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Abstract: Guided acoustic waves are commonly used in domestic water meters to measure the
flow rate. The accuracy of this measurement method is affected by factors such as variations in
temperature and limescale deposition inside of the pipe. In this work, a new approach using signals
from different sound propagation paths is used to determine these quantities and allow for subsequent
compensation. This method evaluates the different propagation times of guided Lamb waves in flow
measurement applications. A finite element method-based model is used to identify the calibration
curves for the device under test. The simulated dependencies on temperature and layer thickness
are validated by experimental data. Finally, a test on simulated data with varying temperatures and
limescale depositions proves that this method can be used to separate both effects. Based on these
values, a flow measurement correction scheme can be derived that provides an improved resolution
of guided acoustic wave-based flow meters.

Keywords: flow metering; ultrasound; guided acoustic waves; Lamb waves; limescale layers;
temperature compensation; FEM simulation; predictive maintenance; product lifetime extension

1. Introduction

Hard water forms limescale layers in industrial and domestic piping [1–3]. Blocked
pipes or the mechanical failure of valves, boilers, faucets, and flow meters are caused by
the progressive layer growth followed by high costs for maintenance [4]. The avoidance
of limescale layers by ion exchangers or chemical additives incurs additional costs as
well [5]. Therefore, this method is hardly used and the formation of layers is accepted
in most applications. To overcome the risks of total failure, various methods for de-
tection, characterization, inhibition, and removal of limescale layers are investigated in
many studies [3,6–12]. Potential approaches are based on optical, chemical, thermal, or
acoustic methods.

In recent years, flow meters without moving components, known as solid-state water
meters or static meters, have been established [13,14]. However, the accuracy of these
ultrasonic-based water meters decreases with time due to the formation of limescale
layers. To correct the deviations, online monitoring of the depositions in the sensors
must be integrated. Unfortunately, methods such as infrared thermography [11] are not
suitable for low-cost permanent online monitoring in home applications such as domestic
water meters. In particular, the determination of the layer thickness using the flow meter-
integrated measurement equipment would be of great advantage. Water meters using
guided acoustic waves (GAWs) are one type of ultrasonic sensor which may benefit from
this feature. Besides flow meters, GAWs are commonly used in nondestructive testing
and layer monitoring applications [15–25]. The detection of different kinds of layers,
e.g., limescale layers or biofilms using GAWs, has previously been investigated by the
authors [26–28].
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Furthermore, temperature fluctuations complicate the acoustic flow measurement
resulting in additional time shifts in the measured data [24,29–32]. Temperature effects
are often large compared to the effects of thin limescale layers. Therefore, temperature
compensation techniques are mandatory in such applications [33]. Whereas the deployment
of a separate temperature probe is the most straightforward approach, it requires additional
hardware and only probes the temperature at a single point, normally on the outer surface.
This local point measurement does not necessarily provide sufficient information for
successful temperature compensation of GAWs since there can be temperature gradients
within the flow meter.

The goal of this work is the detection of limescale layers with integrated temperature
compensation in GAW-based flow meters. Only already available hardware in the sensor
is used. The method is demonstrated by a specific transducer arrangement evaluating
sound signals of two different propagation paths. Based on finite element method (FEM)
simulation data supported by experiments, it was possible to successfully determine the
addressed quantities.

2. Materials and Methods
2.1. Fundamentals of the Lamb Wave-Based Flow Meter

In the present work, a prototypical flow meter sensor with a rectangular cross-section
(W × H = 10 mm × 15 mm) was investigated. Two ultrasound transducers were attached
outside on one of the sidewalls, which we denote the “upper” sidewall in the following,
acting as a transmitter (T) and receiver (R) as shown in Figure 1a. The sidewalls were
made of stainless steel 1.4571 [34] with a thickness of 1.5 mm and a distance between
the transducers of 90 mm. Limescale layers were applied on the inside of this very same
sidewall. The transducers were designed in such a way that they would predominantly
excite and detect a specific type of GAW. The chosen GAW was the antisymmetric A0-mode
Lamb wave [35–37]. A typical attribute of Lamb waves is their dispersive behavior. The
excitation of the dominant A0-mode was verified by a scanning laser Doppler vibrometer
(Polytec GmbH, PSV-400-M, Waldbronn, Germany).
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Figure 1. (a) Schematics of the setup including an ultrasound transmitter (T), receiver (R), the direct
(D) and indirect (V) propagation paths in the Lamb wave flow meter as investigated in this article.
(b) The studied ultrasonic flow meters in the climate chamber.

The measurement principle was as follows. The Lamb wave, which was excited
by the transmitter T, propagated along the upper sidewall. While doing so, it radiated
a pressure wave into the fluid, which made it a so-called leaky Lamb wave. It is this
leaked pressure wave that is commonly used to measure flow velocities in the fluid by
evaluating the difference in propagation time in forward and backward directions [38].
The pressure wave was radiated at the so-called Rayleigh angle Θ, which is defined by the
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phase velocities vL of the Lamb wave and vp of the pressure wave in the fluid, respectively,
as Θ = arcsin

(
vp/vL

)
. The pressure wave was reflected at the lower sidewall of the flow

channel. Upon return at the upper sidewall, this reflected pressure wave in turn excited
a Lamb wave which consequently contributed to the signal at the receiver. In the chosen
configuration, not all of the Lamb wave’s initial energy had been radiated into the fluid
when it reached the receiver. In this case, contributions from two propagation paths were
observed in the received signal: the initial but attenuated wave traveling in a straight, direct
path along the sidewall to the receiver (direct, D-wave) and the above-described radiated
parts traveling through the fluid (along a V-shaped path, V-wave). The corresponding
propagation times we denote as tD and tV , respectively.

Next, we considered two influencing factors on the flow measurement with the above
outlined guided acoustic wave principle: limescale layers and temperature. A limescale
layer caused a slight change in phase velocity of the Lamb wave in the sidewall [26]. This
also modified the Rayleigh angle and therefore the path through the fluid. Additionally,
for a given volume flow Q, the layers on the sidewalls led to a higher flow velocity v
by means of a decreased cross-sectional area A: v = Q/A. If not accounted for, both
mechanisms reduced the accuracy of the flow measurement by their respective influence
on the propagation times of the V-wave. At the same time, these changes in propagation
times were exploited to estimate the thickness of the limescale layer, which was one of the
goals of the present work.

The other considered influence factor on the propagation times tD and tV was tem-
perature variation. For a start, the geometric parameters such as the distance between the
two parallel sidewalls and the one between the transducers were modified by thermal
expansion. Additionally, the thickness of the sidewalls was changed, which in turn altered
the phase velocity of the Lamb wave. The latter also was influenced by the temperature
dependence of the material’s density and Young’s modulus. Similarly, the sound velocity
and density of water varied with temperature, leading to modified propagation and radia-
tion characteristics. Finally, the limescale layer itself may exhibit temperature-dependent
material properties, as well.

2.2. Experimental Methods

The strategy to measure the layer thickness and temperature presented in this paper
is based on simulation data and is outlined in a later section. Nevertheless, experimental
data are necessary to adapt the material’s mechanical parameters used for the simulations
and to validate the results. In this section, we provide an overview of our experimental
methods to generate this data.

The first and most important step was to produce the limescale layers. Two strategies
were pursued. In the first one, the limescale layers were produced by an application-
orientated flow loop with hardened water to which the sensors were exposed for up to
6 months. Three such “accelerated aged” sensors were prepared for the current investiga-
tion. Thicknesses in the range of 10 µm to 100 µm were achieved. In a second approach,
limescale layers were produced by means of evaporating a saturated solution of water.
This yielded limescale layers with thicknesses of about 150 µm. These layers were sub-
sequently removed step-by-step. Preceding experiments had shown that the application
of a mixture of 94% water and 6% acetic acid for 30 s reproducibly reduced 10 µm from
the surface of these limescale layers. This allowed performing measurements at several
intermediate layer thicknesses starting from a single applied limescale layer. In each step,
the layer thicknesses were characterized by disassembling the sensor and a subsequent in-
spection with a confocal laser scanning microscope (Keyence Deutschland GmbH, VK-X200,
Neu-Isenburg, Germany).

For the acoustic measurements, the sensors were operated with an input signal for the
transmitter which is given by a Hann function windowed 1 MHz sine burst with a duration
of ten periods and a signal amplitude of 3 Vpp. It was provided by an arbitrary waveform
generator (Agilent Technologies Deutschland GmbH, 33521A, Waldbronn, Germany). At



Sensors 2022, 22, 6648 4 of 14

the receiver’s side, the signal was recorded by an oscilloscope (Teledyne LeCroy GmbH,
WaveRunner 604 Zi, Heidelberg, Germany). A typical received signal is displayed in
Figure 2. The contributions from the D and V propagation paths are clearly distinguishable
and the respective signal amplitudes are of the same order of magnitude.
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and the V-wave (48–65 µs) contributions, respectively.

There are various ways to deduce an ultrasonic propagation time from such signals [39].
As we were focusing in the present work on methodical aspects rather than on the highest
achievable accuracy, we chose one of the conceptually simplest methods for propagation
time determination: the zero-crossing algorithm. That is, the propagation times tD and tV
were determined by evaluating the time of the zero crossings (Figure 2, blue pluses) right
before the main peak (Figure 2, red crosses) of the two waves, respectively. The samples
around the zero crossing were interpolated linearly to achieve a higher resolution than the
experimental sampling rate provided. One caveat of this method was that temperature
and limescale layers could also influence the envelope and amplitude of the measurement
signal. It could happen that a decreasing amplitude of the initial main peak resulted in a
new maximum peak at a different position in the time signal, which in turn would have
led to a wrong zero crossing to be analyzed. To avoid measurement errors caused by this
effect, tracking the initially selected peak was essential.

The effect of temperature on tD and tV was investigated by placing the flow meter
sensor setup in a climatic chamber (CTS Clima Temperatur Systeme GmbH, C-60/200 Ex,
Hechingen, Germany) which provided well-defined temperatures ranging from −60 ◦C to
150 ◦C. Measurements were performed at regular intervals during the temperature cycle,
ranging from 5 ◦C to 50 ◦C at ambient humidity. Using a temperature probe placed inside
the sensor, the actual temperature of the water inside the flow channel was tracked.

2.3. Simulation Methods

Although experimental data are important for validation aspects, noise-free simulation
data with precisely known input parameters proved more useful to derive a new method
for limescale layer detection and characterization. To generate such acoustic signals without
noise and other imperfections, FEM simulations were performed.

The simulated signals were generated using COMSOL Multiphysics (version 5.5) in a
two-dimensional transient study. It contained the upper sidewall, transducers, limescale
layer, water domain, and a sound-hard boundary (representing the lower sidewall) as
shown in Figure 1. Suitable boundary conditions suppressed interfering reflections from
the borders of the computational domain. Furthermore, piezoelectric transducers were
modeled as mode selective transmitters and receivers on the upper sidewall. The physical
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and acoustic properties of water were well known and were predefined in the COMSOL
library. For the steel sidewall, the material properties from the datasheet were used [34]. For
the piezoelectric transducer, experimentally fitted material parameters were applied [40].

As in the experiments, the excitation was performed on the transmitter by a 10-period
sine wave signal at 1 MHz windowed by a Hann function. In the simulations, a normalized
amplitude of 1 Vpp was used. For the postprocessing, the voltage curves on the receiver
were stored and evaluated. Figure 3 shows a simulated time signal including the D-wave
and V-wave. The same zero-crossing algorithm as for the experimental data was used to
track the propagation times of the D-wave (tD) and V-wave (tV).
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Figure 3. Simulated voltage signal (U) at the receiver at 20 ◦C and without a limescale layer with
D-wave (29–39 µs) and V-wave (47–57 µs) contributions.

In the simulations, the thickness of the limescale layer and the temperature of the
system were varied to identify their effects on tD and tV . The change in layer thickness
could be implemented by changing the height of the limescale layer domain. To model
the temperature effects, the temperature-induced expansion of the system and changes
in the material properties had to be considered. To this end, the temperature-dependent
quantities from the steel datasheet were linearly interpolated. The temperature behavior of
water in a range from 0 ◦C to 100 ◦C was well known and part of the COMSOL material
library. The material properties for the limescale layers, however, were not known a priori
and had to be determined iteratively in the first simulations. Starting from literature values,
the parameters of the limescale layer were therefore optimized until the layer sensitivity of
the D-wave propagation times in the simulations matched the one from the experiments.
The result from a laser acoustic measurement of the mechanical parameters of the limescale
layer confirmed the parameters obtained by the adaption of the simulation. Due to the lack
of significant data on the temperature dependence of limescale layers and the difficulty
of its experimental investigation, these effects were currently not implemented in the
simulation of this paper.

3. Results

In this section, we present and explain the data from our experiments and simulations.
Based on these data, an evaluation algorithm was derived that allowed the determination
of the limescale layer thickness and the temperature of the medium.

3.1. Experimental Results

The data from the three “accelerated aged” sensors were studied first. The obtained
propagation times at different stabilized temperatures for the three sensors are shown
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in Figure 4. The experimental data are closely approximated by the shown quadratic
fit functions. Although minor deviations of the absolute propagation times are present,
the temperature dependencies are very similar for all tested sensors with different layer
thicknesses. Hence, the temperature dependence of the propagation times only negligibly
depend on the layer thickness. Changes in propagation times along the V-path are pre-
dominantly determined by the changes in the sound velocity in water and exhibit a strong,
nonlinear temperature dependence (ranging from about −100 ns/K to 0 ns/K), whereas
the D-path is less sensitive and shows a close to linear behavior (about +8 ns/K).
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Figure 4. Experimentally measured propagation times tD and tV depending on the temperature in a
range from 5 ◦C to 50 ◦C. The vertical offset in the curves is related to variations in the transducer
attachment on the different sensors or variations in limescale layer thickness.

The second set of data stems from a measurement series with step-by-step decreasing
thickness of the limescale layers. As the temperature inside the sensor was monitored,
the data can be corrected for temperature effects using the preceding results of the in-
vestigations on the temperature dependencies. The resulting temperature compensated
propagation times along the D- and V-paths are displayed in Figure 5. The first results (grey
data points) show that stable temperature control is crucial for meaningful data, especially
for the highly temperature-sensitive V-wave (cf. Figure 4). Hence an improved temperature
stabilization was introduced for one measurement series, which is shown in blue. The
corresponding fitting curves are printed in red.
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Figure 5. Experimentally measured propagation times tD and tV as a function of the limescale layer
thickness. A total of six layers are incrementally removed with acid and measurements are made at
intermediate steps. Attempts are made to compensate for temperature fluctuations according to the
previous results. In the last measurement (red), the temperature was kept as constant as possible,
leading to an improved result.
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The propagation time tD shows a clear trend, which is similar for each measurement
series. The slope can be estimated to be 2.5–3.0 ns/µm. In contrast, no generally valid trend
can be observed for the unstabilized data of the V-path. Rather, large variations among
the different measurement series are evident. This we attribute to the strong temperature
sensitivity of the V-wave. Moreover, inhomogeneities of the spatial temperature distribution
may lead to refraction, alteration of the propagation path, and consequently to variations in
the propagation times. Measuring the water temperature at only one position therefore may
not be sufficient to correct all temperature-induced deviations and could explain the erratic
behavior of tV despite the temperature compensation. As a result, during the measurement
of the last test specimen, the temperature was kept constant to within 1 ◦C (compared to
variations of up to 5 ◦C during the previous measurement series), yielding a less erratic
behavior of tV (blue line).

3.2. Simulation Results

Next, we present the simulation results which provide the data basis for the derivation
of the evaluation algorithm in the next subsection. Figure 6 shows the simulated depen-
dencies of tD and tV according to limescale layers and temperature effects. No mutual
interdependencies are assumed, i.e., the temperature is kept constant while varying the
layer thickness and vice versa. Accordingly, one study varies the layer thickness from 0 µm
up to 200 µm in 25 µm steps at 20 ◦C. The second study increases the temperature from
10 ◦C up to 90 ◦C in steps of 5 ◦C without any limescale layers at all.
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As outlined in the Methods section, the material parameters of limescale are obtained
by an optimization procedure to the experimental results from the previous subsection.
There is no other free parameter in the current simulation to adapt the simulation results
further. After the fitting of the limescale material data, an increasing limescale layer
thickness in the simulation results in linearly increasing propagation times tD and tV , just
as observed in the experiments. Temperature effects exhibit similar behavior as in the
experiments as well: a linear dependence for the D-wave and quadratic dependence for
the V-wave.

In the next step, the interaction between limescale layers and temperature variation
was investigated. Simulations at various combinations of different temperatures and layer
thicknesses showed that there is only a negligible influence of the layer thickness on the
temperature behavior and vice versa (Figure 7). This agrees with the previous experimental
results shown in Figure 4.
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Based on these results, the two effects are approximated to contribute separately to
the total propagation times tD(d, T) and tV(d, T) according to
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tD/V(d, T) = tD/V(d) + tD/V(T)−
1
2
(tD/V(0 µm) + tD/V(20 ◦C)) (1)

where
tD(d) = a1d + a2

tV(d) = b1d + b2

tD(T) = c1(T − 20 ◦C) + c2

tV(T) = e1(T − 20 ◦C)2 + e2(T − 20 ◦C) + e3

(2)

are the fitted representations of simulated behavior of the propagation times tD/V for D-
and V-waves as a function of layer thickness d and temperature T, respectively. The last
term in Equation (1) compensates the double counting of the constant contribution to the
propagation time.

3.3. Evaluation Algorithm

Based on the previous simulation results, an evaluation algorithm for the layer thick-
ness on the sidewall and the temperature of the system was developed. The evaluation
was based on the simulated propagation times tD and tV . The data from Figure 6 was used
to calibrate the system. The parameters of the specified calibration curves (cf. Equation (2))
are listed in Table 1. Normally, the calibration curves should give the same result for
identical input parameters. We expected tD/V(0 µm) = tD/V(20 ◦C) because T = 20 ◦C
and d = 0 µm were assumed for tD/V(d) and tD/V(T), respectively. Equivalently, this
means a2 = c2 and b2 = e3. As we did not restrict our fitting procedure to this boundary
condition, one found slight deviations from that as shown in Table 1. This small offset was
fixed by the last term in Equation (1) which effectively employed an average of the constant
contributions.

Table 1. Fitting parameters for the calibration curves of the D- and V-wave.

D-Wave V-Wave

a1 0.002459 µs/µm b1 0.0009874 µs/µm
a2 34.47 µs b2 52.37 µs
c1 0.005198 µs/K e1 0.0004417 µs/K2

c2 34.46 µs e2 −0.04275 µs/K
e3 52.38 µs

By combining the two equations for the D-wave from Equation (2) with the Formula (1),
Equation (3) can be derived. This equation shows the combined dependence on layer
thickness d and temperature T. It behaves linearly in d and T. The equations for the V-wave
could be used in the very same way, resulting in Equation (4). In contrast to Equation (3),
the temperature effect is now quadratic.

tD(d, T) = a1 · d + c1 · (T − 20 ◦C) + kD, (3)

tV(d, T) = b1 · d + e1 · (T − 20 ◦C)2 + e2 · (T − 20 ◦C) + kV . (4)

In the above equations we abbreviated the constant contributions for simplicity:

kD =
a2 + c2

2
, (5)

kV =
b2 + e3

2
. (6)
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Next, Equation (3) can be solved for the layer thickness d. This gives a function of the
temperature T and the propagation time tD(d, T) of the D-wave:

d = − c1

a1
· (T − 20 ◦C)− kd

a1
+

tD(d, T)
a1

(7)

We can now take this expression to substitute d in Equation (4) and solve for the
temperature T. We obtain Equation (8) which is quadratic in T:

0 = [e1] · T2+[
e2 − e1 · 2 · (20 ◦C)− b1·c1

a1

]
· T+[

kV − tV(d, T) + e1 · (20 ◦C)2 − e2 · (20 ◦C) +
b1·tD(d,T)

a1
− b1·kD

a1
+ b1·c1

a1
· (20 ◦C)

] (8)

Both Equations (7) and (8) still contain the propagation times tD/V(d, T) which, of
course, depend on d and T themselves. For a given measurement, however, they are
mere constants that are derived from the measured signal as outlined in the Method
section: tD/V(d, T)→ tD/V . Hence, from Equation (7) the layer thickness can be directly
computed with the parameters given in Table 1 and the measured propagation time tD if
the temperature T is known. In this case, only the D-wave contributes to this determination
of the layer thickness.

If the temperature T is not known a priori, the evaluation scheme becomes more
complicated. In principle, the temperature can be deduced from Equation (8). However,
since Equation (8) is quadratic in T, there are two possible solutions T1/2 that both satisfy
the equation. By inserting tD, tV , and T1 or T2, respectively, into Equation (7) we obtain the
two pairs of values (T1|d1) and (T2|d2) and we need to choose the physical one. Ultrasonic
measurements usually are performed on very short timescales and with high repetition
rates, whereas temperatures only change slowly and limescale layers grow even slower.
Therefore, it is possible to select the correct solution from the two available pairs of values
by tracking the values determined in the preceding measurements. For the very first
measurements of sensor it is trivial—there is no limescale layer, hence the solution with
d = 0 µm can be selected.

The above-described algorithm was validated by means of the simulation results
shown in Figure 7. To this end, the results of the algorithm were compared to the actual
layer thicknesses and temperatures that were used for the simulations. Figure 8a shows
that the algorithm developed in this work can successfully evaluate the layer thicknesses
and temperatures of the system. All solution pairs determined from the propagation
times deviate only slightly from the test grid. Figure 8b shows the corresponding absolute
errors. Here it can be observed that the deviations are <±4 µm and <±1.5 K in most
cases. Only for the combinations of high temperatures (60 ◦C and 80 ◦C) and high layer
thicknesses (100 µm–200 µm) larger deviations occurred. This is most likely related to the
small temperature sensitivity of the V-wave around the minimum of the curve between
60 ◦C and 80 ◦C (cf. Figure 6). In this study, the maximum errors are −8.4 µm (@ 80 ◦C and
200 µm) and +3.2 K (@ 80 ◦C and 100 µm).
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4. Discussion

The new evaluation method is based and tested exclusively on simulation data. Con-
sequently, we had to ensure that the simulation represents the investigated mechanism as
well as possible. The required parameters for the steel tube and the water domain were
well known. The material parameters for limescale were iteratively adjusted to match the
experimental results. Finally, the simulation results have shown the same trendlines for an
increasing layer thickness as observed in the experiments. For the acoustic parameters of
limescale, the sensitivity to changes in temperature is still unknown. An evaluation of the
experimental data did not provide any significant insight. Nevertheless, the simulations
reproduce the experimental trendlines, suggesting that the observable time shifts were
caused by steel and water predominantly. Furthermore, the convergence of all simulations
was always controlled. All calculation errors of the simulations are small compared to the
obtained precision of the evaluation algorithm and can therefore be neglected.

In the laboratory, it was possible to produce layers much faster than is typical for
domestic pipes. The characterization of these layers indicated varying microstructures
and mechanical properties. In this study, an invasive optical method was used for layer
thickness analysis. This procedure involves the risk that parts of the limescale layer may
flake off during disassembly. In this case, a characterization of the layer’s thickness was no
longer possible and the measurement series had to be aborted.

To increase the accuracy of the algorithm’s calibration curves, further interpolation
points could be calculated or measured experimentally in future studies. This might reduce
the evaluation error caused by the averaged kD and kV . If necessary, slight modifications to
the calibration curves postulated in Figure 6 will be conceivable with a larger and more
realistic data set. For example, small oscillating components could improve the accuracy of
the calibration curve for the layer sensitivity of the V-wave. However, this tends to further
complicate the evaluation procedure and the correct solution might have to be selected
from a larger set of possible solutions. Although this is not a fundamental problem, it might
prove impractical in domestic water meters, where the available computational power will
be limited.

5. Outlook and Conclusions

The next step is to validate the algorithm by experimentally generated test cases.
The most critical aspect will be the production and characterization of realistic limescale
layers. Since there is a risk of flaking during the disassembly process, the actually used
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microscopic methods are not suitable for the longtime limescale monitoring. A solution
for the integration of a non-invasive reference sensor system to detect the growing layer
thicknesses must be found. The system temperature can be ensured by sufficiently long
acclimatization phases in a climatic chamber.

Finally, to integrate this technology into acoustic flow sensor applications, the cali-
bration curves for the flow rate measurement must be extended by limescale layer and
temperature sensitivity. These can be derived from further simulations considering different
flow velocities, layer thicknesses, and temperatures at the same time. The temperature influ-
ence on the propagation times caused by limescale layers will increase if the expected layers
become even thicker than currently considered. In this case, the still unknown temperature
dependencies of limescale should be investigated and integrated into the simulations.

In summary, this work presents a new method for the online monitoring of tem-
perature and internal layer deposition in Lamb wave-based water meters by means of
simulated data. This method will allow for compensating temperature- and layer-induced
measurement errors in future flow measurement applications without the need for addi-
tional measurement equipment, in turn leading to higher precision in flow measurement,
longer product lifetimes, and adapted maintenance intervals.
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