the boundary of the clipped image will be improved.
We will also apply the model to fruits other than those verified in this experiment to
confirm the generality of the model. Furthermore, in the fruit recognition accuracy of the
proposed model, we will investigate a generation method that improves the recall value
without reducing the precision and IoU by including smaller fruits in the training data. In
addition, an algorithm that can accurately predict the radius at harvest earlier based on
multi-year fruit growth curves will be developed. Moreover, the filter parameters in the
fruit detection algorithm need to be adjusted according to the lens, distance to the subject
and the condition of the fruit size and branch thickness, and their generalization will be
discussed. In addition, the influence of the state of the hidden region and the variation in
fruit size on the comparison of actual and predicted fruit size will be examined.
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Nomenclature

T The number of non-detect days [day]
TP True Positives
FP False Positives
FN False Negatives
IoU Intersection over Union
CA Correct Area [m2]
PA Prediction Area [m2]
X The number of elapsed days [day]
Y The radius of apple fruit [m]
a Growth curve coefficient [-]
b Growth curve coefficient [-]
c Growth curve coefficient [-]
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