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Abstract: The correlations between smartphone sensors, algorithms, and relevant techniques are 

major components facilitating indoor localization and tracking in the absence of communication and 

localization standards. A major research gap can be noted in terms of explaining the connections 

between these components to clarify the impacts and issues of models meant for indoor localization 

and tracking. In this paper, we comprehensively study the smartphone sensors, algorithms, and 

techniques that can support indoor localization and tracking without the need for any additional 

hardware or specific infrastructure. Reviews and comparisons detail the strengths and limitations 

of each component, following which we propose a handheld-device-based indoor localization with 

zero infrastructure (HDIZI) approach to connect the abovementioned components in a balanced 

manner. The sensors are the input source, while the algorithms are used as engines in an optimal 

manner, in order to produce a robust localizing and tracking model without requiring any further 

infrastructure. The proposed framework makes indoor and outdoor navigation more user-friendly, 

and is cost-effective for researchers working with embedded sensors in handheld devices, enabling 

technologies for Industry 4.0 and beyond. We conducted experiments using data collected from two 

different sites with five smartphones as an initial work. The data were sampled at 10 Hz for a dura-

tion of five seconds at fixed locations; furthermore, data were also collected while moving, allowing 

for analysis based on user stepping behavior and speed across multiple paths. We leveraged the 

capabilities of smartphones, through efficient implementation and the optimal integration of algo-

rithms, in order to overcome the inherent limitations. Hence, the proposed HDIZI is expected to 

outperform approaches proposed in previous studies, helping researchers to deal with sensors for 

the purposes of indoor navigation—in terms of either positioning or tracking—for use in various 

fields, such as healthcare, transportation, environmental monitoring, or disaster situations. 
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1. Introduction 

Artificial intelligence (AI) and the Internet of Things (IoT) have enabled advanced 

localization and tracking techniques for indoor environments. When used in localization 

and tracking, these techniques can be separated into passive and active technologies. Pas-

sive technology denotes when a device does not continuously receive location data, such 

as radio frequency identification and/or infrared radiation. Meanwhile, active technology 

continuously receives location data such as wireless networking technology and Blue-

tooth low energy (BLE) [1]; however, such methods are expensive, and require physical 
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installation, maintenance, deployment, and the placement of the physical beacons [2]. A 

beacon is a small device that is used to send a predefined message about itself, and may 

lead to unstable monitoring when considering distance limitations [3]. Beacons can be 

programmed manually to send beacon identifier data to user devices which, in turn, are 

translated into virtual beacon identifiers and connected to a server (e.g., message device) 

that contains the virtual beacon information and recent updated information related to 

the beacon identifier [4]. The continuous broadcasting of user data may also lead to secu-

rity and privacy issues [5]. One solution to reduce the physical installation of beacons for 

localization and tracking is to use the weighted centroid algorithm [6,7], which requires 

the positioning of many beacon nodes. Understanding an object in three dimensions (3D) 

is not easy for regular users, as it requires a large enough screen to represent 3D objects 

[8]. Another way to reduce the physical installation of beacons is to use human–machine 

interfaces, such as touchscreens [5]; however, this method requires the installation of 

many sensors and links between them for use in services such as home automation (e.g., 

automatic lights, gate opening). To overcome this sensor installation challenge, human–

machine interfaces have been used in the development of sensor trigger activities through 

human gestures based on predefined geometric forms and positioning, serving as a new 

way to interact with devices to facilitate virtual sensor activity in real life. The limitations 

of these physical sensors and beacons, in terms of power, storage, and communication, 

affect their sensing capabilities [9,10]. Previous studies have focused on allocating many 

sensors in desired regions [11], resulting in problems related to power consumption. Pe-

destrian tracking sensors can be used to collect information, but require the Global Navi-

gation Satellite System (GNSS) service [12]. Issues with mobile devices or failure to log 

out (e.g., from a work account) can expose such devices to dangerous privacy-related at-

tacks [13]. Indoor localization remains an unsolved difficulty, due to problems related to 

multipath signal propagation [14]. Tracking requires significant calculation, and becomes 

more difficult with each targeted location [15]. The previous literature lacks a complete 

picture of the communication and interlocking between entities required to enable a com-

plete combination that governs the operation of tracking and navigation environments 

inside buildings. In summary, most studies have proposed the use of virtual locations 

(e.g., regions related to sensor data) without identifying real locations, based on official 

Global coordinate systems (GCSs), which are among the sources that we use to show how 

the locations can be mapped between mobile phone sensors and real locations for ready 

use. Studies focused on future directions in smartphone-based localization [16] have men-

tioned that smartphones are not yet ready, due to calibration requirements and the huge 

amount of data coming from mobile phone sensors. Therefore, the location errors due to 

the limitations of smartphone functionalities are maximized. A magnetic field signal map 

is built relative to Earth coordinates—regardless of smartphone rotations—and the errors 

of the inertial measurement unit (IMU) due to external acceleration, magnetic interference, 

and the drift of the gyroscope (gyro) sensor and also (called Angular Velocity), indicating 

that solutions for smartphones in indoor environments remain an open problem, due to 

their dimensionless measurements. Considering the above, the main contributions of this 

paper are as follows: 

• We present a comprehensive literature review of the use of mobile-phone-embedded 

sensors in indoor localization and tracking; 

• A literature comparison of the three main components (sensors, algorithms, and tech-

niques) required for tracking and localizing an object in an indoor environment; 

• We design a handheld-device-based indoor localization and tracking platform with 

zero infrastructure; 

• We construct an initial dataset of multilayer data sources for indoor localization and 

tracking; 

• We build a visualization of the connections between data sources using a Web of 

Things (WoT) technique (Node-RED) for routing data from different sensors. 
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The remainder of this paper is structured as follows: Section 2 provides a literature 

review on the main aspects of localization and tracking that can affect handheld device 

infrastructure without predefined hardware. This section includes seven subsections, 

highlighting the main points in geospatial environment, machine learning (ML), range-

based localization, pedestrian dead-reckoning techniques, handheld device sensors, the 

Web of Things (as an Internet-of-Things-based wiring program enabling the interactivity 

of devices with web services), and modeling development technique, in order to explore 

the optimal model for our proposed method. In Section 3, we discuss in detail the three 

main components—sensors, algorithms, and techniques—and analyze the related param-

eters. Section 4 proposes a framework structure, dealing with handheld device sensors 

and outlining the smoothing and fusion processes. Section 5 details the initial data from 

two sites and their preparation for the processing and design of the data flow, using Node-

RED as a WoT tool and establishing a quick response (QR) layer. Finally, in Section 6, our 

conclusions and avenues for future work are discussed. 

2. Literature Review 

Conducting a comprehensive literature review on the area of handheld-device-based 

indoor localization requires a more intense focus on what the main components of 

handheld devices are, along with how they can be combined to accomplish the localiza-

tion and tracking of any object without extra hardware. To the best of our knowledge, 

there has been no prior work on indoor localization and tracking estimation using a col-

lection of multiple predefined data sources, such as data from building blueprints, mobile 

IMU sensors, and mobile camera sensors, along with a time-series approach. The studies 

presented in this literature review have examined sensors, algorithms, and techniques for 

indoor localization and tracking in different ways. Localization and tracking provide a 

way to understand how the coordinate system works for processed geospatial data. Part 

of this includes range-based localization and pedestrian dead-reckoning techniques, 

which utilize handheld device sensors to localize and track objects through the use of ma-

chine learning techniques. All of these processes can be expressed and wired to one an-

other through Web of Things technologies, such as Node-RED. Through reviewing and 

discussing the considered studies, sensors, algorithms, and techniques became the three 

key components shaping the system structure of our proposed zero-infrastructure plat-

form for indoor localization and tracking. 

In Figure 1, the proportions of these three components in papers published between 

2017 and 2022 are shown. To make the work more transparent, paper citations are high-

lighted in Figure 2, where some papers received many more citations than others, indicat-

ing their quality. Figure 2 shows that more than half of the papers had two or more cita-

tions. Considering the availability and the quantity of data arising from smartphone-em-

bedded sensors, the diversity of handheld device technologies, and continuous data 

streaming from sensors built into handheld devices, IoT and 5G technologies have con-

tributed to the rapid growth of data streaming in different domains. Thus, online data 

without updating may not be the optimal model for comparison. In this paper, we propose 

a ready-made platform using connected main components and data, which may help re-

searchers as a baseline when working with handheld devices to conduct localization or 

tracking in indoor environments with real data. 
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Figure 1. Indoor infrastructure components reported in papers published between 2017 and 2022. 

 

Figure 2. Numbers of citations for relevant studies published between 2017 and 2022. 

2.1. Geospatial Environment 

Geospatial data is a field where static locations are made to be more interactive, al-

lowing for the provisioning of data used in navigation or to localize an object. Spatial data 

can help to understand mapping and georeferencing, by dividing the desired area into 

particular sub-locations. In this way, we can more easily identify the location of an object 

either at a fixed location or moving relative to a frame of reference. The reference frame 

refers to a coordinate system with respect to an object’s location and orientation, described 

by a set of reference points. Such navigation could be either outdoors or indoors. Outdoor 

reference frames have been standardized [17] through global navigation satellite systems 

such as the Global Positioning System (GPS) [18], including the most prominent satellite 

systems GPS from the U.S., GLONASS from Russia, Beidou from China, QZSS from Japan, 

and GALILEO from the E.U.; however, indoor localization and navigation still face chal-

lenges, even though most of the world’s population lives predominantly indoors at pre-

sent [19]. This has led to increasing interest in adapting handheld devices with embedded 

sensors for this purpose, due to the spread of handheld devices around the world in recent 

years. 
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2.2. Machine Learning 

Machine learning (ML) is one of the technologies considered in this paper, compris-

ing a study field that represents the ability of computers to learn without being pro-

grammed by humans, to varying degrees [20]. The two types of ML models include su-

pervised learning, in which the model is educated on what to do, and unsupervised learn-

ing, in which the model learns by itself. Further types of ML, called reinforcement learning 

and recommender systems, are not discussed in this paper. Most ML filtering algorithms, 

such as the Kalman filter and particle filter, help in adapting to dynamic changes, fusion, 

and multidimensional dataset features. One such algorithm, the Kalman filter, predicts 

future data from previous data, and requires an initial value to begin. The benefit of this 

filtering algorithm is that it cannot save anything but the previous value [21]. It comprises 

four steps: an initial value, prediction (which computes the gain of the filter), estimation, 

and the error covariance. Kalman gain (KG), the primary step, is calculated with respect 

to three important parameters in KG: the first is the range, the second is the error meas-

urement, and the third is the estimate error. The KG takes values in the range between 0 

and 1. Its measurements are initially accurate and, as KG approaches zero, the measure-

ments become increasingly inaccurate. There are three calculation steps to predict the cur-

rent error estimate: calculating the 𝐾𝐺, the current estimation (𝐸𝑆𝑇𝒕), and the new esti-

mate error (𝐸𝐸𝑆𝑇𝑡
). The formulae for these are given in Equations (1)–(3), respectively: 

𝐾𝐺 =
𝐸𝐸𝑆𝑡

𝐸𝐸𝑆𝑇 + 𝐸𝑀𝐸𝐴

, (1) 

𝐸𝐸𝑆𝑇 =  𝐸𝐸𝑆𝑇−1 + 𝐾𝐺[𝑀𝐸𝐴 − 𝐸𝐸𝑆𝑇−1], (2) 

𝐸𝐸𝑆𝑇𝑡
=

(𝐸𝑀𝐸𝐴)(𝐸𝐸𝑆𝑇𝑡−1
)

(𝐸𝑀𝐸𝐴) + (𝐸𝐸𝑆𝑇𝑡−1
)

 −→  𝐸𝐸𝑆𝑇𝑡
= [1 − 𝐾𝐺](𝐸𝐸𝑆𝑇𝑡−1

), (3) 

where 𝐸𝑀𝐸𝐴 is the error measurement and 𝐸𝐸𝑆𝑇𝑡−1
 is the previous error estimate. The Kal-

man filter is used for the fusion of data from sensors and other sources with low compu-

tation. Another algorithm, the particle filter, can respond to inputs in different dimen-

sions, based on observations that track its predictions. It uses predicting, updating, and 

resampling cycle steps to estimate and provide a dynamic system state estimation. In the 

prediction step, each particle is added to a random sample. In the update step, sensor 

measurements are assigned as particles with weight denoting the probability of observing 

the measurement from the particle state. In the resampling step, a new set of particles that 

survives is chosen, in proportion to their weights. Therefore, particle filtering can find a 

more exact representation for complicated modes than any simplified model. Particle fil-

tering can also enable fusion of IMU sensors [22], but involves more computation than the 

Kalman filter. 

2.3. Range-Based Localization Techniques 

Range-based localization is a technology for the estimation of distances and angles. 

It includes two types of techniques: dependent signal propagation and independent signal 

propagation. Dependent signal propagation techniques have three types: RSSI, time of 

arrival (ToA) and time difference of arrival, and angle of arrival (AoA) techniques. All of 

these techniques depend on knowing the signal propagation in an indoor environment, 

and require line of sight. Therefore, they require infrastructure and the implementation of 

anchor nodes such as beacons and sensors. As such, these strategies are not suitable for 

use in new scenarios in zero-infrastructure environments. The second type of technique 

involves independent signal propagation. The idea behind this technique is to minimize 

signal propagation, but not eliminate it. The main difference lies in minimizing the imple-

mentation of access points and anchors in an indoor environment. Although range-based 
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localization has a wide use in indoor environments, it requires physical sensors, access 

points, and software to be implemented as infrastructure. 

Relevant techniques include using IMUs implemented in non-mobile phone devices, 

mobile phone IMU sensors along with other mobile sensors, or the approach proposed in 

this paper: handheld device-based indoor localization with zero infrastructure (HDIZI). 

All of the aforementioned techniques require an indoor signal to work, with HDIZI being 

the exception. HDIZI can operate fully independently of signal propagation. Further de-

tails of its function are given later. 

2.4. Pedestrian Dead-Reckoning (PDR) Techniques 

PDR utilizes the heading angle and step length of a pedestrian, and includes heading 

angle estimation, step length estimation, and step detection. PDR uses three-dimensional 

map calculation (i.e., latitude coordinates, longitude coordinates, and time). If the initial 

position is known, PDR can measure the heading angles and step length based on this, as 

follows: 

𝑁𝑡 + 1 =  𝑁𝑡 𝑆𝑙𝑡 ∗ 𝑐𝑜𝑠𝜓𝑡, 

𝐸𝑡 + 1 =  𝐸𝑡 𝑆𝑙𝑡 ∗ 𝑠𝑖𝑛𝜓𝑡 
(4) 

where 𝑁 denotes north (or latitude), 𝐸 is east (or longitude), 𝑡 is the time passed when 

reading the position, 𝑆𝑙 is the step length, and 𝜓 is the heading angle. The heading angle 

is used to calculate position coordinates, and is used by the gyro, but may accumulate 

error when moving. The Mahony complementary filter (MCF) can be used to correct gyro 

data, and a low-pass filter (LPF) and high-pass filter (HPF) can be used to overcome ac-

celerometer (acce) and gyroscope (gyro) data spikes, respectively. The Mahony comple-

mentary filter (MCF) can be used to compute the heading angle, as it utilizes gyroscope 

data to calculate the carrier attitude, and does not result in error accumulation. Use acce 

and magnetometer (mag) data, the MCF corrects the gyro error (as shown in Equations 

(5) and (6)), and all sensor data are considered to lie in 3-dimensional space: 

e = [ex  ey e z ]
T

, 

e = ea + em, 
(5) 

ea = [eax  eay e az ]
T

, 

em = [emx  emy e mz ]
T

. 

(6) 

Then, we identify the error in acce and gyro, calculated as follows (Equation (7)): 

ea = (Cn
b  ga) x a, 

em = (Cn
b  gm) x m, 

(7) 

where 𝑔𝑎 is the gravity vector, 𝐶𝑛
𝑏 is the rotation matrix from the geographical coordi-

nate system to the carrier coordinate system, and 𝑥 𝑎 and 𝑥 𝑚 are the associated vector 

cross-products. The gravity vector in GCS is 𝑔𝑎 = [0 0 𝑔]𝑇 and, when the x-axis points 

north, 𝑏𝑚 = [𝑏𝑚 0 𝑏𝑚𝑧]𝑇. Then, the corrected gyroscope data can be calculated by Equa-

tion (8), where 𝐾𝑝 and KI are used as error control terms: 

ω =  ωg + Kpe + KI ∫ e, (8) 

where ωg = [ωgx ωgy ωgz]
T

 denotes the normalized gyro raw data and ω =

[ωx ωy ωz]
T
 denotes the corrected gyro data. 
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2.5. Handheld Device Sensors 

A position sensor helps in determining the location of a mobile phone. The terms 

used in this paper, such as virtual sensor, virtual beacon, or beacon, denote virtualizing 

the physical sensor. The magnetometer (mag) in a mobile phone is continually spinning 

to point north. The motion sensor tracks its speed and rotation. The gyroscope tells the 

mobile phone where it is pointing, in three dimensions. The environmental sensor tracks 

properties such as temperature, humidity, and air pressure. When these sensors work to-

gether, they can match a tilt and orientation on a map, according to the location. The ac-

celerometer records the mobile phone’s acceleration, and the barometer can detect any 

change in altitude, such as moving upstairs or downstairs. These sensors are part of the 

IMU. The IMU, shown in Figure 3, is an electronic device used to measure acceleration, 

angular velocity, and magnetic density [23]. Any rigid body orientation has a heading, 

orientation, and altitude, all of which measure both its three dimensions in linear distance 

(x, y, z) and the movements of the object, determined as angles (yaw, pitch, roll), as shown 

in Figure 4. 

 

Figure 3. IMU and fusion SW outputs. 

 

Figure 4. Object movement distances and angles. 

Pitch refers to the movement of an object’s nose up or down, relative to the Earth’s 

gravity. Roll refers to the tipping of an object left or right, relative to the gravity of the 

Earth. Yaw refers to the turning left or right of an object along the direction it is heading 

(e.g., toward magnetic north or geographic north). In an explicit manner, the 9-DF in Fig-

ure 3 indicates when fusion provides information about the orientation, motion, and head-

ing of an object. The orientation can be measured by various means. The gyroscope 

measures the Earth’s gravity, although it may suffer from drift. The magnetometer is used 

to correct this drift. Magnetic sensors can correct IMU errors [24], even giving a more 
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accurate position over a short distance. Mobile phone orientation operates in terms of 

yaw, pitch, and roll, maintaining a physical north direction. The magnetometer sensor 

helps to eliminate inconsistencies in readings arising from various issues related to mag-

netic north. Magnetic values provide a direction (x, y, z). The correction sensor present in 

a gyroscopic motion sensor adds further spatial information for the accelerometer by 

tracking rotation and measuring the angular velocity [11]. Together, the correction sensor 

and accelerometer measure the rate of change. The gyroscope provides orientation and 

direction (up/down/left/right) data for improved accuracy. It can determine how many 

times a mobile phone tilts, differentiating it from the accelerometer [25]. The gyroscope 

can remove errors due to gravity from the external accelerometer, which otherwise would 

result in inaccurate rotation measurement [11]. The gyroscope creates data drift when 

tracking a path [26]. An accelerometer is used to measure a mobile phone’s velocity in a 

linear direction [26], thus detecting acceleration, vibration, and slow motion on the 3D 

axes. However, the accelerometer sensor cannot measure rotations; it suffers from errors 

caused by external accelerations resulting from gravity. 

2.6. Web of Things 

The WoT provides approaches for merging devices with the web, allowing the de-

vices to become more accessible and easier to program. In other words, it enables connec-

tion and interactivity with devices, as for any other resources on the web, using known 

web standards. When developing services through physical things using HTTP requests, 

writing an interactive application is as easy as writing a web application in HTML, CSS, 

or JS. Node-RED is a visual WoT programming development tool developed by IBM for 

flow-based visual programming. Node-RED was developed for wiring between hard-

ware, online services, and APIs. These three parts are part of a larger environment: the 

Internet of Things. Among the features of Node-RED, it provides a web-browser-based 

flow editor feature that can be used to create JavaScript functions. Node-RED’s runtime is 

based on node.js, and the flow is created and stored using JSON. MQTT nodes allow for 

properly configured TLS connections. Node-RED is an open-source Java Foundation pro-

ject. 

2.7. Model Development 

There are a number of themes in modeling development, which may be model- or 

data-centric [27]. When choosing the right ML architecture, in practice, data-centric ap-

proaches may be more robust. Furthermore, one should not just focus on ML architecture 

enhancement, but also on obtaining high-quality data. In the end, this ensures that the 

system performs efficiently. Engaging in data-centric ML development is not easy, how-

ever, as collecting sufficient high-quality data is typically very time-consuming. Instead, 

tools such as ProM [28]—a process mining approach that focuses on analyzing end-to-end 

processes at the event level to enhance the data in the most efficient possible way—are 

used in our proposal to validate the process model’s quality. Before working on training 

models, some key challenges that may be faced when building ML models should be con-

sidered. Understanding of these key challenges allows developers to better spot them 

ahead of time, thus adjusting the ML system more efficiently. ML systems consist of code 

and data, which should be the focus when developing an ML system, with emphasis on 

how to improve the code. In many studies, datasets are first downloaded, followed by 

trying to find an overall model that performs well on the dataset; however, in many ap-

plications—such as in our proposed scenario, which requires flexibility in terms of chang-

ing data—the data must be changed, in order to apply the model to different scenarios. In 

this case, data can be collected from more than one source or location. The same situation 

may occur in many projects where the algorithm or model is effectively considered to be 

a solved problem. 

Some models that can be downloaded from (for example) GitHub perform well 

enough, such that it is more efficient to spend time on improving the data, which are 
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usually much more customized to a particular problem. When building an ML system, 

usually we must consider the code (algorithm/model), various hyperparameters as addi-

tional inputs, and the dataset. Then, the algorithm must be trained on the desired data to 

obtain an ML model that can make predictions. Model development is a highly iterative 

process. As ML is such an empirical process, being able to go through a loop many times 

very quickly is the key to improving the performance of the model; however, in order to 

enhance the performance with each iteration, one must make good choices regarding how 

to modify the data, how to modify the model, or how to modify the hyperparameters. 

With these considerations, and after enough iterations, a good model can be obtained. The 

final step is conducting architecture error analysis. When facing difficulties in model de-

velopment, points or key milestones that can lead to the development of the desired model 

should be considered. These milestones could be used as a training set at least once; then, 

it should be tested whether the algorithm does well on the validation set as well as the 

test set. If the algorithm does well on the training set, then it should also perform well on 

the testing set. Furthermore, it should be ensured that the learning algorithm performs 

well according to various metrics, or according to the design goal. For our proposed 

method, the process model quality provided with the ProM tool [28] was used to measure 

how the model was able to replay the observed behavior, the precision of the model to 

allow too much behavior, its generalization, and to ensure that the model was simple and 

easy to understand. 

3. Discussion 

The proposed framework contains components that were identified after our litera-

ture review. Some papers have utilized more metrics, while others only considered one or 

two, such as accuracy, as well as advantages and disadvantages. From these papers, sen-

sors, algorithms, and techniques were identified as the main components used for locali-

zation and tracking in indoor environments. 

3.1. Sensors 

A handheld device has various built-in sensors; some are separate sensors, while oth-

ers are grouped, such as the inertial measurement unit (IMU). Table 1 details the most 

popular sensors used in the collected papers, along with their uses and limitations. The 

IMU device is used to measure specific forces on a body, as well as to calculate the angular 

rate. This electronic device is composed of three main sensors: an accelerometer, a gyro-

scope, and a magnetometer. The IMU can be used to track the movement of an object in 

space. Working with one or more of these sensors can give different results, and more 

than one technique must be utilized, as no direct implementation can overcome data drift 

and noise. There have been many studies considering such sensors—some from an elec-

tronic engineering perspective and some in computer science; however, these studies 

were conducted at an abstract level, with a focus on data derived from these sensors, 

meaning that no specific procedure or flow technique to enhance the way in which they 

are used has been proposed. 
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Sensor ranging functions, such as RSSI [1,3], are affected by battery charging and 

maintenance; however, when the location of a sensor or beacon is changed, users may 

continue to receive old information. Hence [4], there is a need to construct virtual beacons 

that can be assigned dynamically and updated easily, based on the revolutionary techno-

logical concept of “bring your own device” [13]. It should be noted that these technologies 

may affect working networks [29]. Using various operating systems and machine virtual-

izations, the activation of which is based on distance, provides one solution [13]; however, 

this solution relies on predefined locations, and uses hardware to connect nearby devices. 

Previous authors have described the characteristics of existing systems [30]. A microelec-

tromechanical system (MEMS) that has been detailed in a previous study [12]—the IMU 

Shimmer 3—has a three-axis gyroscope, a three-axis accelerometer, and a barometer with 

nine degrees of freedom. Such existing systems, however, have the limitation of high cost. 

Therefore, it is essential to add more value to pedestrian-restricted sensors [12]. The 

proposed indoor virtual beacon system includes three parts [3]: a monitoring access point, 

a location cloud service (which calculates the mobile device’s location in nearby areas), 

and a proximity alert service (which triggers proximity-based alerts on the mobile device). 

This system decreases the mobile processor’s stress, thus preserving battery energy. Dif-

ficulties in managing and enhancing physical sensors in previous studies [24,31] typically 

involved activating one or more nodes in networks of sensors [32]. The beacon can listen 

to broadcasts sent by the resources. After the activation node announces its role and ca-

pabilities [33] (e.g., linking a logical node), the device can communicate with the wireless 

network [32]. Information is transmitted to a sorted node until another node requests it. 

Table 1. Details of various handheld device sensors. 

 Sensor Uses Limitations 

Main sensors in 

the platform 

Accelerometer [12,34–39] 
Measures gravity, changes in capacitance, 

and acceleration and deceleration forces. 

External acceleration errors,  

freely falling object acceleration prob-

lem. 

Cannot sense a 3D rotation. 

Magnetometer 

[12,16,35] 

Measures magnetic field, object’s north ori-

entation, a complementary sensor 
Disturbance in magnetic field. 

Gyroscope 

[12,30,34,35] 
Maintains orientation and angular velocity. 

Data drift (i.e., the orientation smoothly 

drifts away from the truth). 

Enhanced sen-

sors 

Proximity 

[40–42] 

Detects the distance between an object and 

the phone, uses LED light and IR detection 

to sense the presence of nearby objects 

Limited to 10 cm distances. 

Pedometer (SIMI sensor) [43] Step counter, based on acceleration sensor. 

Errors caused by external accelerations, 

makes accelerometer-based tilting sens-

ing unreliable. 

Ambient light [44] Senses light level, proximity sensing.  

Barometer 

[45] 

Corrects altitude errors to narrow down the 

deviation to 1 m and works with the device’s 

GPS to locate position when inside a build-

ing. 

Requires calibration by user. 

Accelerometer sensors [34] measure changes in capacitance caused by motion along 

three axes (x, y, and z), and accordingly determine the instantaneous acceleration and de-

celeration forces. They can recognize motion gestures such as flipping or moving a mobile 

phone from one side to another, and help to detect the orientation of an object. These sen-

sors [35] also have problems relating to the zero acceleration of a freely falling object, and 

cannot sense 3D rotations. An accelerometer measures linear acceleration when moving 

but, when using an accelerometer alone, the output results tend to be noisy. Accelerome-

ters sense acceleration, vibration, and slope for movement in three directions. A gyroscope 

[46] is a device with a wheel set that rapidly spins to retain its attitude when its framework 
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is tilted, allowing for measuring orientation and angular velocity. It provides orientation 

and direction details (left/right/up/down) with more accuracy, and can measure rotation, 

which are used to understand a handheld device’s status, giving an indication of the head-

ing of the user holding the device through the yaw, pitch, and roll. Roll measures the left–

right orientation of a steady object, while pitch is the slope with respect to the front and 

back of an object. A gyroscope [35] can help to remove the accelerometer errors; however, 

it may [34] create data drift, which results in heading error when moving due to gyro bias 

[47]. A magnetometer is a sensor that works like a compass to determine the magnetic 

field, which is designed to point to magnetic north. This sensor eliminates and calculates 

the amount of magnetic disruption in order to indicate magnetic north by calculating the 

amount of magnetism in each of its three axes, which helps in calculating tilt and cant. 

Magnetometers [35] can be used to correct errors in the two abovementioned sensors (i.e., 

accelerometers and gyroscopes). They are also called compass sensors, as they can be used 

for mapping functions, helping to locate positions by measuring the strength and direc-

tion of a magnetic field through detecting changes in the electrical resistance of anisotropic 

magnetoresistive materials. Combining these three sensors minimizes each sensor’s iner-

tial error. 

Proximity sensors are distance detector sensors [40–42] used in most recently devel-

oped handheld devices. For mobile devices and tablets, they help to save battery by 

switching the screen off when the device is not used. They also work by utilizing infrared 

LED light and infrared radiation (IR) to detect distances, providing a more robust distance 

detector, but are limited to a distance of 10 cm. Pedometer sensors are software sensors 

that use the accelerometer to count steps. Heart rate sensors [25] use LEDs and optical 

sensors to calculate heart pulses. The LED emits light into the skin, which is reflected. By 

differentiating the light’s strength, it can be determined when there is a pulse. Through 

ambient light brightness sensing, they can also sense proximity using an IR LED, gener-

ating strong or weak currents based on the ambient light. Barometric sensors measure the 

air pressure to calculate the altitude. A barometer is composed of a rheostat and a capac-

itor, which measure atmospheric pressure through calculating changes in electrical re-

sistance and capacitance. 

Finally, thermometer sensors are common in modern handheld devices, including 

temperature scalers that monitor the device temperature to maintain the battery and keep 

it safe. 

3.2. Algorithms 

Next, we consider algorithms used with handheld devices’ IMU sensors or other sen-

sors, such as cameras or LiDAR sensors, for localization and tracking in indoor environ-

ments. Table 2 details the most common algorithms in handheld devices, including their 

uses and limitations. Physical sensors that provide positioning data for nodes have been 

studied by several authors, such as [48,49]. In 2015, an interesting idea was suggested in 

[50], where only a subset of the available physical sensors was used. Subsequently, several 

studies [51–53] have developed interactive models for controlling virtual sensors in cloud 

environments, based on the current demand. Perhaps the most responsive solution has 

been presented in [33], where the virtual sensing framework can leverage internal data 

connections to predict future values. Despite the many strong studies found in the litera-

ture, some unresolved challenges remain, such as the efficient use of virtual sensors. In 

previous studies [11,51], the authors proposed the ACxSIM algorithm, which consists of 

two main components: ACASIM, which is based on adaptive clustering theory; and ACO-

SIM, which follows the ant colony optimization paradigm. Some authors have also used 

MEMSs—for example, to design a capacitive pressure sensor array for heart rate meas-

urement [54]. Even though this MEMS mimics the human heart, it is still in the simulation 

stage, and needs further study. In one study [11], the authors presented a dual algorithm 

that relied on similarity, rather than physical proximity, to guide sensor selection. The 

authors of [36] proposed a cascaded deep neural network using an accelerometer and a 
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magnetometer to collect information and the label at each region (Region1, Region2, …, 

Region14). Azimuth is based on the magnetic sensor, so it does not require a separate 

sensor. This study claims measurement with 52.73% accuracy within a 1 m radius. Using 

just these two sensors (the accelerometer and the magnetometer) is sufficient when deter-

mining the orientation of a static object; however, for the rotation and acceleration of an 

object, the use of these two sensors alone does not work well. Moreover, they did not 

mention how they found the north direction, instead saying that they used the azimuth, 

which is not clear, making the final result an inappropriate reference. 

Table 2. Most relevant algorithms available in the literature. 

Algorithm Uses Limitations 

Support-vector machine  

(SVM) [26,55,56] 

Good when merging of high-dimensional data is needed or 

when the number of dimensions is greater than the number 

of samples. 

Utilizes memory. 

Good for predicting noise from gyro sensors. 

Efficient for long-term navigation. 

Not good with large and noisy da-

tasets. 

Time-intensive. 

Kalman filter 

[16,21,34,35,39] 

Correct IMU-based trajectory. 

Presented as an alternative sensor for vehicle localization. 

Less sensitive to variations. 

Able to obtain smooth and accurate results. 

Low accuracy when fusing some 

data. 

Requires initial value to begin. 

Cannot save anything except the 

previous value. 

Sequence alignment algorithms 

[57] 
Work well with pedestrian dead reckoning. Data drift when moving. 

Complementary filter  

[34,35] 

Works well when coupled with MEMS IMU. 

Fusion technique. 

Consists of low- and high-pass filters. 

Does not consider statistical descrip-

tion of the noise corrupting the sig-

nals. 

Hard with tuning fusion data. 

Low-pass filter [34,35] 
Used for smoothing datasets. 

Removes short-term fluctuations. 

Measurements become less accurate 

with time. 

High-pass filter [35] Removes high-frequency noise from sensors. Lag problem. 

Particle filter [16,34] 

Spreads multiple particles to indicate locations. 

Weight function used to describe the important estimated lo-

cations. 

Relative location. 

Weighted consensus algorithm 

[58] 
Allows devices to self-learn the common channel parameters . 

Weighted centroid algorithm 

[6,7] 

Inherits characteristics of a relatively simple operation. 

Analyzes sources of error unevenness. 

Needs number of anchors, localiza-

tion. 

Geo-fencing function [29] Determines object topology relation. 
Needs established hardware infra-

structure and access points. 

Bi-iterative 

[14] 

No need to learn about environment. 

Compares mobile location with virtual sensor. 
Needs objects to compare with. 

ACASIM/ACOSIM  

[11] 

Clustering based on similarity. 

Used when there is no physical distance between nodes. 
 

U-Net 

[59] 

Focuses on a virtual thermal infrared radiation (IR) sensor. 

Estimation of thermal IR images can enhance the terrain 

classification ability. 

Crucial for autonomous navigation 

of rovers. 

Monte Carlo localization [60] 
Saves energy to localize robot. 

Estimates position and orientation. 

Needs wireless device supplementa-

tions. 

Active noise control [61] Can make a quiet zone at a location. RF required. 

Quaternion [35] 
Good in trackball-like 3D. 

Provides (cos theta, sin theta) vector. 
Does not multiplicatively commute. 

Direct cosine matrix (DCM) [35] Can transform coordinate frame from one system to another. Limited to 3 × 3 matrices. 

Hidden Markov model 

[16] 

Joint probability between the states and observation. 

Represents transition, emission, and initial distribution. 

Limited accuracy under high data 

noise. 
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High computation consumption to 

identify compatibility between state 

and observation. 

Savitzky–Golay algorithm [62] 
Reduces high noise by iterating multi-round smoothing and 

correction. 
High computation. 

Fast Fourier transform (FFT) [63] 
Highly reliable when considering time-series data; high 

speed, which reduces computation time. 

Integral over time, consuming pro-

cess time. 

Support-vector machine (SVM) [26,55] is a low-cost computational method for pos-

ture recognition, which can obtain the global optimal solution and avoid falling into local 

optima. It is an optimal margin-based classification technique in machine learning, and is 

efficient in high-dimensional data applications, but does not support heavy data because 

the whole dataset needs to be used for training, performs poorly for nonlinear problems 

(i.e., is only applicable for linearly separable data applications), and the presence of any 

noise or outliers strongly affects the margin. A Kalman filter [16,21,34,35,39] can be used 

to correct the IMU-based trajectory, and is characterized by repeatability without error 

accumulation. It allows for richer features in the distance–frequency spectrogram than in 

the time–signal domain, takes noise into account through the use of a covariance metric, 

and estimates the system state based on current and previous states. For tracking and es-

timating orientation, tilting angle, and gyroscope bias in the system state, the angle de-

rived from the accelerometer is used. The mathematical model built into the filter is best 

used within a fusion algorithm, in order to avoid the need for complex computations. It 

cannot process the whole location when based only on magnetometer or pedometer sen-

sors, and cannot represent real indoor measurements, due to the characteristics of indoor 

signals. In the multiple state-variable situation, more filter parameters need to be tuned, 

requiring a more powerful microcontroller to ensure high accuracy. Sequence alignment 

algorithms [57], such as dead reckoning, detect objects to improve position estimation, but 

may accumulate errors quickly. The complementary filter approach [34,35] is efficient and 

reliable for IMU data fusion once the filter coefficient is fine-tuned, requiring less compu-

tation and reducing the workload. Both low- and high-pass filters are used to deal with 

the data from the sensor’s gyroscope and accelerometer, providing reliability and robust-

ness for IMU data fusion, and outperforming the Kalman filter with less computation and 

processing power. However, the accuracy is decreased when the IMU rotates on more 

than one axis, and when using fused data, the filter coefficient needs to be tuned further. 

With a low-pass filter (LPF) [34,35], signals much longer than the time constant can pass 

through the filter unaltered. These are mainly used to remove accelerometer spikes. How-

ever, this adds lag time, making the measurement less responsive. High-pass filters 

(HPFs) [35] allow short-duration signals to pass through while filtering out signals that 

are steady over time, which can be used to remove gyroscope drift. This also adds lag time 

and makes the measurement less responsive. Particle filters [16,34] are best for indoor lo-

calization, as they involve spreading multiple particles to indicate locations. They are used 

to indicate the step length and heading of a device, and to overcome the errors associated 

with noise, which can be filtered out by particles followed by resampling. A weight func-

tion is used to describe the most important estimated location(s). This is best for nonlinear, 

non-Gaussian tracking dynamic models and high-dimensional problems. However, such 

approaches are computationally expensive, and provide only an approximate solution 

(not an exact solution). First Fit, Best Fit [57] considers the recorded steps and step heading 

to make corrections, corresponding to a given position on a route. It makes use of the 

assumption that the user’s detected step heading corresponds directly to the direction of 

the expected path. This results in fewer established locations during navigation, and may 

cause loss of accuracy—especially around the metal structures found in buildings, which 

can disturb the compass; it also introduces a lag time, making it unreliable. In the 

weighted centroid algorithm [6,7], power dissipation is evenly distributed, instead of be-

ing concentrated at a beacon node. The weighted centroid localization algorithm inherits 
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the characteristics of relatively simple operation, and uses RSSI [64] ranging as the basis 

for the reasonable allocation of weights, through which a high positioning accuracy can 

be obtained. A positioning equation is used to solve unknown nodes, as well as analyzing 

the sources of error unevenness. The results of this method depend on the weights of dif-

ferent factors, the number of anchors, and the communication radius, and the nearest an-

chor must be determined for localization; therefore, the positioning precision may be low. 

Geo-fencing [29] supersedes the accelerometer or gyroscope sensor on mobile client de-

vices, instead determining the position using a virtual server in the client device, which 

requires an established hardware infrastructure and access points. The bi-iterative 

method [14] calculates the locations of the mobile user and the virtual sensors (i.e., mirror 

images of the physical sensors). It does not require any a priori knowledge about the en-

vironment. ACASIM/ACOSIM [11] provides virtual sensors that are clustered based on 

similarity, which may lead to the clustering of nodes that are not physically close to one 

another. These are to be used when no physical distance can be established between 

nodes. Middleware can choose nodes for which the measurements represent long physical 

distances. U-Net [59] focuses on a virtual thermal infrared radiation (IR) sensor based on 

a conventional visual (RGB) sensor. The estimation of thermal IR images can enhance the 

ability of terrain classification, which is crucial for autonomous navigation of rovers. 

Monte Carlo localization [60] reduces the number of wireless transmissions, consequently 

reducing the energy consumption for robots localized with the use of a particle filter. This 

approach estimates the position and orientation of a robot as it moves and senses the sur-

rounding environment. Active noise control [61] is a method to reduce noise, generating 

a quiet zone at a target location. This requires simulation and specific radio signals. Qua-

ternion approaches [35] have fewer parameters, advantages in terms of 3D rotation, define 

rotation in differential situations, and can represent a 3D rotation between two coordinate 

frames. Direct cosine matrix (DCM) [35] also defines rotation in differential situations, and 

represents a 3D rotation between two coordinate frames. The hidden Markov model [16] 

facilitates indoor location and tracking through a scoring technique to identify the com-

patibility between state labels (locations), sensor observations (Wi-Fi/geomagnetic field 

measurements), and the joint probability between the states and observation. These rep-

resent transition, emission, and the initial distribution, respectively. The next state de-

pends only upon the previous one, thus achieving high computational efficiency. How-

ever, conditional independence does not provide an accurate location under highly noisy 

conditions. The Savitzky–Golay algorithm [62] involves iterative multi-round smoothing 

and correction to reduce noise, which requires significant computation. The fast Fourier 

transform [63] is reliable for use with time-series data, and requires less computation time, 

but integration over time is necessary. 

3.3. Techniques 

Embedded sensors in handheld devices provide raw data that can be used in differ-

ent fields through the use of different techniques. Using handheld devices for zero-infra-

structure indoor localization and tracking is one way to design an optimal technique that 

connects selected sensors using an optimal algorithm that can fill the gaps in the previous 

studies, in order to overcome the absence of a standard approach for indoor navigation. 

In Table 3, the most common techniques used in previous studies for indoor localization 

and tracking are detailed. 
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Table 3. Most relevant indoor navigation techniques in the literature. 

Technology (Applica-

tion) 
Advantages Disadvantages 

Fingerprinting [65,66] 

− Senses electrical current and generates im-

ages. 

− Compares RSS data with the stored version.  

− Collects the identities and RSS of the Wi-Fi to 

pinpoint an object in an indoor environment. 

− Requires RSS, Wi-Fi access points, and RF infra-

structure. 

− Requires online and offline databases. 

− Time-consuming. 

− Requires calibration. 

LiDAR-based tracking 

applications [67] 

− Multiple measurements are obtained from 

the object. 

− Measures multiple laser lights reflected from 

various points on the object’s surface. 

− Requires many measurements for an object.  

− Deep understanding is needed to estimate the 

shape as well as the kinematic states of the object. 

Lateration [57] 

− Utilizes the distance or angle of an object 

with respect to a set of anchors or beacons. 

− Relative calculation. 

− Wide public deployment is impractical and unfeasi-

ble at present. 

Phased array an-

tenna/antenna array 

[68] 

− Can provide better gain and performance 

when placed in a specific way. 
− Requires effort for design and installation. 

Pedestrian dead reckon-

ing (PDR) [21,57,69–71] 

− Used to detect objects indoors. 

− Uses an accelerometer and gyroscope to lo-

calize objects. 

− Continuous positioning. 

− No need for HW installation. 

− Requires initial position. 

− Error accumulation. 

− Highly noisy, with data drift. 

− Heading angle estimation error. 

− Must be integrated with other methods. 

Path matching [57] 

Takes recorded steps and step heading, and 

makes corrections using an algorithm (e.g., First 

Fit, Best Fit). 

− Error accumulation. 

− Needs initial position. 

Magnetic-field-based 

positioning [25] 

− Magnetic field data are inexpensive and suit-

able for indoor positioning. 

− More stability and shows much less mutation 

than Wi-Fi (see below). 

− Relies on fingerprinting. 

− Low discernibility due to repeated measurements at 

several locations in a large indoor environment. 

Magnetic induction 

(MI) technique [25] 

− Utilizes the influence of object conduction in 

wireless environments to localize Wi-Fi de-

vices. 

− Signals can penetrate most transmission me-

dia without significant attenuation. 

− Requires Wi-Fi devices in the environment. 

− Through phase shifting, conductive objects in the 

indoor environment can still dramatically influence 

the MI signals. 

− Causes significant estimation errors. 

UbiCare’s system (uses 

stereo vision algorithm) 

[41] 

− Good accuracy for micro- and proximity loca-

tions. 

− Uses vision algorithm to localize objects with-

out RF resources. 

− Reduces gyroscope drift. 

− Requires devices to be rotated. 

− Device must have two antennas to emulate large 

antenna arrays. 

Angle of arrival (AoA) 

[65] 

− Provides high localization accuracy without 

fingerprinting. 

− Needs additional antennas and complex hardware, 

as well as algorithms. 

Time of flight (ToF) [65] 
− Provides high localization accuracy without 

fingerprinting. 

− Requires synchronization between transmitter and 

receiver. 

− Complex hardware and antennas. 

− Needs a line of sight for accurate performance. 

Time difference of arri-

val (TDoA) [65] 

− Does not need any fingerprinting. 

− Does not require clock synchronization. 
− Needs large bandwidth. 

Zero-velocity update 

(ZUPT) [72] 

Mounts IMU on foot to suppress drift results from 

error accumulation from the inertial integration 

method. 

Data from IMU strapped on upper limb will not observe 

the zero-velocity phase. 

RFID [69] 

Personnel tracking. 

Monitors objects. 

Provides data about objects. 

Relies on other apparatus (e.g., sensors, tags, AP, LED 

light). 

Indoor positioning sys-

tem (IPS) [69,73] 

Helps visitors to navigate through indoor envi-

ronments. 

Mounted Bluetooth locator beacons or sensors in fixed 

places. 
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Cost, time, and computation. 

UWB [69,73] Great accuracy in line-of-sight (LOS) conditions. 
Suffers in non-line-of-sight (NLOS) conditions. 

Signals are degraded due to attenuation. 

Wi-Fi [69,71,74] Indoor localization. 
Relies on other apparatus (e.g., sensors, tags, AP, LED 

light). 

Wi-Fi signal with mag-

netic field data [71] 

Uses two-pass bidirectional particle filter process 

to enhance positioning. 
Suffers from particle degradation problem. 

Visible light [69] Indoor localization. 
Relies on other apparatus (e.g., sensors, tags, AP, LED 

light). 

Ultrasound [69] High positioning accuracy. High installation and maintenance costs. 

SLAM-based post-pro-

cess smoothing [74,75] 
− Suitable for large-scale positioning. 

− Requires extra hardware mounted on user and 

smartphone. 

Particle-filter-based 

map-matching [47] 

− Refines the trajectories estimated by the PDR 

algorithm. 
− Map data need to be imported in advance. 

Sequence-based magne-

tometer matching posi-

tioning (SBMP) [71] 

Measures similarity of the magnetic data used in 

mobile phones. 

− Generates large fluctuations with heterogeneous de-

vices used. 

− Hard to implement in real time. 

− Poor results in open areas. 

Single point-based mag-

netic matching position-

ing (SPMP) [71] 

No limitation on speed or trajectory of pedestrian. 

− More flexible. 

− Needs particle filter algorithm to compensate for 

this limitation and improve positioning accuracy 

Hausdorff distance [76] 
Controls initial position error. 

Accelerates the convergence speed of the filter. 
Limited to long-range scenarios. 

Exponential moving av-

erage (EMA) [77] 

One of the most common smoothing methods. 

Provides accurate results. 

Must calculate data from the beginning each time when 

smoothing.. 

Fingerprinting [65,66] techniques for indoor localization generate images of objects 

by sensing electric currents. Then, the image is compared with those in a database (DB). 

These approaches are used to combine identities with available RSS from Wi-Fi, RF, 

and/or APs at certain locations in buildings; as such, fingerprinting requires RSS, Wi-Fi, 

RF, and/or AP infrastructure, as well as calibration in terms of updating the DB. In LiDAR-

based approaches [67], an object can be considered as an extended object, where a LiDAR 

sensor measures multiple laser lights reflected from various points on the object’s surface. 

Different measurements are calculated at the same time for the object, but efforts are re-

quired to estimate the shape as well as the kinematic states (e.g., position and velocity) of 

the object. Lateration techniques [57] use angles or distances to calculate the location of a 

set of beacons or sensors, but the calculation involves the relative position with respect to 

the beacons; thus, such approaches are not suitable when considering a wide area, due to 

the associated cost and time consumption. Antenna array techniques [68] can be used 

when a group of antennas are implemented together in a system. These antenna elements 

must be implemented in a specific way, such that the signals are transmitted properly. 

PDR [21,57,69–71] is used to detect steps and step headings, which are integrated over 

time to estimate the current user position in indoor environments. These are potential 

techniques for smartphone-based localization using embedded sensors, such as the accel-

erometer and gyroscope, which can estimate the orientation of a rotating object. However, 

with PDR, errors may accumulate quickly, due to the use of low-cost noisy sensors and 

complicated user movements. Furthermore, the initial orientation must be known, and 

such approaches should be combined with other methods to reduce these errors. Mag-

netic-field-based positioning [25] is more stable than Wi-Fi, and is inexpensive due to the 

many off-the-shelf apps available for calculating the magnetic field in indoor environ-

ments. However, the resultant data have low discernibility of magnitude, due to being 

repeated in many locations. Path matching techniques [57] enhance the measured user 

steps and strides using the First Fit, Best Fit algorithm to calculate a user’s location; how-

ever, they suffer from error accumulation, and require initial positioning data. MI [25] 

uses the object conductivity in Wi-Fi to localize Wi-Fi devices through environment-aware 
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mechanisms, as signals can penetrate most of the transmissions with low attenuation. MI 

requires that Wi-Fi infrastructure is established in the area, suffers from phase shifting, 

and causes estimation errors. Ubicarse [41] is considered favorable in terms of accuracy, 

for both micro-location- and proximity-based services. It uses a vision algorithm and RF 

to localize common objects with no RF source attached to them, thus resolving gyroscope 

drift. However, it requires users to rotate their devices for localization purposes. Further-

more, the device must have at least two antennas to emulate large antenna arrays. AoA, 

ToF, and TDoA [65] can localize objects without the need for fingerprinting; however, 

additional antennas and complex HW are required. ZUPT [72] can be used to suppress 

drift error accumulation; however, it needs to strapped onto a limb, which will not ob-

serve zero-velocity conditions. Post-process smoothing and SLAM-based solution tech-

niques [74,75] provide a simple positioning system for large-scale indoor patrol inspection 

using foot-mounted INSs, QR code control points, and smartphones; however, they re-

quire hardware to be installed on both the user and the smartphone. PF-based map-match-

ing [47] is used to correct trajectories through PDR, but requires map data to be imported 

in advance. SBMP [71] is a magnetic positioning method, using a dynamic time-wrapping 

(DTW) algorithm to measure magnetic similarity (e.g., in mobile phone data). It relies on 

stable magnetic data sequences, and may generate large fluctuations due to the use of 

different devices, making it hard to implement in real-time positioning. It also imposes 

limitations on the trajectory and walking speed, with poor results in open areas. SPMP 

[71] imposes no limitation on the speed or trajectory of pedestrian walking, making it 

more flexible and easy to use, but has low accuracy when few geomagnetic features are 

available. The Hausdorff distance [76] minimizes initial positioning errors, but has limited 

performance in long-range scenarios. Exponential moving average [77] is a smoothing al-

gorithm that produces accurate results, but must be restarted from the beginning each 

time smoothing is conducted. 

3.4. Analysis of Indoor Localization and Tracking Parameters 

Some of the most common indoor localization and tracking components are mobile 

phone sensors. Previous studies have mentioned the mobile-phone-embedded sensors 

used to collect relevant data. Each of these sensors is described in Table 1, including their 

advantages, indicating areas where they are suitable for use, and the disadvantages that 

must be overcome. Three primary sensors are used in indoor localization, two of which—

accelerometers and magnetometers—can be used in general, while the third—gyro-

scopes—can be used to correct errors from the previous two, but require the use of a fu-

sion algorithm for combination with the data derived from the other sensors. The men-

tioned sensors collect data that need to be processed, which is carried out through the 

second component, i.e., the algorithms used for the fusion of different data sources to 

minimize errors and data noise. Various algorithms have been used in previous studies, 

as detailed in Table 2. Some algorithms have a light computational burden when perform-

ing posture recognition, and are efficient in high-dimensional data applications—such as 

support-vector machine (SVM) [26,55]—but suffer when considering nonlinear problems 

or require significant amounts of data for training, which is time-consuming and not ap-

propriate for real-time uses. Some algorithms are used for dead reckoning but result in 

error accumulation, such as the sequence alignment algorithms [57]. The use of a low-pass 

filter [34,35] results in time lag, leading to delays. Meanwhile, other algorithms record 

steps and step headings, and determine a position on a route, such as First Fit, Best Fit. 

Some studies in Table 4 have attempted to construct indoor localization techniques 

using smartphones, claiming to be infrastructureless, such as the study in [78], in which 

locations were found with 73% room-level accuracy. However, the rooms were still big. 

The CEnsLoc methodology, presented in [79], was designed to operate as a train-and-de-

ploy Wi-Fi localization methodology using GMM clustering and random forest ensem-

bles. By building RSS as vector data using a single Android phone to collect data from Wi-

Fi APs, the RSS AP strength was calculated from room center. This method requires the 
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implementation of APs around the area of interest, which is achieved by the system pro-

posed in this paper. The experimental setup in [80], using light signals as fingerprints by 

implementing devices such as Raspberry Pi, achieved 76.11% accuracy, using light to take 

advantage of the differences in compact fluorescent bulbs. Part of our proposed system 

improves upon [80] in order to minimize the cost of external devices. 

Table 4. Indoor localization and tracking parameters. 

Paper Technique Idea/Solution Algorithm Sensors Accuracy 

[79] Fingerprints 
Easy to train and deploy. Wi-

Fi localization methodology. 

GMM clustering and random 

forest ensembles. 

Access Points, Wi-

Fi, RSS. 

97% room accuracy 

from room center. 

[80] 
Light finger-

prints 

Utilizes electronic differenc-

ing in construction of com-

pact fluorescent light and 

light-emitting diode bulbs. 

Fast Fourier transform (FFT) 

(primary); 

k-nearest neighbors (kNN), 

CNN classifier. 

Raspberry Pi, light 

sensor, ADC, bat-

tery. 

76.11%. 

[81] 

Dead reckoning 

with instantane-

ous speed and 

heading 

Utilizes aerodynamic fluid 

computation for instantane-

ous speed of heading of a 

smartphone. 

Dedicated computational al-

gorithm. 

LBA series sensor 

from SensorTech-

nics GmbH com-

pany, 

anemometer, gyro-

scope. 

SD of less than 6% 

in distance trav-

elled. 

[82] 
Magnetometer 

fingerprints 

Determines occupancy based 

on conversing with the envi-

ronment. 

Speaker estimation algorithm 

based on unsupervised clus-

tering; 

change point detection algo-

rithm. 

Acoustic sensors, 

magnetometer. 

0.76 error count in 

distance. 

[83] 

Time-difference-

of-arrival 

(TDoA)-based 

Utilizes acoustic localization.  
Cumulative density function 

(CDF). 

Acoustic signal, RF, 

nodes, 

access points, ul-

trawide-band bea-

con nodes. 

95% quantile locali-

zation errors in less 

than 7.5 cm, when 

closest two anchors 

are 1 m apart. 

[36] Decision tree 
Localizes user in 1–1.5 m ra-

dius. 
DNN in decision tree. No hardware. 

74.17% within 1.5 m 

and 53% (approx.) 

within 1 m. 

[43] 
Geomagnetic 

observations 

Uses corners and spots with 

magnetic fluctuations for lo-

calization. 

Uses hidden Markov model 

(HMM). 
Acce, mag. 

Error of less than 

8.7 ± 6.1 m. 

[84] 

Walking pat-

tern classifica-

tion 

Walking feature detection 

based on time. 
Extended Kalman filter. 

Waist-mounted 

9DoF IMU 

+ 

Acce, 

gyro, 

mag. 

Room accuracy 

level. 

[85] 

ML algorithm 

+ smart sensor 

management 

Energy consumption analy-

sis; 

LearnLoc app. 

 Algorithms: k-nearest 

neighbors (kNN), 

linear regression (LR), 

nonlinear regression with 

neural networks (NL-NN). 

APs, Wi-Fi, 

acce, mag, gyro. 
1–3 m accuracy. 
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[86] 

Magnetic field 

fingerprinting 

with PDR 

Using magnetic field to local-

ize and find a pedestrian pat-

tern fingerprint 

Algorithm: k-nearest neigh-

bor (kNN) approach. 

Acce, gyro, mag 

(primary). 

Overall localization 

within 1.21 m is50% 

and within 1.93 m is 

75%. 

[78] 

Fingerprint for 

merging dif-

ferent sources 

of environ-

mental data to 

locate user 

Use three sources (micro-

phone, magnetometer, and 

light) with the signals availa-

ble in the building. 

Multivariate models used 

as an information fusion 

technique. 

Microphone, 

magnetometer,  

light sensor. 

73% room-level ac-

curacy. Sensitivity 

22% and specificity 

2%. 

[57,81] 
Path-matching 

technique 
Localizes user route. 

Algorithms (First Fit, Best 

Fit); 

multifit algorithm to correct 

steps and step heading; 

sequence alignment algo-

rithms from the field of bio-

informatics. 

Mobile camera, 

acce, 

compass, 

step counts. 

Average error less 

than 3 m. 

[87] 
Map-matching 

is proposed 

Combining dead-reckoning 

estimation with map-match-

ing in buildings. 

Hidden Markov model 

(HMM) theory and tailored 

to map-matching technique 

algorithm: HMM. 

Foot-mounted 

dead-reckoning sys-

tem 

Error lower than 3 

m 69.2% of the time 

+ reduced computa-

tional cost. 

[88] 

Magnetic field 

disturbance 

and ambient 

light 

Help people to get their bear-

ings when in buildings. 

Using geomagnetic field 

disturbances + ambient 

light; 

algorithm: particle filter (to 

fuse + track mobile data). 

Magnetic  

ambient light. 
Mean error of 4 m. 

[89] 

SMART: sim-

ultaneous map 

acquisition 

and repeated 

tracking 

Subject-based sensor and ra-

dio signal to detect environ-

mental fingerprints. 

Algorithm: particle filter. 

AP, Wi-Fi, 

camera, micro-

phone, acce, mag. 

 Constructs envi-

ronment maps with 

89% accuracy on av-

erage, compared 

with dead reckon-

ing. 

[22] 

Fusion IMU 

sensor and 

user context 

Using OpenStreetMap, fuse 

IMU and map information for 

indoor localization. 

Algorithm: particle filter 

(primary algorithm); sup-

port-vector machine classi-

fication model. 

Acce; pressure sen-

sor. 

Median error of 2.3 

m in real time. 

In [81,90], calculation approaches for pedestrian headings in indoor localization were 

proposed, achieving a standard deviation of less than 6% with respect to the distance trav-

elled. The authors used LBA series sensors from SensorTechnics GmbH; therefore, the 

implementation of their idea still requires extra hardware, which is provided in the system 

proposed in this paper. Another study [82] used acoustic sensing to localize talking peo-

ple, in order to estimate fine-grained semantic localization using a linear time-adaptive 

approach with SVM and random forest classifiers, presenting 0.76 error on average. The 

authors also demonstrated the weakness when using a single sensor, and considered the 

mean, standard deviation, and variances on all axes. Another study also using acoustic 

beacons for localization with a TDoA ranging algorithm achieved 95% accuracy within 

less than 1 m, but required the implementation of RF wireless nodes for the acoustic sig-

nal. Another paper used a neural network to localize a smartphone without the need for 

extra hardware, and achieved an accuracy of 74.17%; however, the authors did not show 

how they calculated the azimuth to help in heading, and did not mention how to 
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overcome the noisy data from sensors, making this method unsuitable for comparison 

with our proposed system. 

In summary, localization and tracking in the absence of a GNSS signal represents one 

of the main challenges for standardization in indoor environments, which has not been 

addressed, due to calibration requirements and the increasing data streaming from mobile 

phone sensors contributing to limitations of smartphones’ functionality, as well as errors 

from IMUs due to external acceleration, and from gyroscope sensors due to drift. There-

fore, the development of solutions for smartphones in indoor environments remains an 

open problem. Considering the above, we propose a handheld-device-based indoor local-

ization with zero infrastructure framework, in order to overcome the limitations in terms 

of compatibility between the main three components inherent to indoor localization and 

tracking, which is expected to help both research scientists and industrial actors to carry 

out indoor localization and tracking in an optimal manner. 

4. Proposed Framework Structure 

Handheld-device-based indoor localization with zero infrastructure (HDIZI; see Fig-

ure 5) is a framework that we propose to overcome the increasing challenges relating to 

indoor environments. HDIZI is composed of three processing phases: The first phase is 

smoothing, where the times-series data obtained from the sensors are smoothed. This 

phase prepares the data for the second phase—the first fusion phase, which combines data 

from sensors that are part of one another (e.g., IMU sensors). The final phase is the second 

fusion phase, which is the main part of the structure, in which the data from all sensors 

(and other data sources) are fused and calculated. The ultimate result of carrying out these 

phases is object localization, tracking, and action classification to correct the user’s/object’s 

orientation on the path to their target, with an estimated accuracy of 50 cm at room or 

corridor level. This system serves to further create a linked indoor/outdoor coordination 

system, as one data resource is the building blueprint, which is already georeferenced 

based on GCS. An explanation of each phase is presented in the following subsections. 

 

Figure 5. Framework of handheld-device-based indoor localization with zero infrastructure. 

4.1. Sensor Smoothing 

Smoothing is a common preprocessing step for series data, especially time-series. 

When an object is moving in a straight line from point 1 to point 3, it will certainly pass 

through a certain point 2 on its way. In our case (indoor tracking and localization), where 
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the noise is typically high due to the use of different sensors—even when collecting data 

from a fixed point (see Figure 6)—smoothing reduces the impact of this noise (Figure 7). 

A moving average filter (low-pass filter) is used for the gyroscope sensor data, as they do 

not require a fast response. In contrast, this would be a poor choice when considering 

highly noisy sensors, due to the amount of lag accumulated. Smoothing usually requires 

truncating and windowing the sensor frequencies to operate correctly. When we apply 

the low-pass filter, it delays the frequency for a short-to-moderate period of time, but en-

hances the accuracy of the approximation. The window size is important, as a small win-

dow size may not smooth the data well, while the use of a large window size requires a 

lot of data. 

 

Figure 6. Acceleration sensor at point 1, showing data noise. 

 

Figure 7. Exponential smoothing result. 

Before we feed the data into the ML algorithm, it must be reshaped in such a way 

that each user has multiple two-dimensional records with a number of slices for each of 

the three axes of the three sensors (i.e., accelerometer, gyroscope, and magnetometer), and 

each record is given one label (e.g., straight). These records are then input into the ML 

algorithm during training. Different smoothing filters—such as simple average smooth-

ing, equally weighted moving average, or exponential smoothing—have various 

strengths, such as simplicity, widespread acceptance, and accurate prediction of the nat-

ural demand level. The ability to adapt to changes must also be considered, along with 

accurate reflection of the current conditions and performance in short-term forecasting. 

Challenges based on the model used include determining optimal smoothing values (i.e., 
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constant weights given to each of the time-series components to make prediction more 

accurate) and the values of the constants α, β, and ϒ, which are related to the level, trend, 

and seasonality, respectively (these values always range between 0 and 1 inclusively). 

Time-series data-based models may not automatically capture events (e.g., walking), as 

they are not causative modeling techniques and, thus, do not allow explanatory variables, 

because they are adaptive to changes. Finally, the implementation deeply depends on the 

SW (e.g., Python, MATLAB, SPSS), and the results may change and require optimization. 

A simple prediction method is the use of a simple average as a solution to calculate the 

mean of the series, followed by predicting the next value in the future (e.g., the location 

of a target when walking from one point to another indoors). 

4.2. First Fusion 

Sensor fusion is used to combine two or more data sources (Figure 8) in such a way 

that a better understanding of the system can be obtained. Data fusion can help to design 

indoor localization and tracking approaches that are more consistent, more accurate, and 

more dependable [91]. Data are obtained from various sensors, each providing under-

standing of an aspect of the system, such as the acceleration or distance to a point in an 

experimental scenario. Data can also be sourced from a mathematical model (Figure 9). 

 

Figure 8. Fusion of data from different sensors. 

 

Figure 9. Fusion including data from a mathematical model. 

When designing a platform for handheld indoor localization and tracking, we can 

encode our knowledge of the physical world into the fusion algorithm, in order to im-

prove the measurements from the sensors to facilitate better understanding. The HDIZI 

framework must interact with data obtained from the physical world. In order to be suc-

cessful, there are certain capabilities (Figure 10) that HDIZI must possess, which can be 

categorized into five main areas. The first of these areas involves the world we are in, 

while the remaining four are more important. 
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Figure 10. Key capabilities of the handheld device-based indoor localization with zero infrastructure 

(HDIZI) approach. 

Sense (collect data; see Figure 11) refers directly to measuring the environment with 

sensors. 

 

Figure 11. Sensors are the main resource for the collection of data. 

Information should be collected from predefined data sources, such as data from a 

blueprint after georeferencing, or from various sensors. For modern handheld devices, 

such as mobile phones, we may include sensors such as accelerometers, magnetometers, 

visible cameras, etc. However, simply gathering data with sensors is not good enough, as 

the system needs to be able to interpret the data (Figure 12) and transform them into some-

thing that can be understood. Thus, we designed the proposed framework to make the 

collected data more reasonable. 

 

Figure 12. Interpretation of data to make them understandable for users. 
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The rule of the perceive step is to interpret the sensed data, in order to make sense of 

them. For example, when data are obtained from a mobile phone’s IMU sensor or camera, 

they may be interpreted as a point, a classroom, a corner when a user/object changes its 

direction causing the data to change suddenly, an office door, etc. This level of under-

standing is critical to ensure that the model can determine what to do next, in the planning 

step (Figure 13). 

 

Figure 13. Finding a path and planning to determine the next action. 

In this step, we need to determine the final goal and find the path to get there, after 

which the model can calculate the best course of action to get the user or object to follow 

that path. The final step involves what the controller and control systems are doing. The 

most important steps are the sense (collect data) and perceive (interpret data) stages, as 

they refer to localization and positioning, respectively, allowing the user to know or an-

swer questions related to an object (e.g., Where am I? What am I doing? What state am I 

in?). Other functions include detecting the final location, in terms of direction and track-

ing. Overall, sensor fusion involves these two crucial aspects, as depicted in Figure 14. 

 

Figure 14. Sensor fusion involves merging the data collected from sensors and producing 

knowledge. 

Sensor fusion is a process involving taking multiple sensor measurements (e.g., acce, 

gyro, magnetic, camera, and blueprint data), combining them, and mixing in additional 

information from mathematical models, with the goal of obtaining a better understanding 

of the world, with which the system can better plan and act. Hence, with this technique, 

there are four different ways that sensor fusion can help us to better facilitate localization 

and positioning when using our own system, as well as detecting and tracking other ob-

jects. One of the more common reasons to consider sensor fusion is to increase the quality 

of the data, which is always desirable, in terms of less noise, less uncertainty, and fewer 

deviations from the truth. When considering the mobile phone sensor used in our exper-

imental setup, its single accelerometer, when placed on a table, should only measure the 

acceleration due to gravity (9.81 m/s2); however, the actual measurement is noisy (see Fig-

ure 15). 
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Figure 15. Accelerometer sensor data noise. 

If this was a perfect sensor, the output would read a constant 9.81 m/s2 against time. 

The noise depends on the quality of the sensor; in this case, we have unpredictable noise, 

such that we cannot eliminate it through calibration. We could, however, reduce the over-

all noise in the signal if we added a second accelerometer and averaged the two readings. 

As long as the noise is not correlated across the sensors, fusion of their data (Figure 16) 

would result in better quality. 

 

Figure 16. Fusion of data from identical sensors. 

This fusion reduces the combined noise by a factor of the square root of the number 

of sensors (Equation (9)). Therefore, by fusing the data from four identical sensors, we can 

obtain half the noise of a single sensor: 

𝑛𝑜𝑖𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =  𝑠𝑞𝑟𝑡(# 𝑠𝑒𝑛𝑠𝑜𝑟𝑠) (9) 

In this case, this very simple fusion algorithm is just an averaging function (Equation 

(9)). The noise could also be reduced through the use of two or more different sensor types, 

which would help to deal with correlated noise sources. What if we want to measure the 

direction of a handheld device and its orientation relative to magnetic north? Here, we 

use a magnetometer to measure the deviation from magnetic north. However, just as the 

accelerometer sensor measurement is noisy, so too will be the magnetometer measure-

ments, as shown in Figures 17–19 for some of the data collected from CCIS/KSU using a 

Python Jupyter notebook. 

 

Figure 17. Magnetometer x-axis noise (CCIS/KSU). 
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Figure 18. Magnetometer y-axis noise (CCIS/KSU). 

 

Figure 19. Magnetometer z-axis noise (CCIS/KSU). 

If we want to reduce the noise, then we may be tempted to add a second magnetom-

eter. We considered 10 magnetometers in our case, where Figures 20–22 show the noise 

obtained when using the 10 sensors. To reduce magnetic distortions, certain points such 

as doors and corners should be used to calculate the magnetic disturbance, and combined 

with acce sensors to show changes in the corner data when the user/object turns. Then, 

the magnetic similarity at these points should be recalculated, in order to minimize mag-

netic distortions. 

 

Figure 20. Merged magnetometer sensor data (x-axis; CCIS/KSU). 
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Figure 21. Merged magnetometer sensor data (y-axis; CCIS/KSU). 

 

Figure 22. Merged magnetometer sensor data (z-axis; CCIS/KSU). 

Steps can be calculated to estimate the step length in nonlinear models, considering 

the differences in the walking habits of people. The Weinberg model provides more accu-

racy in this situation, calculating a nonlinear walking model. The step length can be cal-

culated using Equation (10), where k is a constant value derived from training data, Amax 

is the maximum step length, and Amin is the minimum step length: 

𝑘 · √(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛
4

) (10) 

By calculating the step length and acceleration, we can calculate the average steps 

per second which, when combined with gyroscope data, will help to calculate the heading 

angle using the Mahony complementary filter approach. The heading angle is very im-

portant in PDF, in order to calculate position coordinates. The heading angle can be cal-

culated using gyroscope sensor data, but this involves many integration calculations, usu-

ally resulting in lower accuracy. The Mahony complementary filter (MCF) can calculate 

user heading angles by using gyroscope data to calculate the attitude of the carrier, such 

that errors do not accumulate. The MCF allows for error compensation calculation, facili-

tating gyroscope data correction, which is expressed as a quaternion vector representing 

the attitude prediction. From this, we can calculate the average steps per second, and the 

results from the first fusion are passed through the MCF to calibrate the data, which are 

then used as inputs in the following sensor fusion phase. 

4.3. Sensor Fusion 

This phase takes the output of the first fusion as a heading from the MCF, as well as 

the estimated average steps and number of steps (determined with help from the accel-

erometer data), and then combines them with blueprint data (i.e., predefined location in-

formation) and camera sensor images in order to identify the number of remarkable places 

on the path between the locations. Data from sensors combined as time series are input, 

in combination with the aforementioned inputs, into an ML algorithm that fuses all of the 

data and produces a proposed location updated with a previous location (if there is no 

previous location, it registers the current one as the previous one as well). Then, the 
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location is classified as belonging to one of four classes (left, right, normal, or back) de-

scribing the handheld device or the user carrying the device. Based on the class, the user 

adjusts their direction to the target (in this case, one of the six locations in the building). 

5. Initial Data 

Data were collected at two different sites at different times: one was a private prop-

erty (https://goo.gl/maps/ZZU7vbFv7NvEGxxw7, accessed on 2 July 2021), while the 

other site was at the King Saud University’s College of Computer and Information Sci-

ence, building number 31 (https://goo.gl/maps/UsGSyevbMUq5rUjv7, accessed on 2 July 

2021). Bot sites are accessed on 2 July 2021. These two sites were used to demonstrate that 

the experimental system can operate at either small or large scale. Due to data collection 

accuracy and differentiation between sensors and the environmental effects, we consid-

ered the results of previous studies in order to minimize mistakes in data collection. Some 

studies mention their data collection processes in detail, while others do not mention the 

process, even though the sampling rate for data collection is critical. In [84], the mentioned 

data rate of IMU sensors was a sample frequency of 50 Hz, whereas in [92], the IMU sam-

ple rate was 100 Hz and the RFID sample rate was 5 Hz. In [93], the authors collected 100 

magnetic data observations at 10 Hz for each reference point. The data collection in [22] 

considered sampling frequencies of 45 Hz and 6 Hz for acceleration and pressure sensors, 

respectively. The data sampling rate was 5 Hz in [82] for magnetic sensor data. Acoustic 

data were collected in [82] at a 16 kHz sampling rate. The duration for collecting data in 

this study was 5 min in both clockwise and counterclockwise directions. The devices and 

applications used to collect data were detailed to varying degrees in the abovementioned 

studies, including magnetic sensor signals collected through an Android application and 

stored on mobile storage. The mobile location was fixed at a height of 4 feet in [82], for 10 

persons. Walking speed collection rates were considered as 10, 25, and 50 Hz in [94]. 

The protocol established for the collection of data can be summarized as follows: 

First, common data information: The associated tasks were classifications, considering the 

number of examples and number of attributes, with no missing attribute values. These 

were collected in raw.csv format, as follows: [user id], [class/activity], [timestamp], [x-ac-

celeration], [y-acceleration], [z-acceleration]. Second, data from blueprint: Two sites were 

chosen for the experiment. Data were extracted after a certain number of steps. The results 

were obtained at fixed points and known coordinates. Third, data from mobile sensors: 

These include data from all mobile-embedded IMU sensors (e.g., accelerometer, gyro-

scope, magnetometer, and orientation). A representative example is as follows: 

1, stop,  47:13.7, -0.053589, 1.432521, 9.651629 

The sampling rate was 10 Hz, and the collection period was 5 s at a fixed point, taken 

as data for a point to serve as a known reference. For the data collection during move-

ments, collection started at one point and ended at the moment when the target point was 

reached. This usually was of longer duration than the fixed-point collection period. Data 

from IMU sensors were numerically stamped, generally in terms of the phone’s uptime 

(in milliseconds). A number of images were collected for reference, in order to provide 

more accuracy in path tracking. x-Acceleration is a numeric floating-point value between 

−0.442 and 0.1494, measuring the acceleration in the x-direction using the Android or iOS 

phone accelerometers. Note that a value of 10 = 1 g = 9.81 m/s2, while 0 = no acceleration. 

The acceleration recorded included gravitational acceleration toward the center of the 

Earth, such that when the phone is at rest on a flat surface, the vertical axis should register 

+/−10. Similarly, y-acceleration is a numeric floating-point value ranging between 1.485 

and 1.7543, while z-acceleration is a numeric floating-point value ranging between 8.947 

and 10.368. The other sensors (gyroscope, magnetometer, and orientation) had varying 

values, based on the data point (i.e., a reference point or when moving). 

The dataset used in this proposal is not available online. We built our dataset inde-

pendently, as the required data for our approach differ from the data currently available 

online, considering the zero-infrastructure indoor environment. The proposed approach 

https://goo.gl/maps/ZZU7vbFv7NvEGxxw7
https://goo.gl/maps/UsGSyevbMUq5rUjv7
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involves the fusion of different data types in the ML algorithm. Furthermore, the experi-

ment was executed in the real world with real data—not in a lab. The collection of data 

was conducted with two primary sources: a building blueprint, georeferenced on an 

online map, from which we extracted building-related data; and information streamed 

from smartphone-embedded sensors, which use an available smartphone (e.g., iPhone or 

Android) and an app (e.g., MATLAB mobile app) to collect the sensor measurements in a 

specific building. To the best of our knowledge, we are the first to collect real data for this 

type of research from building blueprints, and to fuse these data with data obtained from 

smartphone sensors to construct a reference dataset. These data contribute to the enhance-

ment of research considering localization and tracking in indoor environments. 

5.1. Site One: Data Preparation 

The first dataset was collected on 17 November 2021, for which we chose a location 

in a local area (Al Munsiyah, Riyadh, Saudi Arabia, 11564; 24.843224, 46.766023) for our 

desired experiment, and applied the data extraction process, as shown in Figure 23. The 

data extraction included six factors: The first was the building blueprint of an average 

house with an area of 318 m2, including 10 rooms and a number of corners, which can be 

seen on the online map shown in Figure 24. Second, we considered 23 marked features 

(e.g., place markers and polygons). Third, data were represented in (x, y) or (latitude, lon-

gitude) coordinates. Fourth, each feature was identified. Fifth, a name (label) was assigned 

to each feature. Sixth, the data type was collected into a Keyhole Markup Language zipped 

(KMZ) file, which was extracted and converted into a comma-separated values (CSV) data 

file. The extracted data attributes had two-dimensional coordinates (x, y) representing 

building blueprint locations. Additional attributes were included with the extracted data, 

such as tessellate—a tag used for breaking a line into smaller chunks—and extrude—a tag 

used to extend a line down to the ground. However, we did not use this information, as 

we focused on the coordinates of the location. 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 23. Remarkable points, labeled as locations. (a) Blueprint with grids of North and East coor-

dinates and the location points marked alongside the path. (b) picture of points in building 
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Figure 24. Building location on a map. 

For the chosen points, one path started from north of the building to the south, and 

then to the east, with different distances based on the location chosen, in order to be more 

recognizable in reality when walking through the building. The points in Figure 23 are 

drawn to show the distances between each point and the next, as follows: the distance 

from the start point Figure 25 to point_1 is 100 cm, point_1 to point_2 is 70 cm, point_2 to 

point_3 is 222 cm, point_3 to point_4 is 160 cm, point_4 to point_5 is 160 cm, point_5 to 

point_6 is 120 cm, point_6 to point_7 is 80 cm, point_7 to point_8 is 190 cm, point_8 to 

point_9 is 150 cm, point_9 to point_10 is 150 cm, point_10 to point_11 is 90 cm, point_11 

to point_12 is 150 cm, point_12 to point_13 is 150 cm, point_13 to point_14 is 70 cm, 

point_14 to point_15 is 100 cm, point_15 to point_16 is 145 cm, point_16 to point_17 is 90 

cm, point_17 to point_18 is 95 cm, point_18 to point_19 is 100 cm, point_19 to point_20 is 

50 cm, point_20 to point_21 is 110cm, and point_21 to the end point is 120 cm. 

As can be seen in Figure 23, we labelled points of interest (POIs), which were shown 

clearly in the normal walking path. The points started from the entrance of the house, with 

many of them along the corridors to the ends of rooms inside the building. The last point 

exits from the other door to go outside the building. 

The chosen location shown is bounded within the district formed by two streets, with 

the points of interest indicated by yellow pins on the blueprint of the building. 
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Figure 25. Georeferenced blueprint of the building. 

We used Google Earth to georeference the blueprint data to the coordinate data, to 

facilitate further processing, as shown in Figures 26 and 27. We marked locations based 

on the labelled points, in order to track distances, headings, and tracking paths. 

 

Figure 26. Labeled POIs on the blueprint map. 

  
(a) (b) 

Figure 27. Moving and heading paths: (a) heading of moving; (b) moving path. 
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A movement-tracking path from east to west, from (StartPoint) to (end_point) 

through the same POIs, was drawn on the blueprint using the path tool in Google Earth 

Pro, which helped us to continue calculating the location upon moving. With this tool, we 

can show the user’s walking path in the indoor environment. These locations and POIs 

(Figures 28–33) were chosen as an example of an ordinary city building where people live. 

The building is composed of a number of floors, and we chose the ground floor and 

worked with two-dimensional coordinates to identify the locations of POIs. The distance 

unit was centimeters. The drawn walking path was normal and straight, with more than 

one direction. Most of the path lay in the family living room and the corridors. 

 

Figure 28. Length and heading to the first point. 

 

Figure 29. Length and heading to point_2. 

 

Figure 30. Length and heading to point_3. 

 

Figure 31. Length and heading to point_4. 
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Figure 32. Length and heading to point_20. 

 

Figure 33. Length and heading to the end point. 

The other step of data preparation involved collecting data from smartphone-embed-

ded sensors (Figure 34). Our approach is designed to include multiple smartphone sensors 

that provide different services, such as saving battery by utilizing these sensors to switch 

the light off when the screen is covered, or those used to count distances via a step counter. 

Inertial measurement units (i.e., accelerometer, gyroscope, and magnetometer; Figure 35) 

are used to overcome the absence of a satellite signal through implementing physical sen-

sors in place, in order to calculate distances from known locations such as access points 

using ToA or other fixed-point-based sensor techniques. Modern smartphones typically 

include many sensors (e.g., light, temperature, motion, touch, etc.), along with the accel-

erometer, gyroscope, and magnetometer in the inertial measurement unit. 

  

(a) (b) 

Figure 34. Collecting data from sensors embedded in smartphones: (a) data collected from a mo-

bile phone’s accelerometer; (b) data collected from a mobile phone’s angular velocity (gyroscope). 
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Figure 35. IMU sensor dataset. 

An accelerometer is a sensor device used in a smartphone to measure linear acceler-

ation. A gyroscope benefits from an angular momentum, velocity, and the Earth’s gravity, 

allowing it to measure the orientation of the device. Magnetometers are used to measure 

the device’s direction in relation to magnetic north. None of these sensors requires a 

prebuilt infrastructure to be used. Therefore, mobile-phone-embedded sensors were used 

to extract data from the abovementioned building. 

Data extraction was carried out from the smartphone’s log data (iPhone Pro 11, iOS 

14.2, memory 4 GB, CPU 2.66 GHz, storage 512 GB; and HTC One_M8, Memory 2 GB, 

CPU 2.26 GHz quad-core, storage 32 GB) using the MATLAB application. The results of 

the data extraction were as follows: First, data from the acceleration sensor (x, y, z) were 

measured in m/s2. Second, data from the magnetometer sensor (x, y, z) were measured in 

µT. Third, data from the angular velocity sensor (gyroscope) (x, y, z) were measured in 

rad/second. Fourth, the orientation sensor data were measured in yaw, pitch, and roll. 

We extracted data from the mobile phones using the MATLAB app, registered as a 

student to log in using MATLAB cloud (MATLAB Drive), and downloaded the MATLAB 

desktop version. We then used the cloud to synchronize data from the mobile sensors to 

the desktop, in order to process and prepare the data. We used the MATLAB app as it can 

separate the data from sensors (e.g., acceleration, magnetic field, orientation, angular ve-

locity, and position) used for navigation. The data were collected by enabling these sen-

sors to be synchronized with the MathWorks cloud, such that we could use MATLAB 

desktop to access the collected data (Figure 36). The experiment consisted of collection at 

23 points. Data for all of these points were collected by standing for around two seconds 

on the point, using a sample rate of 10 Hz. 

 

Figure 36. Extracted smartphone sensor datasets. 
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5.2. Site Two: Data Preparation 

The other site considered for the study experiment was an educational site at the 

College of Computer and Information Science. This building (Figure 37) is composed of 

three levels (i.e., ground, first, and second floor). The ground floor mostly contains re-

search labs, the first floor contains classrooms, and the second floor is home to the admin-

istration offices. 

 

Figure 37. Blueprint of site two (Building 31, King Saud University). Numbers 1 to 6 is locations, 

letters N, S,W,E is main directions, arrows indicate moving paths. 

We chose the most crowded points, where students and professors typically walk. 

Six points were chosen as reference points in different location. With the blueprint data, 

we experimentally collected locations and distances, as described for site one. After iden-

tifying points on the blueprint, georeferencing was conducted, as shown in Figure 38. 
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Figure 38. Georeferencing and drawing paths. 

Data collection from sensors was conducted by the devices used in site one data col-

lection, in order to collect two types of data (Figure 39): one was for fixed locations, and 

the other was when moving. Again, movement was classified into four classes (straight, 

right, left, and back). 

 

Figure 39. Site two smartphone sensor data. 

Moving was either between a pair of points or between multiple points. These data 

were converted into .csv format in order to unify the data collected from different sources 

into one type, facilitating further processing. 

5.3. Raw Data Processing 

Data were saved and uploaded as a .csv file into a Jupyter notebook on 10 June 2022, 

and we started to import the required libraries, such as pandas (Figure 40), which is a 

library combining two core Python libraries (NumPy—a library for mathematical opera-

tions—and Matplotlib, for data visualization). With pandas, one can access many methods 

of these two libraries with less code. 

 

Figure 40. Libraries and dataset. 



Sensors 2022, 22, 6513 37 of 53 
 

 

Libraries (i.e., pandas, Matplotlib) were imported to operate upon and visualize the 

data. First, we imported the data from the .csv file of the acceleration sensor, used to col-

lect data when moving from p1 to p2, and displayed the header (first five records) using 

the function .head(). data[“X”] to display the X-column partially on one of the three axes 

for the accelerometer sensor. Then, .plot(data[“X”]) function was used to visualize the 

data (Figure 41) for around 60 records, from which it can be seen that the data fluctuated 

between −1.5 and 1.5, indicating the presence of noise in these data. 

 

Figure 41. Visualization of data (x-axis). 

We then used plt.plot(data[“Y”]) to visualize the accelerometer sensor’s y-axis (Figure 

42), where the fluctuation over the 60 recorded data ranged between 0.0 and 4.0. The same 

function was used to display the change in the z-axis data, from which we calculated the 

gravity effect (Figure 43), showing a range between 6 and 14, indicating movement with 

low acceleration at the beginning and end, with a higher level in the middle. 

 

Figure 42. Visualization of the y-axis. 
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Figure 43. Visualization of the gravity effect (z-axis). 

The angular velocity data, representing the gyroscope sensor (Figure 44) data, 

showed that the angular speed of the mobile device, when moving, was not smooth on 

the x-axis, starting low and fluctuating between −0.6 and 0.6. The fluctuation in the y-axis 

(Figure 45) of the gyroscope was low compared to that in the x-axis, and even showed a 

spike around the third second (sample rate, 10 Hz). 

 

Figure 44. Gyroscope x-axis data. 

 

Figure 45. Gyroscope y-axis data. 

The trial z-axis gyroscope data were not stable, even though the user was collecting 

data in a fixed state (Figure 46). The data from the magnetic sensor showed fluctuation 

between −33.7 and 38.2 (Figure 47) on the magnetic x-axis at point_1. Meanwhile, the y-

axis presented a negative slope, with values ranging from 14 to around 4. 
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Figure 46. Gyroscope z-axis data for point_1. 

 

Figure 47. Magnetic x-axis data for point_1. 

The magnetic data for x-axis (Figure 48) and the z-axis (Figure 49) at point_1 are an 

example of the 10 trials conducted for this point, showing simple fluctuations ranging 

around −28; as the magnetic sensor was affected by the surrounding environment, it pre-

sented a spike (Figure 50) in the middle of the period, reaching −26, and then falling to −32 

by the end. The data for the orientation sensor are also presented (Figure 51) for a period 

of 5 s with a sample rate of 10 Hz. 

 

Figure 48. Magnetic x-axis data at point_1. 
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Figure 49. Magnetic y-axis data showing negative slope. 

 

Figure 50. Magnetic z-axis data, showing a spike in the middle. 

 

Figure 51. Orientation sensor data. 

The dataOrientationX=dataOrientation[“X”] and dataOrientationX=plt.plot(dataOrienta-

tionX) functions were used to identify which parts were assigned to the x variable. Then, 

we used these variables by assigning a function plt.plot(dataOrientationX) to plot data re-

lated to the x-axis, as shown below. The chart shows how the data initially ranged from 

88 to 82, and then fluctuated (Figure 52) between 78 and 86 for one fixed point. 
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Figure 52. Data fluctuating between 78 and 86 at one fixed point. 

dataOrientationY=dataOrientation[“Y”] and dataOrientationY=plt.plot(dataOrientationY) 

were used similarly, in order to plot the y-axis data. We can observe that noisy data were 

obtained. Orientation can be measured as 180 degrees on the positive side when starting 

from the north direction, turning right towards the south direction. Meanwhile, a negative 

value is taken when turning left from north to south, with the same number (180). Thus, 

here, we use the value −12 to indicate a direction between north and west. The orientation 

of the user in Figure 53 is between −12 and −20. 

 

Figure 53. Orientation of the user between −12 and −20, i.e., between north and west. 

The functions dataOrientationZ=dataOrientation[“Z”] and dataOrienta-

tionZ=plt.plot(dataOrientationZ) were then used to display the z-axis orientation Figure 54. 

Here, fluctuations between 3 and −4 could be observed. 

 

Figure 54. Orientation z-axis data, showing fluctuation between 3 and −4. 



Sensors 2022, 22, 6513 42 of 53 
 

 

The functions p1_Acceleration_merge=pd.read_csv(‘p1_Acceleration_merge.csv’) 

and p1_Acceleration_merge (Figure 55) were used to display the acceleration sensor data 

for point p1 using the function read.csv(), showing a total of 523 records. The function to 

visualize the merged acceleration data (Figure 56) was plt.plot(p1_Accelera-

tion_merge[“X”]). 

 

Figure 55. Merged acceleration sensor data. 

 

Figure 56. Merged acceleration data visualization. 
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Similarly, we used p1_AngularVelocity_merge=pd.read_csv(‘p1_AngularVeloc-

ity_merge.csv’), p1_AngularVelocity_merge (Figure 57), and p1_AngularVeloc-

ity_merge_X= plt.plot(p1_AngularVelocity_merge[“X”]) for the angular velocity data 

(Figure 58). 

 

Figure 57. Merged gyroscope (angular velocity) sensor data. 

 

Figure 58. Merged gyroscope data visualization. 

To merge the magnetic field data Figure 59 collected at point_1 into one file, we used 

p1_MagneticField_merge=pd.read_csv(‘p1_MagneticField_merge.csv’) and p1_Mag-

neticField_merge, as shown in Figure 59. This was visualized Figure 60 using p1_Mag-

neticField_merge_X= plt.plot(p1_MagneticField_merge[“X”]), as shown in Figure 60. 

 

Figure 59. Merged magnetic data (x,y,z). 
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Figure 60. Merged magnetic field data visualization. 

The y-axis in the magnetic field presented a continuous change when using p1_Mag-

neticField_merge_Y=plt.plot(p1_MagneticField_merge[“Y”]) to visualize it, as shown in 

Figure 61; similarly, the z-axis was plotted using p1_Mag-

neticField_merge_Z=plt.plot(p1_MagneticField_merge[“Z”]), as shown in Figure 62. 

 

Figure 61. Continuous change in magnetic y-axis data. 

 

Figure 62. Magnetic z-axis data. 

The orientation data at point_1, on the x- and y-axes, are shown in Figures 63 and 64, 

respectively. 
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Figure 63. Merged orientation data (x-axis). 

 

Figure 64. Merged orientation data (y-axis). 

5.4. WoT: Node-RED Data Processing 

The goal of Web of Things is to use normal web (www) infrastructure to empower 

and merge tools and technologies that we use in our daily lives, adapted for the develop-

ment of different IoT scenarios. Node-RED is a programming tool that can be used to con-

nect and wire HW devices and SW or APIs using online services. This minimizes the effect 

of the heterogeneity of different standards, and allows for powerful integration between 

objects, as the web becomes an object in the WoT concept. FRED is a Node-RED applica-

tion with online and desktop versions, used to wire HW and SW to communicate through 

many different “pallets” representing different libraries. Here, Node-RED is used as a tool 

to wire sensors (e.g., accelerometers and gyroscopes) from different sources, explore the 

data, and display the results. 

5.5. Design Flow and Nodes 

Flow in Node-RED represents a tab including number of nodes. Operations on these 

calculated data follow a specified process in terms of the way that they are linked to one 

another and the network design that links data operations. This flow is where processes 

are grouped in order to accomplish a higher target. Each node has different function or 

job. Node-RED is a node.js, which can run both the client and server sides on a local ma-

chine. By downloading Node-RED and running it through PowerShell or command 

prompt, the server side can be run and Node-RED online can be accessed through the 

browser (http://localhost:1880). Palette was used to design our experiment. For this study, 

we needed to fetch a JSON file into Node-RED; thus, we used connected nodes to repre-

sent smartphone sensors and other sensors (Figure 65). 
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Figure 65. Overview of connected inertial measurement unit sensors using Node-RED. 

Inject nodes were used to inject data; file nodes were used to read the data contained 

as a string or binary buffer (here, the file path is shown in the node); csv nodes convert 

between .csv-formatted strings and an associated .js object in both directions; debug nodes 

display selected message properties in the debug sidebar tab (and, optionally, the runtime 

log). For the flow design, we grouped sensors based on points and labeled them with 

point IDs, which helped the data flow and clarified the order. For example, the StartPoint 

sensors (accelerometer, angular velocity, and orientation) were organized Figure 66 into 

one group. Each location point like location Point_1 Figure 67 shows as upper sensor 

which runs through Node-Red flow. 

 

Figure 66. Start point acceleration sensor. 

 

Figure 67. Point_1 acceleration sensor. 
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In the design phase, we used four pallets in order to allow the WoT technique to work 

through the Node-RED application (FRED) and run the experiment. 

5.6. Debug Data 

We ran the experiment by carrying out two steps: First, we clicked the Deploy button 

(Figure 65) in the upper-right corner, and then conducted injection with the inject nodes. 

When this was done, the data could be seen in the debug section. The debug section shows 

the results as an array of 24 elements (Figure 68), as a payload in Node-RED (an object 

and array of elements). 

 

 

Figure 68. Payload of the data. 

The figures above show data from the blueprint at 24 locations in the building, each 

as points in an array. Each object includes X and Y representing location coordinates, gid 

representing location ID, and a description explaining the location information. To display 

data during processing, Node-RED flow was used with the pallet (Dashboard_Inter-IoT) 

and linked out into another flow with a Node-RED palette used for preparing data flow 

and a link in a node in the dashboard to link the data. Running the flows runs the dash-

board, and the data are presented with charts to display streaming data, based on time, 

related to POIs in the building. 

5.7. Quick Response Layer 

The quick response layer works as an optically readable barcode machine that con-

tains information about an item. A QR code is used to store information, which can be 

used to localize and track a user in an indoor environment [95]. This information can in-

clude the output of a smartphone sensor and the building blueprint, as well as the other 

data processed through the fusion layer. QR codes work as default and initial data for 

smartphone sensor calibration, when a user needs to navigate in an indoor facility. Infor-

mation stored in a building’s QR code at a suitable location—such as the main entrance—

can be easily accessed by a smartphone (Figure 69). 
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Figure 69. Applying handheld-device-based indoor localization with zero infrastructure. 

Accessing this QR code can be achieved in more than one way. One scenario is by 

building broadcast geofence data for the desired building. A user is reported as entering 

the area, and accepts the broadcast. At this point, the QR code controls the user’s 

smartphone sensors, disables the current sensors, and uploads the calibrated building 

IMU sensor data. A user can then navigate through the indoor environment using this 

calibrated information, and continue using QR building IMU data until deciding to leave 

the building. When a user proceeds to the QR code again, their distance and orientation 

are calculated, indicating that the user is about to leave. The QR code releases the HDIZI 

IMU data and comes to an end. Another scenario may occur, in which a user searches for 

an object indoors. The user will receive a QR code from HDIZI to save time. The QR con-

trols the user’s smartphone sensors, and the process continues until the object is found. 

6. Conclusions and Future Work 

Looking back on the relevant literature, the absence of zero-infrastructure navigation 

systems and standardizations for indoor positioning and localization remains to be ad-

dressed. However, the accuracy of the used algorithms is the most prominent topic in 

these studies. Pointing out an important shortcoming in almost all of them, they sought 

to benefit by using built-in sensors and algorithms to construct a technique that efficiently 

integrates each component to achieve high accuracy in indoor localization. This paper 

comprehensively reviews the previous literature on smartphone-embedded sensors for 

indoor localization and tracking. The majority of the studies consider topics such as the 

geospatial environment, machine learning, range-based localization techniques, pedes-

trian dead-reckoning (PDR) approaches, mobile devices’ built-in sensors, the Web of 

Things, and model development techniques. Furthermore, a detailed discussion is pro-

vided, including comparisons of numerous sensors, related algorithms, and techniques, 

as well as a detailed analysis of the parameters related to indoor localization and tracking. 

In addition to the detailed literature analysis, a novel handheld-device-based indoor lo-

calization with zero infrastructure (HDIZI) approach was proposed for indoor localiza-

tion and tracking. Three main components (i.e., sensors, algorithms, and techniques) were 

taken into consideration. In order to provide a promising indoor localization and tracking 

solution applicable to any handheld device, whether for research purposes or to be de-

ployed in industrial applications, the proposed framework structure is composed of three 
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levels: the smoothing level, which is to prepare data for processing; the initial fusion level, 

where the most handheld devices are interconnected to achieve tasks in a machine-to-

machine (M2M) manner; and the third level—the fusion at top level—under which an ML 

model with predefined data, camera, and time series can be used as an input and filtered 

for localization and tracking, including four classes (left, right, straight, and back), to di-

rect a user or object in an indoor environment. Data were collected from two different 

locations, applying a well-designed protocol to minimize the sampling noise, which is 

publicly available. 

This research will be extended as future work in a number of experimental studies, 

including real experimental setups considering public refined data in indoor environ-

ments. Optimal fashioning of handheld device sensors with related algorithms, along 

with the proposed filtering technique for localization and tracking utilizing different in-

door data sources, will serve to bridge the gap between geographical coordinate systems 

and indoor coordinate systems, in such a way that indoor and outdoor navigation modes 

can be linked together. As a result, a comprehensive framework for indoor connected 

components to facilitate indoor localization and tracking can be developed. 
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