
 
 

 
 

 
Sensors 2022, 22, 6627. https://doi.org/10.3390/s22176627 www.mdpi.com/journal/sensors 

Article 

User Authentication Method Based on Keystroke Dynamics 
and Mouse Dynamics with Scene-Irrelated Features in  
Hybrid Scenes 
Xiujuan Wang 1, Yutong Shi 1,*, Kangfeng Zheng 2, Yuyang Zhang 1, Weijie Hong 1 and Siwei Cao 1 

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 
2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China 
* Correspondence: ytshi@emails.bjut.edu.cn 

Abstract: In order to improve user authentication accuracy based on keystroke dynamics and mouse 
dynamics in hybrid scenes and to consider the user operation changes in different scenes that ag-
gravate user status changes and make it difficult to simulate user behaviors, we present a user au-
thentication method entitled SIURUA. SIURUA uses scene-irrelated features and user-related fea-
tures for user identification. First, features are extracted based on keystroke data and mouse move-
ment data. Next, scene-irrelated features that have a low correlation with scenes are obtained. Fi-
nally, scene-irrelated features are fused with user-related features to ensure the integrity of the fea-
tures. Experimental results show that the proposed method has the advantage of improving user 
authentication accuracy in hybrid scenes, with an accuracy of 84% obtained in the experiment. 
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1. Introduction 
With the development of computer technology and the internet, increasingly im-

portant data and personal information are being stored on computers and on the internet. 
Therefore, ensuring the security of these data is a growing concern. In recent years, bio-
metric technologies have been widely used. A biometric system is an access control sys-
tem that can distinguish between legal users and illegal users. Legal users can be authen-
ticated to use the system, while illegal users cannot. Biometric systems allow only legal 
users to access the system while forbidding access to illegal users, even if they pretend to 
be legal users. Biometric systems can identify users by the inherent physiological charac-
teristics of the human body (such as fingerprints and the iris) and by behavioral charac-
teristics (such as sound, keystroke habits, and mouse usage habits). Compared with tra-
ditional user authentication methods (such as key, username, and password), biometrics 
has many advantages in that it is difficult to forget, is not easily forged, and is excellent 
anti-counterfeiting technology. In addition, the successful commercial use of biometrics 
based on physiological and behavioral characteristics, such as fingerprints, iris, and voice, 
proves that keystroke dynamics and mouse dynamics have a long-term development pro-
spect. 

Biometrics based on keystroke dynamics was first proposed by Gaines et al. in 1980 
[1]. Unlike passwords, this method authenticates a user’s identity by the way they type. 
Keystroke dynamics is an analysis of people’s typing habits, so the key issue is not what 
the user types but how they type, such as how long they hold down a key or the interval 
between two keystrokes, which can produce unique patterns and characteristics of an in-
dividual. In addition, typing habits are hard to intercept or steal, so keystroke dynamics 
is an excellent user authentication scheme that can be added to conventional ID/password 
authentication schemes. Biometrics based on mouse dynamics was first proposed by 
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Ahmed et al. in 2007 [2]. As an analysis of a person’s mouse usage habits, it studied the 
characteristics of the average moving speed of a mouse in all directions and the time in-
tervals between single clicks or double clicks. The method of combining keystroke dy-
namics and mouse dynamics was also proposed by Ahmed et al. [3]. Using keystroke and 
mouse features at the same time enables them to complement each other while ensuring 
their respective performances so that a better performance can be achieved. Biometric sys-
tems based on keystroke dynamics and mouse dynamics can authenticate users when us-
ing computers without additional operations and can therefore continue authenticating 
users after they log into the system. In addition, as both technologies are based on the 
existing external devices of computers, the cost of authentication methods based on key-
stroke dynamics and mouse dynamics is lower than for other authentication methods, 
thus it has stronger generality as well as better development prospects. 

In the practical use of computers, users employ the keyboard and mouse for a period 
of time, and therefore, compared with the fusion of keystroke features and mouse fea-
tures, detection based only on a single type of feature will reduce the security and stability 
of the authentication system. Moreover, both keystroke dynamics and mouse dynamics 
authentication methods are limited to single scenes (such as only focusing on a typing 
scene) and real scenes (data collected by computers in daily life) [4,5]; however, user au-
thentication in a single scene cannot be applied to real life because the user authentication 
system cannot determine the computer usage scene, while user authentication in real 
scenes has low accuracy due to the severe variability of data [6]. Hence, we believe that 
using multi-scene hybrid data (namely, hybrid scenes), which are close to the real scene 
data, to train the model can result in the effective authentication of users without accurate 
scene information. However, as the authentication accuracy of hybrid scenes is lower than 
that of all single scenes, user authentication accuracy in hybrid scenes is severely reduced. 

In order to overcome the above research limitations and to improve the security and 
stability of user authentication systems, this paper proposes a method based on scene-
irrelated features and user-related features that are selected from keystroke dynamics and 
mouse dynamics features in hybrid scenes. The selected features that have low correla-
tions with scenes are named scene-irrelated features, and those that have high correlations 
with users are named user-related features. Scene-irrelated features and user-related fea-
tures are then fused to obtain user-scene features for user authentication. The proposed 
method is defined as user authentication based on scene-irrelated features and user-re-
lated features (SIURUA), and the main contributions of this paper are summarized as fol-
lows: 
1. A user authentication method is proposed to filter scene-irrelated features in hybrid 

scenes to reduce the impact of scenes on user authentication; 
2. A user authentication method is proposed to fuse scene-irrelated features with user-

related features in hybrid scenes. 
The remainder of the paper is organized as follows. Section 2 introduces related 

work. The proposed scene-irrelated features, user-related features, user authentication al-
gorithm, and the evaluation indices of experiments are introduced in Section 3. We pro-
vide the experimental configurations and analyses of the experimental results in Section 
4. Finally, Section 5 concludes the paper and outlines future work. 

2. Related Research 
2.1. Feature Selection 

Feature selection is a common method used to improve the accuracy of classification 
models and can be divided into filter methods, wrapper methods, and embedded meth-
ods [7]. Filter methods are independent of machine learning algorithms and use evalua-
tion criteria to enhance the correlations between features and classes and to reduce the 
correlations between features and features. Wrapper methods use the accuracy of learning 
algorithms to evaluate feature subsets. Embedded methods automatically select feature 
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subsets in the training process, making up for the shortcomings of filter methods and 
wrapper methods. 

2.1.1. Filter Methods 
Filter methods select the features by calculating their weights before using the learn-

ing algorithm. The simplest filtering feature selection methods are mutual information [8], 
chi-square test, and F-test, which all select features based on the correlations between fea-
tures and labels. In addition, some new filter methods have been proposed recently. Cai 
et al. [6] proposed a mouse dynamics feature dimension reduction method based on mul-
tidimensional scaling (MDS) and isometric feature mapping (ISOMAP). This method gen-
erated a weight matrix first, then the ratio of the sum of certain eigenvalues to the sum of 
total eigenvalues was compared with the threshold. If the ratio was greater than the 
threshold, the corresponding feature of the eigenvalue was selected as the feature subset. 
This method could effectively reduce the behavioral variability of mouse dynamics and 
improve the learning effect. 

2.1.2. Wrapper Methods 
Wrapper methods select the optimal subset based on an analysis of the pros and cons 

of feature subsets through models. The most common wrapper method is a feature subset 
search, such as a genetic algorithm [9] and hill-climbing [10]. Yang et al. proposed a multi-
task feature selection method based on a Support Vector Machine (SVM) and a multi-task 
matrix [11]. This method could optimize the feature weight of a task by using the features 
of the remaining tasks in multi-task learning. Finally, the feature subset was selected ac-
cording to the weight to achieve the purpose of improving the learning effect. 

2.1.3. Embedded Methods 
Embedded methods apply feature selection to the learning process, with the ad-

vantage of not needing to evaluate different feature subsets. Common embedded methods 
include ℓ1−regularization [12] and ℓ2−regularization [13]. Regularization is a method of 
adjusting feature coefficients through the value of a regularization term, and the feature 
selection is completed when some of the feature coefficients reduce to zero. Feiping et al. 
[14] proposed a feature selection method based on ℓ2,1−norm. In a multi-task experiment, 
the application of ℓ2,1−norm to the feature coefficient matrix composed of the feature co-
efficients of each task resulted in the matrix’s rows becoming dense and the columns be-
coming sparse through learning, so that multi-task feature selection was realized through 
intertask sharing of information. 

2.2. Keystroke Dynamics and Mouse Dynamics 
2.2.1. Keystroke Dynamics 

Since being first proposed by Gaines et al. in 1980 [1], biometric technology based on 
keystroke dynamics has been developed for 40 years, and some researchers have made 
considerable progress. Research into keystroke dynamics can be divided into two catego-
ries: static authentication based on fixed text and dynamic authentication based on the 
free text [15]. 

In recent years, with the development of computer technologies, research into key-
stroke dynamics has made great advancements. In 2007, Azevedo et al. [16] proposed a 
hybrid system based on the combination of SVM and genetic algorithm (GA). The exper-
iment obtained a 1.18% False Acceptance Rate (FAR) and 1.58% False Recognition Rate 
(FRR), while the feature dimension was reduced by 47.51%. Arwa et al. [17] suggested 
using the fusion method to improve the performance of user authentication based on free 
text keystroke dynamics. They proposed novel keystroke dynamics features called “semi-
timing features”, which had been proved to appear in most users’ keystroke behaviors. 
The authors combined traditional keystroke dynamics features with “semi-timing 
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features” and used SVM for classification, obtaining 1.56% FAR and 21.5% FRR. Epp et al. 
[18] applied keystroke dynamics to emotional recognition and achieved an accuracy of 
between 77% and 80%. Antal et al. [19] fused keystroke dynamics into smartphones and 
obtained a 15.3% Equal Error Rate (EER). Tsai and Huang [20] put forward a method to 
detect fraudulent messages through a voting-based statistical classifier to analyze users’ 
keystroke dynamics, obtaining 10.4% EER. Ayotte et al. [21] proposed a novel instance-
based graph comparison algorithm called ITAD that could reduce the keystroke number 
for user authentication and ultimately obtained 7.8% EER for the Clarkson II dataset and 
3.0% EER for the Buffalo dataset. With the development of the Artificial Neural Network 
(ANN), some neural network-based keystroke dynamics user authentication methods 
were proposed. For example, Tewari and Verma [22] combined keystroke dynamics data 
and image data with artificial image data, using AlexNet and ResNet to classify the artifi-
cial image, and achieving an accuracy of 98.57%. Lu et al. [23] combined a Convolution 
Neural Network (CNN) with Recurrent Neural Network (RNN) architecture to test the 
model using the sliding window extraction of n-gram features, achieving an EER of 2.67% 
in the best case. 

2.2.2. Mouse Dynamics 
User authentication based on mouse dynamics can be divided into continuous au-

thentication and static authentication. Continuous authentication means authenticating 
the user at all times while the user is using the system. Static authentication means au-
thenticating the user under certain circumstances. 

Early mouse dynamics research focused on the recognition of user electronic signa-
tures. Higashino et al. [24] used neural networks to study handwriting signatures. In 2003, 
Everitt et al. [25] conducted a study on signing with a mouse. In 2007, Ahmed et al. [2] 
verified the feasibility of using mouse movement data to authenticate identity. The pro-
posed features extraction method has been used to date, and the authors obtained 2.46% 
FAR and 2.46% FRR through experiments. Since then, increasingly more research papers 
based on mouse dynamics have been published. 

Fecher et al. [26] proposed new mouse dynamics features, such as jitters and straight-
ness, and then input these features and other features proposed by Ahmed into a multi-
layer classifier based on random forest, finally obtaining 7.5% EER. Kasprowski et al. [27] 
proposed a biometric method fusing mouse dynamics and eye movement biometrics, fi-
nally achieving 92.9% accuracy and 6.8% EER. Gao et al. [28] proposed a continuous au-
thentication method using mouse dynamics based on decision-level fusion. Antal et al. 
[29] used a convolutional neural network to learn the mouse dynamics features directly, 
obtaining 0.94 AUC. Hu et al. [30] visualized mouse movements as images and used CNN 
to classify the images, ultimately attaining 2.94% FAR and 2.28 FRR. 

2.2.3. Fusion of Keystroke Dynamics and Mouse Dynamics 
A keyboard and a mouse are the main devices by which a user interacts with a com-

puter. Over a period of time, a user will use a keyboard and mouse at the same time to 
operate a computer, providing the possibility for the fusion of keystroke dynamics and 
mouse dynamics. Ahmed et al. [3] verified the fusion of keystroke dynamics and mouse 
dynamics for the first time. They spliced keystroke dynamics and mouse dynamics, then 
input the features into a neural network, finally obtaining 1.312% FAR and 0.651% FRR. 
Bailey et al. [31] used the J48 algorithm to achieve decision-level fusion for keystroke dy-
namics features, mouse dynamics features, and GUI interaction features, finally achieving 
2.1% FAR and 2.24% FRR. Mondal et al. [32] proposed a continuous authentication system 
based on the fusion of keystroke dynamics and mouse dynamics. The confidence of the 
users of this system depended on the deviation of the users’ operations, with legal users 
locked after 40,134 operations and illegal users locked after 419 operations. Some studies 
applied keystroke dynamics and mouse dynamics to soft biometric identification. For ex-
ample, Earl et al. [33] proposed the use of keystroke and mouse dynamics features to 
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identify users’ gender, handedness, or age, and their research demonstrates that biometric 
authentication technology can be used in many more areas. 

2.3. Multiple Kernel Learning 
In 1992, Boser et al. [34] introduced the concept of kernel function into machine learn-

ing when they researched the support vector machine algorithm. The kernel function 
maps the linearly inseparable eigenvector 𝑥𝑥 in original feature space to the linearly sep-
arable eigenvectors 𝜙𝜙(𝑥𝑥) in high-dimensional space. In fact, choosing the correct kernel 
has an even stronger impact on the classification results compared with the classifier, but 
the data may come from different distributions, and it may be necessary to use different 
kernels for mapping. The objective of multiple kernel learning (MKL) is to combine ker-
nels from multiple sources to improve the accuracy of the target kernel. The parameters 
used in MKL are generally positive, and the MKL formula is: 

𝐾𝐾 = �𝜂𝜂𝑟𝑟

𝑅𝑅

𝑟𝑟=1

𝐾𝐾𝑟𝑟,   𝜂𝜂𝑟𝑟 ≥ 0 (1) 

Based on this formula, MKL is used to combine multiple kernels into a large kernel 
to improve classification accuracy. 

The simplest MKL algorithm is AverageMKL, proposed by Belanche et al. [35], in 
which the parameter of each kernel is the reciprocal of the total number of kernels. Hence, 
the kernel fusion formula is: 

𝑘𝑘𝜇𝜇(𝑥𝑥, 𝑧𝑧) = �𝜇𝜇𝑟𝑟𝑘𝑘𝑟𝑟(𝑥𝑥𝑟𝑟, 𝑧𝑧𝑟𝑟)
𝑃𝑃

𝑟𝑟

,   𝜇𝜇𝑟𝑟 =
1
𝑃𝑃

  (2) 

Kloft et al. [36] and Xu et al. [37] proposed a lasso-based MKL algorithm that uses ℓ1 
−norm to regularize kernel weights. Do et al. [38] found that kernel combination maxim-
izes the decision boundary by fusing the kernel radius into the MKL, naming it Radius 
MKL (R-MKL). EasyMKL [39] is an improved version of AverageMKL that obtained a 
combination of kernel parameters through learning. 

Multiple kernel learning can improve the accuracy of models by combining multiple 
types of features. Therefore, MKL has a broader application prospect in machine learning. 

3. Proposed Approach 
In this section, we will describe the proposed SIURUA in detail. In order to reduce 

the impact of different scenes on the hybrid scene features, we propose the selection of 
scene-irrelated features and user-related features and then propose fusing them to im-
prove the authentication accuracy of the model in hybrid scenes. Figure 1 shows the block 
diagram of SIURUA. The steps include feature extraction, feature processing, and model 
training. In Figure 1, we can see the basic process of SIURUA in more detail: 
• First, features are extracted from the collected user operation data (details will be 

provided in Section 3.1); 
• Second, scene-irrelated features and user-related features are selected from the orig-

inal features (details will be elaborated in Section 3.2); 
• Finally, scene-irrelated features and user-related features are fused and the model is 

trained (details will be presented in Section 3.3). 
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Figure 1. Block diagram of SIURUA. 

3.1. Feature Extraction 
The features adopted in this experiment are keystroke dynamics features and mouse 

dynamics features. We extract features according to different time lengths. Each dimen-
sion of the keystroke dynamics feature and mouse dynamics feature is the average of a 
feature extracted by a user operating within the time length, so the numbers of user oper-
ations are varied at different time lengths, and the extracted feature vectors are different. 
We use the variable time window to represent the length of time used to extract the fea-
tures; for example, time window = 60 s or time window = 120 s. In the feature extraction 
section, features are extracted according to the value of the time window, so the value of 
the time window is the decisive factor determining the amount of information contained 
in the features. 

In the next feature selection section, we select features from the extracted original 
features based on the user operation, and we define the original features as 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 −
𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹 = (𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑙𝑙), where 𝑙𝑙 is the total number of dimensions of the original fea-
tures. The original user operation features consist of the directly extracted keystroke dy-
namics features and the mouse dynamics features. Therefore, we define the keystroke dy-
namics feature as 𝐾𝐾𝐹𝐹𝐾𝐾 = (𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘𝑛𝑛) (as shown in Section 3.1.1) and the mouse dynam-
ics feature as 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝐹𝐹 = (𝑚𝑚1,𝑚𝑚2, . . . ,𝑚𝑚𝑚𝑚) (as shown in Section 3.1.2), where 𝑛𝑛 is the di-
mension size of keystroke dynamics features and 𝑚𝑚 is the dimension size of mouse dy-
namics features. Then, we directly splice the keystroke dynamics features and mouse dy-
namics features without additional operations to obtain the user operation original fea-
tures, as illustrated above. Finally, we obtain the original features 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹 =
(𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑙𝑙) = (𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘𝑛𝑛 ,𝑚𝑚1,𝑚𝑚2, . . . ,𝑚𝑚𝑚𝑚), where 𝑙𝑙 = 𝑛𝑛 + 𝑚𝑚. The above features are ex-
tracted from the collected keystroke data and mouse data according to the time window, 
and the values of the time window are 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 120 s, 180 s, 240 s, 300 
s, 360 s, 420 s, and 480 s. In the process of extracting the features, the original features are 
extracted from all data under the same value of time window, and empty feature compo-
nents are filled with 0. Finally, we obtain the features shown in Table 1 (𝑂𝑂 representing the 
number of features and 𝑗𝑗 representing the dimension of features). 

Table 1. Examples of keystroke mouse dynamics features. 

Feature 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 ⋯ 𝒇𝒇𝒋𝒋 
𝐾𝐾𝑀𝑀 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹1 𝑓𝑓1,1 𝑓𝑓1,2 𝑓𝑓1,3 ⋯ 𝑓𝑓1,𝑗𝑗 
𝐾𝐾𝑀𝑀 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹2 𝑓𝑓2,1 𝑓𝑓2,2 𝑓𝑓2,3 ⋯ 𝑓𝑓2,𝑗𝑗 
𝐾𝐾𝑀𝑀 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹3 𝑓𝑓3,1 𝑓𝑓3,2 𝑓𝑓3,3 ⋯ 𝑓𝑓3,𝑗𝑗 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
𝐾𝐾𝑀𝑀 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹𝑖𝑖 𝑓𝑓𝑖𝑖,1 𝑓𝑓𝑖𝑖,2 𝑓𝑓𝑖𝑖,3 ⋯ 𝑓𝑓𝑖𝑖,𝑗𝑗 

Next, we will elaborate on the extraction methods for keystroke dynamics features 
and mouse dynamics features. 



Sensors 2022, 22, 6627 7 of 24 
 

 

3.1.1. Keystroke Features 
We obtain the key pairs according to the time keys are pressed. After the key pairs 

are obtained, the keystroke features can be extracted [40]. According to the pressing time 
(down) and the release time (up) of each key, the single key features, and key pair features, 
as shown in Figure 2, can be obtained (in milliseconds) [41]: 

 
Figure 2. Keystroke dynamics. 

1. Single key features: keystroke duration (KD). Each key pair has two single key fea-
tures: 
• the keystroke duration of the first key (KD1); 
• the keystroke duration of the second key (KD2). 

2. Key pair features: the diagram latency between two keys. Each key pair has six key 
pair features: 
• down-down diagram latency (DDDL); 
• down-up diagram latency (DUDL); 
• up-down diagram latency (UDDL); 
• up-up diagram latency (UUDL). 
The above keystroke features can be applied to every key and every key pair. For a 

full-size keyboard with 110 keys, the KD features of a single key are 110 dimensions, and 
the DDDL, DUDL, UDDL, and UUDL features of the key pairs are 12,100 dimensions; 
thus, there are 48,400 dimensions in total. Hence, the keystroke features in each time win-
dow have 48,510 dimensions. Therefore, the keystroke dynamics feature dimension 𝑛𝑛 
(defined in Section 3.1) is equal to 48,510, and the keystroke dynamics features are ex-
pressed as 𝐾𝐾𝐹𝐹𝐾𝐾 = (𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘48510). 

3.1.2. Mouse Features 
We extract mouse dynamics features according to the operation types [2]. On the ba-

sis of the recorded mouse movement data—left-click data, right-click data, and eight 
movement directions are shown in Figure 3—we can extract seven types of mouse fea-
tures: 
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Figure 3. Eight directions for mouse dynamics feature extraction. 

• Movement speed compared with traveled distance (MSD): The average speed of all 
moves within different moving distances. The range of moving distance is every in-
terval of 100 pixels within 1–800 pixels (such as 1–100 pixels, 101–200 pixels). The 
length of the MSD feature vector is 8; 

• Average movement speed per movement direction (MDA): The average speed of 
all movements in different moving directions. The moving direction is divided into 
eight equal parts. The length of the MDA feature vector is 8; 

• Average speed for different types of actions (ATA): The average mouse movement 
speed of different operation types. There are three operations, namely, mouse-move, 
drag-drop, and point-click. The length of the ATA feature vector is 3; 

• Traveled distance histogram (TDH): The ratio of the number of mouse operations in 
different moving distances to the total number of mouse operations. The length of 
the TDH feature vector is 8; 

• Movement direction histogram (MDH): The ratio of the number of mouse opera-
tions in different moving directions to the total number of mouse operations. The 
length of the MDH feature vector is 8; 

• Actions types histogram (ATH): The ratio of the number of mouse operations of dif-
ferent operation types to the total number of mouse operations. The length of the 
ATH feature vector is 3; 

• Movement elapsed time histogram (MTH): The ratio of the number of mouse oper-
ations in different operation durations to the total number of mouse operations. The 
time range is 5 time periods separated by 200 milliseconds within 1–1000 millisec-
onds. The length of the MTH feature vector is 5. 
We combine the above features into a feature vector, finally obtaining 43-dimensional 

mouse dynamics features. Therefore, the mouse dynamics feature dimension 𝑚𝑚 (defined 
in Section 3.1) is equal to 43, and the mouse dynamics features are expressed as 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝐹𝐹 =
(𝑚𝑚1,𝑚𝑚2, . . . ,𝑚𝑚43). 

3.2. Feature Processing 
3.2.1. Scene-Irrelated Features and User-Related Features 

As single scene data are collected in restricted environments, we consider that there 
will be some changes in users’ keystrokes and mouse operations in different scenes, and 
we call the factors that lead to those changes “scene information”. Due to the scene infor-
mation, we consider that features that are highly correlated with scenes will affect user 
authentication accuracy. Therefore, scene-irrelated features can be selected to effectively 
distinguish users and reduce the correlation between features and scenes. We calculate 
the correlation 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑖𝑖) between each dimension of features 𝑓𝑓𝑖𝑖 and scenes. Based on 
these data, we obtain a sequence of scene correlation degree: 
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𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 − 𝐶𝐶𝑂𝑂𝐶𝐶 = {𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓1),𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓2), . . . ,𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑗𝑗)}, (3) 

and then select 𝑛𝑛 dimensions of features according to the inequality: 

𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑖𝑖) <= 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑛𝑛), (4) 

where 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑛𝑛) is the 𝑛𝑛-𝑡𝑡ℎ lowest correlation and 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑖𝑖) is any correlation 
less than or equal to 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑛𝑛) in 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 − 𝐶𝐶𝑂𝑂𝐶𝐶. Finally, we obtain 𝑛𝑛-dimensional fea-
tures that have the lowest correlation with scenes. We name them “scene-irrelated fea-
tures” and define them as 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 = (𝑆𝑆𝑖𝑖1 , 𝑆𝑆𝑖𝑖2 , . . . , 𝑆𝑆𝑖𝑖𝑛𝑛). 

Contrary to the scene-irrelated features, some features will have great differences be-
tween different users and will have few differences for the same user. These features are 
more distinguishable to users than other features, therefore we call these features “user-
related features”. Using user-related features to classify can achieve excellent results. We 
calculate the correlation 𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑖𝑖) between each dimension of features 𝑓𝑓𝑖𝑖 and users. 
Based on these data, we obtain a sequence of user correlation degree: 

User − COR = {𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓1),𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓2), … ,𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑗𝑗)}, (5) 

and then select 𝑚𝑚 dimensions of features according to the inequality: 

𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑖𝑖) >= 𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑚𝑚), (6) 

where 𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑚𝑚) is the 𝑚𝑚-𝑡𝑡ℎ lowest correlation and 𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑖𝑖) is either correlation 
in 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝐶𝐶𝑂𝑂𝐶𝐶. Finally, we obtain 𝑚𝑚-dimensional features that have the highest correla-
tion with users. We name them as user-related features and define them as 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 =
(𝑈𝑈𝑟𝑟1 ,𝑈𝑈𝑟𝑟2 , . . . ,𝑈𝑈𝑟𝑟𝑚𝑚). 

We consider that user-related features still contain some scene information in hybrid 
scenes; the ratio of scene information contained in user-related features can be reduced by 
fusing scene-irrelated features (we call the generated features “user-scene features”), 
which can improve the user authentication accuracy in hybrid scenes. We define user-
scene features as 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 = 𝐾𝐾(𝑈𝑈𝑟𝑟 , 𝑆𝑆𝑖𝑖) , where 𝐾𝐾(·)  is the kernel fusion function 
(which will be introduced in Section 3.3). 

3.2.2. Feature Selection Method 
The SIURUA algorithm searches for scene-irrelated features and user-related fea-

tures, so it is necessary to measure the correlations between features and users and the 
correlations between features and scenes. As mutual information cannot effectively reflect 
the correlation between two datasets when the features have many values, adjusted mu-
tual information (AMI) is used to calculate the user correlation and scene correlation of 
our SIURUA algorithm [42]. First, we number the user sequence 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 = (𝑡𝑡1,𝑡𝑡2, . . . ,𝑡𝑡𝑖𝑖) 
according to 41 users, and the scene sequence 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 = (𝑀𝑀1, 𝑀𝑀2, . . . , 𝑀𝑀𝑖𝑖)  according to 4 
scenes, and separate each dimension of the original features 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐹𝐹𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡𝑂𝑂𝐹𝐹 to obtain the 
sequence 𝑓𝑓𝑗𝑗 = (𝑓𝑓1,𝑗𝑗, 𝑓𝑓2,𝑗𝑗 , . . . , 𝑓𝑓𝑖𝑖,𝑗𝑗) . We subsequently calculate 𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓𝑗𝑗) = 𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) 
and 𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓𝑗𝑗) = 𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 , 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) , where 𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)  and 𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 , 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)  are calcu-
lated using the AMI calculation formula introduced in [42]: 

𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) =
𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) − E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)}

𝑎𝑎𝑎𝑎𝑂𝑂{𝐻𝐻(𝑓𝑓𝑗𝑗),𝐻𝐻(𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)} − E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)}
 (7) 

and 

𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 , 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) =
𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) − E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)}

𝑎𝑎𝑎𝑎𝑂𝑂{𝐻𝐻(𝑓𝑓𝑗𝑗),𝐻𝐻(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} − E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 , 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)}
, (8) 

where E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)} and E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} represent the expectations of mutual infor-
mation 𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)  and 𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) ; and 𝐻𝐻(𝑓𝑓𝑗𝑗) , 𝐻𝐻(𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) , and 𝐻𝐻(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)  are the 
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entropies of 𝑓𝑓𝑗𝑗 = (𝑓𝑓1,𝑗𝑗, 𝑓𝑓2,𝑗𝑗, … , 𝑓𝑓𝑖𝑖,𝑗𝑗) , 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 = (𝑡𝑡1, … . . . ,𝑡𝑡𝑖𝑖) , and 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 = (𝑀𝑀1, 𝑀𝑀2, . . . , 𝑀𝑀𝑖𝑖) , re-
spectively. 

The calculation formulas of the entropies mentioned above are 𝐻𝐻(𝑓𝑓𝑗𝑗) =
−∑ 𝑃𝑃(𝑓𝑓𝑚𝑚,𝑗𝑗)𝑙𝑙𝑀𝑀𝑂𝑂𝑃𝑃(𝑓𝑓𝑚𝑚,𝑗𝑗)𝑖𝑖

𝑚𝑚=1 , 𝐻𝐻(𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) = −∑ 𝑃𝑃(𝑡𝑡𝑚𝑚)𝑙𝑙𝑀𝑀𝑂𝑂𝑃𝑃(𝑡𝑡𝑚𝑚),𝑖𝑖
𝑚𝑚=1  and 𝐻𝐻(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) =

−∑ 𝑃𝑃(𝑀𝑀𝑚𝑚)𝑙𝑙𝑀𝑀𝑂𝑂𝑃𝑃(𝑀𝑀𝑚𝑚)𝑖𝑖
𝑚𝑚=1 , where log denotes the logarithm with a base of two. 𝑃𝑃(∙) is the 

occurrence with a probability of 𝑓𝑓𝑚𝑚,𝑗𝑗, 𝑡𝑡𝑚𝑚, and 𝑀𝑀𝑚𝑚, where 1 ≤ 𝑚𝑚 ≤ 𝑂𝑂. 
In addition, the expectation of mutual information is introduced in [42], and therefore 

𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂) and 𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) are calculated as follows: 

E�𝑀𝑀𝐴𝐴�𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂�� = �� �
𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙
𝑁𝑁𝑈𝑈

𝑙𝑙𝑀𝑀𝑂𝑂(
𝑁𝑁𝑈𝑈 · 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙
𝑎𝑎𝑘𝑘,𝑗𝑗𝑏𝑏𝑙𝑙

)

𝑚𝑚𝑖𝑖𝑛𝑛(𝑖𝑖𝑘𝑘,𝑗𝑗,𝑏𝑏𝑙𝑙)

𝑛𝑛𝑢𝑢𝑘𝑘𝑙𝑙=𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑘𝑘,𝑗𝑗+𝑏𝑏𝑙𝑙−𝑁𝑁𝑈𝑈,0)

41

𝑙𝑙=1

𝑀𝑀𝑗𝑗

𝑘𝑘=1

×
𝑎𝑎𝑘𝑘,𝑗𝑗! 𝑏𝑏𝑙𝑙! (𝑁𝑁𝑈𝑈 − 𝑎𝑎𝑘𝑘,𝑗𝑗)! (𝑁𝑁𝑈𝑈 − 𝑏𝑏𝑙𝑙)!

𝑁𝑁𝑈𝑈!𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙! (𝑎𝑎𝑘𝑘,𝑗𝑗 − 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙)! (𝑏𝑏𝑙𝑙 − 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙)! (𝑁𝑁𝑈𝑈 − 𝑎𝑎𝑘𝑘,𝑗𝑗 − 𝑏𝑏𝑙𝑙 + 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙)!
 

(9) 

and 

E{𝑀𝑀𝐴𝐴(𝑓𝑓𝑗𝑗, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} = �� �
𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙
𝑁𝑁𝑆𝑆

𝑙𝑙𝑀𝑀𝑂𝑂(
𝑁𝑁𝑆𝑆 · 𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙
𝑎𝑎𝑘𝑘,𝑗𝑗𝑆𝑆𝑙𝑙

)

𝑚𝑚𝑖𝑖𝑛𝑛(𝑖𝑖𝑘𝑘,𝑗𝑗,𝑠𝑠𝑙𝑙)

𝑛𝑛𝑠𝑠𝑘𝑘𝑙𝑙=𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑘𝑘,𝑗𝑗+𝑐𝑐𝑙𝑙−𝑁𝑁𝑆𝑆,0)

4

𝑙𝑙=1

𝑀𝑀𝑗𝑗

𝑘𝑘=1

×
𝑎𝑎𝑘𝑘,𝑗𝑗! 𝑆𝑆𝑙𝑙! (𝑁𝑁𝑆𝑆 − 𝑎𝑎𝑘𝑘,𝑗𝑗)! (𝑁𝑁𝑆𝑆 − 𝑆𝑆𝑙𝑙)!

𝑁𝑁𝑆𝑆!𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙! (𝑎𝑎𝑘𝑘,𝑗𝑗 − 𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙)! (𝑆𝑆𝑙𝑙 − 𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙)! (𝑁𝑁𝑆𝑆 − 𝑎𝑎𝑘𝑘,𝑗𝑗 − 𝑆𝑆𝑙𝑙 + 𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙)!
 

(10) 

where 𝑀𝑀𝑗𝑗  is the number of clusters of clustering 𝑓𝑓𝑗𝑗 = {𝐹𝐹1,𝑗𝑗,𝐹𝐹2,𝑗𝑗 , . . . ,𝐹𝐹𝑀𝑀𝑗𝑗,𝑗𝑗} . Similarly, the 
number of clusters of clustering 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 = {𝑈𝑈1,𝑈𝑈2, . . . ,𝑈𝑈41} and 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 = {𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4} are 41 
and 4, respectively. In addition, 𝑎𝑎𝑘𝑘,𝑗𝑗 = |𝐹𝐹𝑘𝑘,𝑗𝑗|, 𝑏𝑏𝑙𝑙 = |𝑈𝑈𝑙𝑙| , 𝑆𝑆𝑙𝑙 = |𝑆𝑆𝑙𝑙|, 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙 = �𝐹𝐹𝑘𝑘,𝑗𝑗⋂𝑈𝑈𝑙𝑙�, and 
𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙 = |𝐹𝐹𝑘𝑘,𝑗𝑗⋂𝑆𝑆𝑙𝑙|. Finally, 𝑁𝑁𝑈𝑈 = ∑ |𝐹𝐹𝑘𝑘,𝑗𝑗⋂𝑈𝑈𝑙𝑙|𝑘𝑘𝑙𝑙  and 𝑁𝑁𝑆𝑆 = ∑ |𝐹𝐹𝑘𝑘,𝑗𝑗⋂𝑆𝑆𝑙𝑙|𝑘𝑘𝑙𝑙 . 

For example, we have a set of data, as shown in Table 2, which is a feature compo-
nent, and each dimension of features has its corresponding 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 label. 

Table 2. Examples features of calculating AMI. 

Feature 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟏𝟏 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟐𝟐 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟑𝟑 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟒𝟒 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟓𝟓 
𝑓𝑓1 384 485 433 498 458 

𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 0 3 0 1 3 

First, calculate the information entropy and mutual information of 𝑓𝑓1 and 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 to 
obtain 𝐻𝐻(𝑓𝑓1) = 1.33218  and 𝐻𝐻(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) = 1.05492 , so 𝑎𝑎𝑎𝑎𝑂𝑂{𝐻𝐻(𝑓𝑓1),𝐻𝐻(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} = 1.19355 . 
Second, calculate the mutual information and the expectation of mutual information of 𝑓𝑓1 
and 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 to obtain 𝑀𝑀𝐴𝐴(𝑓𝑓1, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) = 1.05492 and E{𝑀𝑀𝐴𝐴(𝑓𝑓1, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} = 0.83311. Finally, 
calculate the adjusted mutual information 𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓1, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹) = 0.61539. 

The relationships between these variables are shown in Table 3 and Table 4. 

Table 3. Contingency table of 𝑓𝑓𝑗𝑗  and 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂. 
𝒇𝒇𝒋𝒋\𝑼𝑼𝑼𝑼𝑭𝑭𝑭𝑭 𝑼𝑼𝟏𝟏 𝑼𝑼𝟐𝟐 ⋯ 𝑼𝑼𝟒𝟒𝟏𝟏 Sums 
𝐹𝐹1,𝑗𝑗 𝑛𝑛𝑡𝑡1,1 𝑛𝑛𝑡𝑡1,2 ⋯ 𝑛𝑛𝑡𝑡1,41 𝑎𝑎1,𝑗𝑗 
𝐹𝐹2,𝑗𝑗 𝑛𝑛𝑡𝑡2,1 𝑛𝑛𝑡𝑡2,2 ⋯ 𝑛𝑛𝑡𝑡2,41 𝑎𝑎2,𝑗𝑗 
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝐹𝐹𝑀𝑀𝑗𝑗,𝑗𝑗 𝑛𝑛𝑡𝑡𝑀𝑀𝑗𝑗,1 𝑛𝑛𝑡𝑡𝑀𝑀𝑗𝑗,2 ⋯ 𝑛𝑛𝑡𝑡𝑀𝑀𝑗𝑗,41 𝑎𝑎𝑀𝑀𝑗𝑗,𝑗𝑗 

Sums 𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏41 � 𝑛𝑛𝑡𝑡𝑘𝑘𝑙𝑙
𝑘𝑘𝑙𝑙

= 𝑁𝑁𝑈𝑈 
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Table 4. Contingency table of 𝑓𝑓𝑗𝑗  and 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹. 

𝒇𝒇𝒋𝒋\𝑺𝑺𝑺𝑺𝑭𝑭𝑺𝑺𝑭𝑭 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 ⋯ 𝑺𝑺𝟒𝟒 Sums 
𝐹𝐹1,𝑗𝑗 𝑛𝑛𝑀𝑀1,1 𝑛𝑛𝑀𝑀1,2 ⋯ 𝑛𝑛𝑀𝑀1,41 𝑎𝑎1,𝑗𝑗 
𝐹𝐹2,𝑗𝑗 𝑛𝑛𝑀𝑀2,1 𝑛𝑛𝑀𝑀2,2 ⋯ 𝑛𝑛𝑀𝑀2,41 𝑎𝑎2,𝑗𝑗 
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝐹𝐹𝑀𝑀𝑗𝑗,𝑗𝑗 𝑛𝑛𝑀𝑀𝑀𝑀𝑗𝑗,1 𝑛𝑛𝑀𝑀𝑀𝑀𝑗𝑗,2 ⋯ 𝑛𝑛𝑀𝑀𝑀𝑀𝑗𝑗,41 𝑎𝑎𝑀𝑀𝑗𝑗,𝑗𝑗 

Sums 𝑆𝑆1 𝑆𝑆2 ⋯ 𝑆𝑆4 � 𝑛𝑛𝑀𝑀𝑘𝑘𝑙𝑙
𝑘𝑘𝑙𝑙

= 𝑁𝑁𝑆𝑆 

After obtaining the 𝐴𝐴𝑀𝑀𝐴𝐴�𝑓𝑓𝑗𝑗 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂� and 𝐴𝐴𝑀𝑀𝐴𝐴�𝑓𝑓𝑗𝑗 , 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹� of each feature dimension, all 
values are classified into two sequences of correlation degree: sequence of user correlation 
degree User − COR = {𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓1),𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓2), … ,𝐶𝐶𝑂𝑂𝐶𝐶𝑢𝑢𝑠𝑠𝑠𝑠𝑟𝑟(𝑓𝑓48553)} =
{𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓1,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂),𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓2,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂), … ,𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓48553,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂)} and sequence of scene correlation de-
gree 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 − 𝐶𝐶𝑂𝑂𝐶𝐶 = {𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓1),𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓2), … ,𝐶𝐶𝑂𝑂𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(𝑓𝑓48553)} =
{𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓1, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹),𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓2, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹), . . . ,𝐴𝐴𝑀𝑀𝐴𝐴(𝑓𝑓48553, 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹)} . The values of 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝐶𝐶𝑂𝑂𝐶𝐶  are 
sorted from largest to smallest, and the values of 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 − 𝐶𝐶𝑂𝑂𝐶𝐶 are sorted from smallest 
to largest, then the user-related features 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖  and scene-irrelated features 
𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖  are selected as the features used for the authentication model. 

3.3. Feature Fusion Based on MKL 
The scene-irrelated features and user-related features that are obtained by the 

method described in Section 3.2 can improve authentication accuracy. The authentication 
accuracy can be further improved by fusion. As the two sets of features are composed of 
different feature components, the two sets of features have different contributions to user 
authentication. Therefore, feature fusion is essential for combining the advantages of the 
two groups of features to improve the user authentication accuracy of SIURUA. In this 
process, EasyMKL is adopted to fuse scene-irrelated features and user-related features. 
Support vector machine is used for classification. EasyMKL is an improved multiple ker-
nel learning algorithm compared with other multiple kernel learning algorithms repre-
sented by AverageMKL. EasyMKL can obtain the optimal parameter combination 
through learning, and different parameters can provide different weights to each kernel 
function. This characteristic of EasyMKL is applicable to the proposed fusion of scene-
irrelated features and user-related features, as user-related features are helpful in classi-
fying users, and scene-irrelated features can contribute to diluting the scene information 
in user-related features while classifying users. The two features have different contribu-
tions to user authentication, so EasyMKL is chosen for kernel fusion to ensure that the two 
features can obtain the optimal weight. 

EasyMKL can be used to fuse scene-irrelated features and user-related features 
through two kinds of kernel changes and weights and then combine them for classifica-
tion. For example, the RBF kernel is used for the scene-irrelated features, and the linear 
kernel is used for the user-related features. Here is an example of the formula, and kernel 
function selection is described in detail in Section 4.2.4. In this case, the corresponding 
multiple kernel learning formula proposed in [39] becomes: 

𝐾𝐾(𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 ,𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖) = 𝜇𝜇1𝑘𝑘1(𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑗𝑗) + 𝜇𝜇2𝑘𝑘2(𝑈𝑈𝑟𝑟𝑖𝑖 ,𝑈𝑈𝑟𝑟𝑗𝑗),  𝜇𝜇1 ≥ 0⋀𝜇𝜇2 ≥ 0⋀ 𝜇𝜇1 + 𝜇𝜇2 = 1 (11) 

where 𝑘𝑘1(𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑗𝑗) = 𝐹𝐹𝑥𝑥𝑒𝑒(−
||𝑆𝑆𝑖𝑖𝑖𝑖−𝑆𝑆𝑖𝑖𝑗𝑗||1

𝜎𝜎2
) is the RBF kernel, and 𝑘𝑘2(𝑈𝑈𝑟𝑟𝑖𝑖 ,𝑈𝑈𝑟𝑟𝑗𝑗) = 𝑈𝑈𝑟𝑟𝑖𝑖

𝑇𝑇𝑈𝑈𝑟𝑟𝑗𝑗  repre-
sents the linear kernels, 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑗𝑗, 𝑈𝑈𝑟𝑟𝑖𝑖 , and 𝑈𝑈𝑟𝑟𝑗𝑗, which, as described in Section 3.2, are the 
components of 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖  and 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂𝑟𝑟𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 . 𝜇𝜇1  and 𝜇𝜇2  are the weights of 𝑘𝑘1(·) and 
𝑘𝑘2(·). Taking Formula (11) as an example, the 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 features are obtained. 
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4. Experiments and Result Analysis 
This section aims to validate the feasibility of SIURUA through a series of experi-

ments and compare it with existing algorithms to analyze the experiment results. 

4.1. Experiment 
4.1.1. Data Collection 

Forty-five students from the Beijing University of Technology participated in the data 
collection work. They were asked to perform four tasks (typing, Taobao, Weibo, and gam-
ing) on the same laptop, with each task taking one hour. User data of those that did not 
complete all four tasks were filtered. Finally, the data of 41 users remained; that is, the 
total number of users in the experiment is 𝑁𝑁 = 41. 

The four tasks involved are the most common ones performed by users of computers. 
Typing required users to type the same article on Microsoft Office Word; Taobao asked 
users to browse Taobao; in the Weibo data collection process, users browsed Weibo; and 
in the gaming data collection process, users played a home-made game. Among the four 
tasks, the typing task was mainly used to collect keystroke data, the gaming task mainly 
collected mouse movement data, and the remaining two tasks mainly required a mouse 
to operate, so we were able to collect a large amount of mouse movement data and a small 
amount of keystroke data. 

The home-made gaming task tested the user’s ability to control the mouse. The game 
randomly displayed circles on the screen, with the circles gradually shrinking until they 
disappeared. The users needed to click on the circle before the circles disappeared. If users 
missed any circles, the game would end. The data collection program collected the user’s 
keyboard and mouse operation details. The keyboard data recorded the pressing and re-
leasing time for each key, and the mouse data recorded the mouse movement, click, re-
lease, and scroll times, along with the coordinates on the screen. The collected data were 
saved in text files. 

The final collected data format samples are shown in Figures 4 and 5. Figure 4 shows 
an example of the collected keystroke data. The first column represents the time in milli-
seconds; in the second column, “key dn” means that the key is pressed and “key up” 
means that the key is released, and the third column shows the data regarding which keys 
were recorded. Therefore, Figure 4 corresponds to the process of the user inputting the 
word “IS”. Figure 5 shows a sample of mouse movement data. The first column represents 
the type of mouse operation (e.g., 512 represents mouse movement), the second column 
shows the operation time in milliseconds, the third column displays the x-axis coordinate 
of the screen position of the mouse, and the fourth column represents the mouse y-axis 
coordinates. 

 
Figure 4. Example of collected keystroke data. 
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Figure 5. Example of collected mouse data. 

The equipment used in the data collection process of this experiment is Apple 
MC968CH/A, the processor of this equipment is Intel i5-2257M@1.70 GHz, the memory 
size is 4.00 GB, and the system is 64-bit Windows 10 Professional Edition. 

4.1.2. Process Description 
After obtaining keystroke data and mouse movement data, we extracted keystroke 

dynamics features and mouse dynamics features from the collected data, with the feature 
extraction performed within a time window. If there was more than one same operation 
in a time window, the average operation value was calculated as the feature value (as 
described in Section 3.1). The following are the detailed steps of the experiment process: 
1. If user  𝑂𝑂 (1 ≤  𝑂𝑂 ≤  𝑁𝑁)  is marked as a legal user, the remaining 40 (𝑁𝑁 − 1) users are 

marked as illegal users. The legal user data are taken as positive samples, and the 
illegal user data are taken as negative samples; 

2. In order to prevent data imbalance, negative samples are under-sampled, and the 
same number of negative samples as positive samples are randomly obtained; 

3. After combining the positive and negative samples, the scene-irrelated features and 
user-related features are selected and fused (according to the method described in 
Section 3.2) to obtain the user-scene features 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 used for classification; 

4. The classification models based on a support vector machine and MKL are trained 
and tested by 5-fold cross-validation using the obtained 𝑈𝑈𝑀𝑀𝐹𝐹𝑂𝑂 − 𝑆𝑆𝑆𝑆𝐹𝐹𝑛𝑛𝐹𝐹 features. 
Steps 1–4 are repeated 41 times until each user acts as a positive sample, and 41 mod-

els are trained and tested with each user. Finally, the experiment results of 41 users are 
averaged to evaluate the performance of SIURUA. 

4.1.3. Evaluation 
After obtaining the authentication model of a user through the method described in 

Section 4.1.2, we can calculate the indicators of true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN). After obtaining the above four basic indicators, we 
can calculate the well-known evaluation indicators in this field, including accuracy, pre-
cision, true positive rate (TPR), false positive rate (FPR), false accept rate (FAR), and false 
reject rate (FRR), and the F1 scores are used to estimate the classification quality of the 
model. The calculation methods for FPR and FAR are the same, so they have the same 
evaluation index. We calculate the above indicators of the model of user 𝑂𝑂 through For-
mulas (12)–(17): 

𝐴𝐴𝑆𝑆𝑆𝑆𝑖𝑖  =  
𝑇𝑇𝑃𝑃𝑖𝑖 + 𝑇𝑇𝑁𝑁𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝑇𝑇𝑁𝑁𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖
 (12) 

𝑃𝑃𝑂𝑂𝐹𝐹𝑆𝑆𝑖𝑖  =  
𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖
 (13) 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖  =  
𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖
 (14) 
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𝐹𝐹𝐴𝐴𝐶𝐶𝑖𝑖(𝐹𝐹𝑃𝑃𝐶𝐶𝑖𝑖)  =  
𝐹𝐹𝑃𝑃𝑖𝑖

𝐹𝐹𝑃𝑃𝑖𝑖 + 𝑇𝑇𝑁𝑁𝑖𝑖
 (15) 

𝐹𝐹𝐶𝐶𝐶𝐶𝑖𝑖  =  
𝐹𝐹𝑁𝑁𝑖𝑖

𝐹𝐹𝑁𝑁𝑖𝑖 + 𝑇𝑇𝑃𝑃𝑖𝑖  
 (16) 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑀𝑀𝑂𝑂𝐹𝐹𝑖𝑖  =  
2𝑇𝑇𝑃𝑃𝑖𝑖

2𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖
 (17) 

Since this experiment trains a model for each user, the average of the above evalua-
tion indices is calculated in the experiment to evaluate the classification quality. We 
named these evaluation indices: average accuracy (aAcc), average precision (aPrec), aver-
age true positive rate (aTPR), average false positive rate (aFPR), average false accept rate 
(aFAR), average false reject rate (aFRR), and average F1 score (aF1), and their definitions 
are shown in Formulas (18)–(23): 

𝑎𝑎𝐴𝐴𝑆𝑆𝑆𝑆 =  
∑ 𝐴𝐴𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (18) 

𝑎𝑎𝑃𝑃𝑂𝑂𝐹𝐹𝑆𝑆 =  
∑ 𝑃𝑃𝑂𝑂𝐹𝐹𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (19) 

𝑎𝑎𝑇𝑇𝑃𝑃𝐶𝐶 =  
∑ 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (20) 

𝑎𝑎𝐹𝐹𝐴𝐴𝐶𝐶(𝑎𝑎𝐹𝐹𝑃𝑃𝐶𝐶)  =  
∑ 𝐹𝐹𝐴𝐴𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (21) 

𝑎𝑎𝐹𝐹𝐶𝐶𝐶𝐶 =  
∑ 𝐹𝐹𝐶𝐶𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (22) 

𝑎𝑎𝐹𝐹1 =  
∑ 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑀𝑀𝑂𝑂𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (23) 

4.2. Analysis of Experimental Results 
4.2.1. Illustrate the Reduction in User Authentication Accuracy of Hybrid Scenes 

To verify the viewpoint that “the authentication accuracy of a hybrid scene is lower 
than that of all single scenes”, we trained the user authentication model based on a sup-
port vector machine with a linear kernel in a single scene and a hybrid scene consisting of 
four scenes. Figure 6 provides the aAcc of the authentication models. It can be seen that 
in each time window, the authentication aAcc of the hybrid scenes is lower than that of 
the signal scenes. Therefore, improving the accuracy of user authentication in hybrid 
scenes is valuable. 
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Figure 6. Comparing the user authentication accuracy of hybrid scenes and single scenes. 

4.2.2. Determine Suitable Feature Combination 
In the process of using machine learning algorithms to classify, the number of se-

lected features has an impact on the classification quality. This research has two steps for 
feature selection: selecting the scene-irrelated features and selecting the user-related fea-
tures. The selected feature number of these two feature selection processes will affect the 
classification quality; therefore, this experiment is to determine the best-selected feature 
number. Figure 7 shows 18 feature combinations; for example, 300_200 represents the 
combination of 300 user-related features and 200 scene-irrelated features. It can be seen 
that the optimal aAcc (80.86%) is obtained when the features consist of 200 user-related 
features and 200 scene-irrelated features. Therefore, the suitable feature combination cho-
sen for the SIURUA algorithm combines 200 user-related features and 200 scene-irrelated 
features. 

 
Figure 7. Accuracy of SIURUA in each feature combination. 
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4.2.3. Determining Suitable Time window 
The different values of the time window selected during feature extraction will have 

a certain impact on the classification algorithm; therefore, this experiment is introduced 
to determine a suitable time window. Specifically, the time windows selected in this ex-
periment are 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 120 s, 180 s, 240 s, 300 s, 360 s, 420 s, and 480 s. 
We combined 200 user-related features and 200 scene-irrelated features based on the ex-
perience described in Section 4.2.2. As shown in Figure 8, we used SIURUA, SVM with 
linear kernel, decision tree (DT), logistic regression (LR), and naive Bayes (NB) to classify 
the hybrid scene data. SIURUA uses a combination of 200 user-related features and 200 
scenario-irrelated features, while the other algorithms use all features. It can be seen from 
Figure 8 that SIURUA achieved the maximum aAcc (82.5%) at 300 s. SVM and LR achieved 
the maximum aAcc (75.2% and 75.8%, respectively) at 360 s. DT gained the maximum 
aAcc (71.2%) at 120 s. NB achieved the maximum aAcc (59.8%) when the time window 
was 420 s. It can be seen that SIURUA can achieve better classification results than other 
algorithms when the time window = 300 s. It is worth noting that, although the time win-
dow is longer compared with DT, the best aAcc of SIURUA has a 16% improvement com-
pared with the best aAcc of DT. When compared with SVM, NB, and LR, SIURUA im-
proves the classification quality while shortening the time window required to obtain the 
best aAcc. Therefore, the suitable value of the time window for the SIURUA algorithm is 
chosen to be 300 s (5 min), and in our hybrid scene data, there are 146 keystroke operations 
and 314 mouse operations on average in 300 s. 

 
Figure 8. The accuracy of each algorithm in different value of time windows. 

It can be seen from Figure 8 that the authentication accuracy fluctuates. The authen-
tication accuracy of SIURUA decreases slightly after 300 s, the authentication accuracy of 
DT decreases after 180 s, and the authentication accuracy of LR and SVM decreases after 
360 s. The time window becomes longer, and the user’s operation within a time window 
changes. For example, in the Taobao scene, the user changes from browsing the product 
details page to browsing the product list page. The uncertainty brought by the switching 
of applications in the same scene affects the accuracy of the model authentication, and 
different models have different abilities to resist such interference. 

As shown in Table 5, we compare the computational cost of SVM, DT, NB, LR, and 
SIURUA. The comparison is divided into two parts: building and authentication. The time 
complexity of building a classifier is decided by the machine learning algorithm [20]. For 
example, if we use SVM, the time complexity is 𝑂𝑂(𝑛𝑛3), where 𝑛𝑛 is the number of training 
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data. The building time complexity using DT, NB, LR, and SIURUA is 𝑂𝑂(𝑛𝑛𝑚𝑚𝑛𝑛), 𝑂𝑂(𝑛𝑛𝑚𝑚𝑆𝑆), 
𝑂𝑂(𝑛𝑛𝑚𝑚), and 𝑂𝑂(𝑚𝑚 + 𝑛𝑛3), where 𝑛𝑛 is the number of training data, 𝑚𝑚 is the feature dimen-
sion, 𝑛𝑛 is the depth of decision tree, and 𝑆𝑆 is the number of categories. 

The authentication time of each algorithm is very rapid. Similar to the building pro-
cess, the authentication time complexity using SVM, DT, NB, LR, and SIURUA is 𝑂𝑂(𝑚𝑚), 
𝑂𝑂(𝑛𝑛), 𝑂𝑂(𝑚𝑚𝑆𝑆), 𝑂𝑂(𝑚𝑚), and 𝑂𝑂(𝑀𝑀𝑚𝑚), respectively, where 𝑀𝑀 is the number of support vectors. 

Table 5. Time complexity comparison of machine learning algorithms and SIURUA. 

Algorithm SVM DT NB LR SIURUA 
Building 𝑂𝑂(𝑛𝑛3) 𝑂𝑂(𝑛𝑛𝑚𝑚𝑛𝑛) 𝑂𝑂(𝑛𝑛𝑚𝑚𝑆𝑆) 𝑂𝑂(𝑛𝑛𝑚𝑚) 𝑂𝑂(𝑚𝑚 + 𝑛𝑛3) 

Authentication 𝑂𝑂(𝑚𝑚) 𝑂𝑂(𝑛𝑛) 𝑂𝑂(𝑚𝑚𝑆𝑆) 𝑂𝑂(𝑚𝑚) 𝑂𝑂(𝑀𝑀𝑚𝑚) 

4.2.4. Determine Appropriate Kernel 
The proposed SIURUA algorithm is based on EasyMKL, and the kernel of the 

EasyMKL algorithm is to use different kernel functions and weights to fuse data. The ker-
nel functions need to be specified in advance, and the weights are obtained in the learning 
process. Therefore, this experience is to decide the appropriate kernels that are used to 
map scene-irrelated features and user-related features. As we know, linear kernels and 
RBF kernels have four combinations: 
• Linear plus Linear (expressed as linear_linear) use linear kernels to map user-related 

features and linear kernels to map scene-irrelated features; 
• Linear plus RBF (expressed as linear_rbf) use linear kernels to map user-related fea-

tures and RBF kernels to map scene-irrelated features; 
• RBF plus Linear (expressed as rbf_linear) use RBF kernels to map user-related fea-

tures and Linear kernels to map scene-irrelated features; 
• RBF plus RBF (expressed as rbf_rbf) use RBF kernels to map user-related features 

and RBF kernels to map scene-irrelated features. 
This experiment selects the optimal kernel combination from the above four kernel 

combinations. The aAccs of the four kernel combinations with each value of the time win-
dow are shown in Figure 9, the number of feature combinations is 200 plus 200, and the 
time window = 300 s. It can be seen that in the case of RBF plus RBF and Linear plus RBF, 
the highest aAccs are 84% and 82.5% obtained in 300 s. In the case of Linear plus Linear 
and RBF plus Linear, the highest aAccs are 79.7% and 80.9% obtained in 420 s. We can see 
that RBF plus RBF gains the maximum aAcc in the smallest value of the time window. 
Therefore, the appropriate kernel combination for SIURUA is RBF plus RBF when the time 
window = 300 s and the number of feature combinations is 200 plus 200. 
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Figure 9. Comparison of the accuracy of SIURUA with different kernel functions. 

4.2.5. Verify Feasibility of SIURUA 
In order to further illustrate the feasibility of this algorithm, we use the features with-

out feature selection and the features selected by mutual information as baselines. The 
number of features selected by SIURUA is 200 plus 200; in order to ensure the balance of 
the features, Mutual information needs to select the 400 features that have the highest 
correlation with users. Figure 10 shows the classification accuracy of different features 
with different values of the time window in hybrid scenes, where “All features” repre-
sents using whole feature sets to classify, SelectKBest (K = 400) indicates selecting 400 user-
related features, and SVM with RBF kernel was selected as the classifier. We can see that 
the classification accuracy (75.2%) without feature selection is the worst. The classification 
accuracy (78.7%) with 400 user-related features has improved, and the SIURUA classifi-
cation accuracy (84.0%) in the case of 200 plus 200 is the best. The 200 plus 200 features 
improve the accuracy of the model when using the same number of features as SelectK-
Best (K = 400), and this result proves that we successfully reduce the impacts of scene 
information on user-related features through fusing scene-irrelated features. Therefore, 
the result proves the feasibility of SIURUA. 

 
Figure 10. Comparison of accuracy between SIURUA and selecting 400 best features in a hybrid 
scene. 
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For further proof, we employed this algorithm on four sets of single scene features, 
and the results are shown in Figure 11a–d. Figure 11a represents a typing scene, Figure 
11b shows a Taobao scene, a Weibo scene is illustrated in Figure 11c, and a gaming scene 
is represented in Figure 11d. We can see that SIURUA can also improve the classification 
accuracy in the four single scenes. Although single-scene user authentication cannot be 
applied to the biometric system, the increasing accuracy can further verify the feasibility 
and versatility of SIURUA. 

  
(a) (b) 

  
(c) (d) 

Figure 11. (a) Comparison of accuracy between SIURUA and the selection of 400 best features in a 
typing scene; (b) comparison of accuracy between SIURUA and the selection of 400 best features in 
a Taobao scene; (c) comparison of accuracy between SIURUA and the selection of 400 best features 
in a Weibo scene; (d) comparison of accuracy between SIURUA and the selection of 400 best features 
in a gaming scene. 

Combining the results of Figure 10 and Figure 11a–d, we can prove that fusing scene-
irrelated features and user-related features can greatly improve the accuracy of the model, 
with the results verifying the feasibility of SIURUA. 

4.2.6. Determine Fill Values for Empty Features 
After determining all the parameters, we tested the time window = 300 s, the kernel 

combination rbf_rbf, and the feature combination 200_200 by selecting zero, the median, 
and the mean value to fill the empty features, as shown in Table 1. The experimental re-
sults are illustrated in Figure 12, which shows that the user authentication accuracy is 
highest for filling the empty features with zero and the lowest for filling with the median 
values. Therefore, we chose to fill the empty features in Table 1 with 0. 
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Figure 12. Comparison of accuracy between different fill values for empty features. 

4.2.7. Proven Advantages of SIURUA 
This section will compare SIURUA with some proposed keystroke dynamics and 

mouse dynamics algorithms. The selected algorithms are as follows: 
• MPCA [43]: Piantari et al. proposed a mouse dynamics user authentication method 

based on Principal Components Analysis (PCA) and SVM; 
• UIKDMM [44]: Panasiuk et al. proposed a multimodal biometric user authentication 

system based on keystroke dynamics and mouse movements, which authenticates 
users through K-Nearest Neighbor (KNN) and by fusing keystroke dynamics and 
mouse dynamics; 

• UAMKL [45]: Wang et al. proposed UAMKL, which is an AverageMKL-based key-
stroke dynamics and mouse dynamics fusion user authentication method; 

• TEM [46]: Chen et al. proposed a multimodal biometric user authentication system 
based on keystroke dynamics and mouse dynamics with Context Information. The 
user authentication model in the system is a comparison, which fuses the SVM based 
on keystroke dynamics features and the NB based on mouse dynamics features by 
using the majority voting mechanism. 
Due to the particularity of a hybrid scene user keystroke dynamics and mouse dy-

namics dataset, we reproduced the above algorithms and experimented on multiple time 
window values. Figure 13 shows the authentication accuracy of SIURUA and the above 
four algorithms. It can be seen that the accuracy of SIURUA with all-time window values 
is better than that of some of the existing methods. The maximum aAcc of SIURUA is 
84.0% at 300 s. UIKDMM and UAMKL achieve the maximum aAcc, 67.4%, and 77.3%, 
respectively, at 420 s. MPCA achieves the maximum aAcc 73.9% at 300 s. TEM achieves 
the maximum aAcc 72.2% at 480 s. Therefore, it is necessary to reduce the impacts of scene 
information in hybrid scenes, and SIURUA is superior to some of the existing algorithms. 
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Figure 13. Comparison of accuracy between SIURUA and the proposed user authentication method. 

4.2.8. Comprehensive Comparison of Above Experiments 
This section will summarize the various algorithms mentioned in Sections 4.2.2–4.2.7. 

According to Sections 4.2.2–4.2.7, when the time window = 300 s, the feature selection 
number is 200 plus 200, and the kernel combination is RBF plus RBF, SIURUA achieves 
the best accuracy, which is 84.0%. As shown in Table 6, it can be seen that SIURUA has 
obtained the highest aAcc, aPrec, aTPR, and aF1, as well as the lowest aFPR (aFAR) and 
aFRR of all the methods. Table 6 shows that SIURUA, as proposed in this paper, has ex-
cellent performance. It can obtain 0.840 aAcc, 0.841 aPrec, 0.85 aTPR, 0.169 aFPR (aFAR), 
0.15 aFRR, and 0.839 aF1 with the conditions of time window = 300 s, 200 plus 200 features, 
and an RBF plus RBF kernel combination. 

Table 6. Comprehensive comparison of the above methods. 

Algorithm aAcc aPrec aTPR aFPR(aFAR) aFRR 
SVM 0.752 0.754 0.794 0.290 0.206 
DT 0.712 0.714 0.716 0.291 0.284 
NB 0.598 0.632 0.561 0.352 0.439 
LR 0.758 0.742 0.790 0.282 0.210 

SVM_400 0.766 0.762 0.798 0.266 0.202 
MPCA [43] 0.739 0.735 0.770 0.290 0.230 

UIKDMM [44] 0.674 0.674 0.705 0.335 0.295 
UAMKL [45] 0.773 0.779 0.788 0.243 0.212 

TEM [46] 0.722 0.713 0.782 0.333 0.217 
SIURUA 0.840 0.841 0.850 0.169 0.150 

5. Conclusions and Future work 
We summarize our results and discuss future research directions in the following 

sections. 

5.1. Summaries and Discussion 
The purpose of biometric technology based on keystroke dynamics and mouse dy-

namics is to simulate users’ behaviors and to find the distinguishing factors determining 
users’ identities. This paper not only fuses keystroke dynamics features and mouse dy-
namics features but also proposes a method to select the scene-irrelated features and user-
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related features for the fusion experiment in hybrid scenes for the first time. In the exper-
iments, we tested the SIURUA algorithm on the collected hybrid scene data to verify the 
necessity of fusing scene-irrelated features and considered the possibility of SIURUA as a 
means of user authentication. Through the elaboration of SIURUA and the results of a 
comparison with other existing algorithms, it was found that the authentication perfor-
mance of SIURUA in hybrid scenes with noise is better than other user authentication 
algorithms based on keystroke dynamics and mouse dynamics. 

These results are encouraging and indicate that the proposed hybrid scene feature 
selection method and fusing the selected scene-irrelated features and user-related features 
can effectively improve the performance of the user authentication system. 

5.2. Future Work 
Although this paper verifies the feasibility of user authentication with hybrid scene 

features, we only considered four known scenes without verifying the application effect 
in more scenes or even unknown scenes. In the future, more hybrid scene data needs to 
be collected to further restrain the impact of scene information on the data. On the other 
hand, we do not consider the correlation between the scenes of the hybrid scene used in 
this paper. In addition, the feature selection method of hybrid scenes can be extended to 
be used not only in user authentication but also in other applications. 
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