
Citation: Liu, X.; Zhao, X.; Liu, G.;

Huang, F.; Huang, T.; Wu, Y.

Collaborative Task Offloading and

Service Caching Strategy for Mobile

Edge Computing. Sensors 2022, 22,

6760. https://doi.org/10.3390/

s22186760

Academic Editors: Taehong Kim,

Youngsoo Kim and Seong-eun Yoo

Received: 12 August 2022

Accepted: 4 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Collaborative Task Offloading and Service Caching Strategy for
Mobile Edge Computing
Xiang Liu 1 , Xu Zhao 2, Guojin Liu 1,*, Fei Huang 3, Tiancong Huang 1 and Yucheng Wu 1

1 School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
2 Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing 100005, China
3 State Grid Chongqing Electric Power Company Electric Power Research Institute, Chongqing 401123, China
* Correspondence: liuguojin@cqu.edu.cn

Abstract: Mobile edge computing (MEC), which sinks the functions of cloud servers, has become an
emerging paradigm to solve the contradiction between delay-sensitive tasks and resource-constrained
terminals. Task offloading assisted by service caching in a collaborative manner can reduce delay
and balance the edge load in MEC. Due to the limited storage resources of edge servers, it is a
significant issue to develop a dynamical service caching strategy according to the actual variable
user demands in task offloading. Therefore, this paper investigates the collaborative task offloading
problem assisted by a dynamical caching strategy in MEC. Furthermore, a two-level computing
strategy called joint task offloading and service caching (JTOSC) is proposed to solve the optimized
problem. The outer layer in JTOSC iteratively updates the service caching decisions based on the
Gibbs sampling. The inner layer in JTOSC adopts the fairness-aware allocation algorithm and the
offloading revenue preference-based bilateral matching algorithm to get a great computing resource
allocation and task offloading scheme. The simulation results indicate that the proposed strategy
outperforms the other four comparison strategies in terms of maximum offloading delay, service
cache hit rate, and edge load balance.

Keywords: mobile edge computing; collaboration; task offloading; service caching; resource allocation;
fairness; load balance

1. Introduction

With the rapid development of wireless network technology, a large number of
computing-intensive and delay-sensitive applications emerge, such as autonomous driving,
face recognition, and virtual/augmented reality (VR/AR) [1,2]. The restricted computing
performance and storage resources of mobile terminals limit the further development of
emerging applications [3,4]. The traditional solution is to offload these application tasks
to a cloud server for centralized processing, leading to long transmission time because of
its far location [5]. Mobile edge computing (MEC) is an emerging paradigm, which sinks
the functions of cloud servers and provides users with required services and computing
demands at the edge of network. As an important technology in mobile edge computing,
task offloading solves the limitation caused by the insufficient capability of the terminal
and relieves core network pressure [6].

As the infrastructure for the extension of cloud services to the edge side, edge servers
are required to be modular and miniaturized. To meet the needs of different application
scenarios, edge servers should be able to be fully decoupled into computation, storage,
communication, management, and other components. Besides, edge servers are designed
to be more compact in size. These all limit the resource of edge servers. Compared with
powerful cloud servers, the capability gap between them can reach several orders of
magnitude [7,8]. When the number of users increases, on the one hand, a single server is
not able to support all user tasks, resulting in poor user experience. On the other hand,

Sensors 2022, 22, 6760. https://doi.org/10.3390/s22186760 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186760
https://doi.org/10.3390/s22186760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3779-6650
https://orcid.org/0000-0001-6031-6507
https://orcid.org/0000-0003-1116-7706
https://doi.org/10.3390/s22186760
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186760?type=check_update&version=1


Sensors 2022, 22, 6760 2 of 18

there is uneven load distribution among multiple edge servers, which causes some edge
servers to overload while some to idle. Therefore, it has become a trend for multiple edge
servers to perform task offloading collaboratively while considering the computation load
balance among edge servers [9,10]. However, these reported works do not consider the
limitation of the service caching on task offloading, which will cause the failure of task
execution in practical scenarios.

Service caching refers to the cache of program databases and libraries required. Only
edge servers with relevant services can execute corresponding user tasks [11]. These
services can be downloaded from the remote cloud when user tasks arrive, or they can be
cached in MEC beforehand. It will spend tens of seconds temporarily downloading from the
cloud server [12]. Therefore, it can effectively reduce the initial delay if various services are
cached in advance. Most reported task offloading works in MEC ideally assume that edge
servers cache all required services, but the actual edge servers have constrained storage
resources and the type of caching services must be chosen wisely [13,14]. Furthermore, the
fixed-type service caches are also not suitable for the user with dynamical requirements.
Thus, it is necessary to make an efficient and dynamical caching strategy according to the
actual task requirements.

In addition, many current works focus on better overall benefits, such as less total
delay [15], smaller energy consumption [16], or lower system cost [17]. A solution that
only guarantees the overall system benefits may result in unfair treatment of the individual
users, which will lead to poor user experience. Hence, fairness among users is also an
important issue in MEC [18–20].

To solve the problems mentioned above, this paper investigates collaborative task
offloading assisted by a dynamical caching strategy, considering user fairness and edge
load balance in MEC.

The main contributions of this paper are summarized as follows.

1. We constructed a two-layer collaborative MEC system model. To meet the feasibil-
ity constraints of task execution, the services of various emerging applications are
dynamically cached in advance at edge servers;

2. To ensure fairness among users to a certain extent, the optimization goal is to ef-
fectively reduce the maximum delay of all users. A JTOSC algorithm that compre-
hensively considers adaptive dynamic service caching, efficient collaborative task
offloading, and fair computation resource allocation is proposed;

3. To simplify the solution of the proposed algorithm, JTOSC is decoupled into outer and
inner subproblems. The outer layer in JTOSC iteratively updates the service caching
decisions based on Gibbs sampling. The inner layer in JTOSC is based on the fairness
perception and the offloading revenue preference to get a sensible computing resource
allocation and task offloading scheme, respectively. Simulation results have verified
the effectiveness of the proposed strategy.

The remainder of this paper is organized as follows. In Section 2, we review the
related works. In Section 3, we describe the system model, and the optimizing problem is
formulated. In Section 4, we detail the scheme design of joint task offloading and service
caching based on edge collaboration. Section 5 evaluates and analyzes the performance of
the proposed strategy. Finally, some conclusions for the work are drawn in Section 6.

2. Related Works

Currently, task offloading has become a critical issue in mobile edge computing.
In [21], an efficient task offloading management scheme in a densely deployed small
cell network was studied, using a genetic algorithm and particle swarm algorithm to
jointly optimize offloading decision, spectrum resource, transmit power, and computing
resource allocation to minimize the energy consumption of users. With the same opti-
mization objective described in [21], multi-users partial computation offloading based on
Lyapunov with integrating energy harvesting (EH) technology was presented to achieve
long-term operation of the terminal in [22]. The task dependency model for multiple



Sensors 2022, 22, 6760 3 of 18

users was considered in [23], which focused on addressing the combination of offloading
decisions among tasks and the strong coupling with resource allocation to minimize the
weighted sum of energy consumption and delay for users. It was pointed out in [24]
that cooperation among MECs could yield huge performance gains while balancing
the computational load. From the perspective of game theory, efficient vehicle task of-
floading was achieved through thermal-aware MEC collaboration based on the analysis
of vehicle users running trajectories to reduce the task completion delay significantly
in [25]. The horizontal cooperation of multiple MEC-BSs was proposed to further offload
additional tasks to the remaining MEC-BSs to enhance their computation offloading
performance in [26]. In [27], horizontal cooperation among edge servers and three-layer
vertical cooperation were considered during task offloading. To reduce the average task
duration, the offloading decisions and computing resource allocation were optimized
by using the alternating direction multiplier method and difference of convex functions
programming. Deep reinforcement learning was applied to achieve privacy-preserving
task offloading in mobile blockchains in [28].

The above research works assumed that each edge server caches all services and could
handle any type of computing task. However, it is difficult for the actual edge server to
cache all services as its storage resources are limited. Therefore, it is necessary to develop
a suitable service caching strategy according to the actual task requirements. Relevant
research had been devoted to the edge service caching problem. In [19], service caching was
used as a constraint to limit the computation offloading location of user tasks, but the service
types on each edge server were fixed, which was not fitting for dynamic task requirements.
An adaptive edge caching scheme based on location awareness was designed to optimize
the hit rate of the caching service strategy by predicting the popularity of content in [29].
In [30], multi-dimensional features such as historical and future data information, social
relationships, and geographical location were further considered to design the prevalence
model and reduce prediction errors. However, it would cause all edge nodes to prefer to
select popular service caching and relatively unpopular services were only solved in the
cloud server, which would result in high transmission delay. The service caching strategy
and task offloading policy based on the ε-greedy strategy and the Gibbs sampling principle
were proposed to reduce the computing delay in [31], respectively. As the horizontal
collaboration among edge servers was not taken into account, it resulted in low resource
utilization among edge devices. In [32], a decentralized cooperative service placement
algorithm (CSP) was proposed to improve Gibbs sampling as a service caching strategy
to maximize the system utility under cellular full and non-full cooperation. However, the
computing resource limitation of edge servers was not considered.

In contrast to the above works, the collaborative task offloading problem, assisted
by dynamical cache strategy in MEC, is studied by considering several aspects such as
collaboration, wise service caching, balanced task offloading, and fair resource allocation,
which guarantees strict execution delay under the constrained computation and storage
resources of edge servers.

3. System Model
3.1. Network Model

As shown in Figure 1, we consider a two-layer collaborative MEC network model. It
consists of N mobile terminal users (TUs) and M wireless base stations (BSs). Each TU is
connected to its associated BS via a wireless link, and each BS communicates with each
other through a wired link. Each BS is equipped with an MEC server, serving as an edge
node to provide certain computing and storage resources. The execution of each user task
depends on the required service, and the type of service corresponds to the type of task. At
present, emerging applications will all be used as user tasks, so the whole system includes
application service types such as cognitive assistance, autonomous driving, online games,
security monitoring, VR/AR, video conferencing, 3D modeling, and so on. The concept of
the BS is equivalent to the MEC in the subsequent sections.



Sensors 2022, 22, 6760 4 of 18

Divide the continuous time into T separate slots, where slot t represents the t-th slot.
In each slot, the location of TUs and the transmission channel condition are considered
fixed [33]. In order to simplify the model analysis, it is assumed that each user has
only one mobile terminal, and one computing task is generated in a time slot. This
task can either be processed locally or offloaded to an edge server for computing. It
will be uploaded first to its associated BS if the TU performs the offloading decision,
and it can be handled by its associated BS provided that there are sufficient computing
resources and relevant services cached. Otherwise, the task will be further forwarded to
a nearby collaborative BS with the required services and computing demands. Besides,
the associated BS refers to the base station that is closest to a TU and with the best
channel condition in the current time slot.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19 
 

 

other through a wired link. Each BS is equipped with an MEC server, serving as an edge 
node to provide certain computing and storage resources. The execution of each user task 
depends on the required service, and the type of service corresponds to the type of task. 
At present, emerging applications will all be used as user tasks, so the whole system in-
cludes application service types such as cognitive assistance, autonomous driving, online 
games, security monitoring, VR/AR, video conferencing, 3D modeling, and so on. The 
concept of the BS is equivalent to the MEC in the subsequent sections. 

 
Figure 1. Network Model. 

Divide the continuous time into T  separate slots, where slot t  represents the t -th 
slot. In each slot, the location of TUs and the transmission channel condition are consid-
ered fixed [33]. In order to simplify the model analysis, it is assumed that each user has 
only one mobile terminal, and one computing task is generated in a time slot. This task 
can either be processed locally or offloaded to an edge server for computing. It will be 
uploaded first to its associated BS if the TU performs the offloading decision, and it can 
be handled by its associated BS provided that there are sufficient computing resources 
and relevant services cached. Otherwise, the task will be further forwarded to a nearby 
collaborative BS with the required services and computing demands. Besides, the associ-
ated BS refers to the base station that is closest to a TU and with the best channel condition 
in the current time slot. 

The set of BSs and TUs are denoted by { }= 1,2,...,M�  and { }= 1,2,...,N� , respec-
tively. In a slot, the TU n  generates a computation task, which is given by 

max{ , , , }n n n n nI D S tλ= . nD  indicates the size of input data of the task, and nλ  represents 
the number of CPU cycles required of the task. nS  denotes the type of service required 
of the task, and 

max
nt  is the maximum delay limit of the task. The set of computing tasks 

generated by all TUs is 1 2{ , ,..., }nI I I= , and the set of service types available in the whole 
scenario is 1 2{ , ,..., }lS S S= . The set of TUs associated with the base station m  is m . If 
user n  is associated with the base station m , then mn∈ . The main symbols and their 
definitions are summarized in Table 1. 

  

Figure 1. Network Model.

The set of BSs and TUs are denoted byM = {1,2, . . . , M} and N = {1,2, . . . , N}, re-
spectively. In a slot, the TU n generates a computation task, which is given by
In = {Dn, λn, Sn, tmax

n }. Dn indicates the size of input data of the task, and λn repre-
sents the number of CPU cycles required of the task. Sn denotes the type of service required
of the task, and tmax

n is the maximum delay limit of the task. The set of computing tasks
generated by all TUs is I = {I1, I2, . . . , In}, and the set of service types available in the
whole scenario is S = {S1, S2, . . . , Sl}. The set of TUs associated with the base station m is
Nm. If user n is associated with the base station m, then n ∈ Nm. The main symbols and
their definitions are summarized in Table 1.



Sensors 2022, 22, 6760 5 of 18

Table 1. Parameter Notation.

Symbol Definition

M Base stations set
N Users set
S Service types set

X , xmk,In Task offloading strategy and Decision variable
C, cm,s Service caching strategy and Decision variable
F , fmn Computing resource allocation strategy and Decision variable

Dn Input data size of task In
λn CPU cycles required of task In
Sn Service type required of task In

tmax
n Maximum delay limit of task In
f L
n Local computing capability of user n

fm Computing capability of MEC m
fmn Computing resources allocated by MEC m to user n
Ds Data size of service s
Km Storage capacity of MEC m
Rnm Uplink transmission rate between user n and MEC m
Rmk Transmission rate between MEC m and k
TL

n Task local computation time
Ttr

nm Task uploading time to MEC m
Ttr

mk Task transmission time between MEC m and k

3.2. Communication Model

Each TU is connected to its associated BS via a wireless link. At the same time, the
Orthogonal Frequency Division Multiple Access (OFDMA) communication mode is used in
the cell, each TU transmits its task through an orthogonal channel, so that the interference
in the cell can be ignored. Besides, to simplify the problem, inter-cell interference is not
considered for the time being, since interference management is not the focus of this paper.
We define Rnm as the uplink transmission rate, which is from the user n to its associated
BS m. Its value depends on the number of TUs associated with the BS. Assuming that TUs
connected to the same base station share communication resources equally, then Rnm can
be expressed as

Rnm =
W log2(1 +

Pnhnm
σ2 )

|Nm|
(1)

where W is the available spectrum bandwidth, Pn and hnm represent the uplink transmission
power and the channel gain between the user n and its associated base station, respectively.
σ2 is the additive Gaussian white noise power, and |Nm| represents the number of TUs
associated with the BS m.

3.3. Computation Offloading Model

Assume the tasks generated by each TU are inseparable, and they are supposed to be
executed locally, offloaded to its associated BS, or further offloaded to a collaborative BS for
computation. Define X =

{
xmk,In |m ∈ M, k ∈ M∪ {0}, n ∈ Nm

}
as the task offloading

strategy for the system. xmk,In ∈ {0, 1} is the offloading decision variable for the user n,
where xmk,In = 1 indicates the user task In associated with m is executed by k, otherwise,
xmk,In = 0. In addition, k = 0 indicates In is performed locally, k = m indicates In is
executed by its associated BS m, and k ∈ M\{m} indicates In is calculated by a non-
associated collaborative BS k. The task offloading decision should satisfy

∑
k∈M∪{0}

xmk,In = 1, ∀m ∈ M, n ∈ Nm (2)



Sensors 2022, 22, 6760 6 of 18

3.3.1. Local Computing

Assume the computing capability (i.e., the CPU cycles per second) of user n is denoted
by f L

n . Accordingly, the local computing delay of the task In can be expressed as

TL
n =

λn

f L
n

(3)

3.3.2. Associated Base Station Computing

If a TU executes one task on its associated BS, then the whole offloading delay includes
three parts: the uploading time Ttr

nm = Dn/Rnm, the computing time Texe
nm in associated BS

m, and the downloading delay of computation results. Since the computation results are
usually much smaller than the input data and the downlink transmission rate is very high,
we ignore the last part of the downloading delay [18]. Besides, we define the computing
resource allocation strategy of the edge server as F = { fmn|m ∈ M, n ∈ N exe

m }, where fmn
represents the computing resources allocated by edge server m to user n, N exe

m represents a
set of tasks performed by m. The tasks in N exe

m include hit by its local cache and offloaded
by other collaborative BSs. Due to the limited computing capabilities of edge servers, the
resources allocated to users cannot exceed their total resources, which must be satisfied
∑n∈N exe

m
fmn ≤ fm. In this case, the computing time of the associated BS is Texe

nm = λn/ fmn.
Consequently, the total execution delay in the associated BS m can be expressed as

Tnm = Ttr
nm + Texe

nm =
Dn

Rnm
+

λn

fnm
(4)

3.3.3. Non-Associated Collaborative Base Station Computing

The calculation time in a non-associated collaborative BS includes four parts: the
uploading time Ttr

nm, the transmission time Ttr
mk from the associated BS m to the collaborative

BS k, the computing time Texe
nk in k, and the ignorable downloading delay. Define the

transmission rate between m and k as a fixed value Rmk, then Ttr
mk = Dn/Rmk. According

to the computing resource allocation strategy, the computing resources allocated by the
collaborative BS k to the user n are fkn, then Texe

nk = λn/ fkn. Therefore, the total execution
delay in the non-associated collaborative BS k can be expressed as

Tnk = Ttr
nm + Ttr

mk + Texe
nk =

Dn

Rnm
+

Dn

Rmk
+

λn

fkn
(5)

3.4. Service Caching Model

Only when the relevant application services are cached in advance can the corre-
sponding computing tasks be executed by the edge server. We define the service caching
strategy of the edge server as C = {cm,s|m ∈ M, s ∈ S}. cm,s is the service caching decision
variable for server m, where cm,s = 1 indicates the server m caches the service s, otherwise,
cm,s = 0. Due to the limited storage resources of the MEC server, the total amount of
services cached by each MEC cannot exceed its capacity. Therefore, we have the following
caching decision constraint

∑
s∈S

cm,sDs ≤ Km, ∀m ∈ M (6)

where Ds is the data size of service s, Km is the storage capacity of edge server m.

3.5. Service Caching Model

A TU generates one computing task in a time slot, which can optionally be executed
locally or offloaded to its associated or collaborative BS with the required services and



Sensors 2022, 22, 6760 7 of 18

computing demands in advance. Assume that TUs can perform all tasks generated by
themselves locally, the actual computation delay of the task In is

Tn = xm0,In TL
n + cm,sn xmm,In Tnm + ∑

k∈M\{m}
ck,sn xmk,In Tnk (7)

We develop the joint optimization problem of collaborative offloading strategy X ,
computation resource allocation strategy F , and service caching strategy C with the consid-
eration of user fairness, where the fairness is reflected by minimizing the maximum actual
delay Tn of all users. Accordingly, the objective problem can be formulated as

P1 : min
C,X ,F

max
n∈N

Tn

s.t. C1 : ∑
s∈S

cm,sDs ≤ Km, ∀m ∈ M

C2 : ∑
k∈M∪{0}

xmk,In = 1, ∀m ∈ M, n ∈ Nm

C3 : ∑
n∈N exe

m

fmn ≤ fm, ∀m ∈ M

C4 : fmn ≥ 0, ∀m ∈ M
C5 : cm,s ∈ {0, 1}, ∀m ∈ M, s ∈ S
C6 : xmk,In ∈ {0, 1}, ∀m ∈ M, k ∈ M∪ {0}, n ∈ Nm

(8)

where the constraint C1 indicates that the total amount of services cached by each MEC
cannot exceed its capacity. C2 ensures that a TU can only perform at one of its local,
associated BS, or collaborative BS. C3 denotes that the total computation resources allocated
by an MEC cannot exceed its computing capability. C4 means the computation resources
allocated are non-negative. C5 represents that the service caching decision is a binary
variable and it can only be service cached or not cached. C6 represents that the task
offloading decision is a binary variable and it can only be task offloaded or not offloaded.

4. Joint Optimization Strategy of Task Offloading and Service Caching

In this section, an efficient computation offloading strategy called JTOSC is proposed
to achieve the goal of P1. Since the service caching and task offloading variables are 0 or 1,
the computation resources allocation result can be any value between 0 and 1. Therefore,
problem P1 is a mixed integer nonlinear programming problem. In addition, cm,s and
xmk,In , xmk,In and fmn are coupled with each other, leading to the objective function being
non-convex and difficult to tackle. Thus, we decompose P1 into two sub problems to solve,
namely service caching and task scheduling problem, where the task scheduling problem
can be further divided into task offloading decision and fair resource allocation.

4.1. Service Caching Model

In the outer layer of JTOSC, the service caching decision of MEC is determined
iteratively based on Gibbs sampling, where the main idea of Gibbs sampling is to simulate
conditional samples by scanning each variable while keeping the remaining variables
constant in each iteration. Specifically, the update process of service caching decision is
regarded as a L dimensional Markov chain. In each round of iteration, an edge server
m ∈ M and a feasible caching strategy C∗m ∈ C satisfying the relevant constraints are
randomly selected, while the caching strategies on the remaining edge servers maintain
unchanged. Based on the caching decisions of all edge servers in the previous round
and the current round, the task offloading strategy X and X ∗, the computing resource
allocation strategy F and F ∗, the objective function value τ and τ∗ can be calculated for the
previous round and the current round, respectively. Associate the conditional probability
distribution of cache update strategies with the optimization goal of P1, accepting the
current caching strategy with probability ρ, and maintaining the previous round of caching
strategy with probability 1− ρ. Eventually, the Markov chain will converge to the optimal
caching policy with high probability. The service caching strategy is shown in Algorithm 1.



Sensors 2022, 22, 6760 8 of 18

Algorithm 1: Service Caching Algorithm based on Gibbs Sampling

Input: N ,M, S , Ds(s ∈ S), Km(m ∈ M), w
Output: C, X , F , τ, τave

1: Initialize C0 ← 0 , L
2: for l = 1 : L do
3: Randomly select an MEC server m ∈ M and a feasible caching strategy C∗m ∈ C;

4: Based on the previous round caching strategy
{

Cl−1
1 , Cl−1

2 , . . . Cl−1
M

}
, compute the task

offloading strategy X and resource allocation strategy F and objective function value τ and τave;

5: Based on the current round caching policy
{

Cl
1, Cl

2, . . . C∗m, . . . Cl
M

}
, compute the task

offloading strategy X ∗ and resource allocation strategy F ∗ and objective function value τ∗ and
τ∗ave;
6: Let Cl

m = C∗m with the probability ρ = 1
1+e(τ∗−τ)/w ;

7: Let Cl
m = Cl−1

m with the probability 1− ρ;
8: end for

When the outer layer service caching decision is determined, the original optimization
problem P1 is reduced to the inner layer task scheduling problem P2.

P2 : min
X ,F

max
n∈N

Tn

s.t. C2, C3, C4, C6
(9)

In optimization problem P2, the task offloading strategy X is coupled with the compu-
tation resource allocation strategy F , where F depends on the result of X , and X needs to
be further adjusted and optimized according to the result of F . We consider solving these
two coupled problems alternatively by fixing one of the result terms.

4.2. Computing Resource Allocation Based on Fairness Perception

We define the fairness of TUs from the perspective of user experience, which can be
reflected by minimizing the maximum actual delay Tn of all users. Specifically, we propose
a fairness perception computing resource allocation strategy, fairly allocating all computing
resources to TUs. By initializing the task offloading decision X , P2 is simplified to the
computing resource allocation problem P3 as follows:

P3 : min
F

max
n∈No f f

∑
k∈M

ck,sn xmk,In
λn
fkn

+ Qn

s.t. C3′ : ∑
n∈N exe

k

fkn ≤ fk, ∀k ∈ M

C4′ : fkn ≥ 0, ∀k ∈ M

(10)

given the service caching decision and the task offloading decision, the second term Qn
in P3 is a fixed value, and its value can be clearly expressed as Qn = xm0,In λn/ f L

n + cm,sn

xmm,In Dn/Rnm + ∑k∈M\{m} ck,sn xmk,In(Dn/Rnm + Dn/Rmk), where No f f is the set of all
TUs offloaded to MECs, and N exe

k is the set of TUs offloaded to MEC k.
Meanwhile, since both caching decision and offloading decision are binary variables,

and only one of the offloading decision variables (xm0,In , xmm,In and xmk,In ) is equal to 1, let
∑k∈M ck,sn xmk,In λn/ fkn + Qn = λn/ fkn + Qn ≤ τ. At this time

τ = max
n∈No f f

∑
k∈M

ck,sn xmk,In
λn
fkn

+ Qn (11)

where λn/ fkn is the computation delay of MEC k, and its value is non-negative. Then,
0 ≤ λn/ fkn ≤ τ −Qn. This constraint of fkn can be transformed into 0 ≤ λn/(τ −Qn) ≤ fkn.



Sensors 2022, 22, 6760 9 of 18

MEC k allocates computing resources to all offloaded users in N exe
k , and the sum can

be obtained.

∑
n∈N exe

k

λn

τ −Qn
≤ ∑

n∈N exe
k

fkn ≤ fk (12)

Only when we put all computing resources to work can we ensure that each TU
is allocated relatively more computing resources from MEC and obtain higher quality
performances. Therefore,

∑
n∈N exe

k

λn

τ −Qn
= ∑

n∈N exe
k

fkn = fk (13)

At this point, the problem of computing resource allocation is transformed into

P3′ : min
F

τ

s.t. C7′ : ∑
n∈N exe

k

λn
τ−Qn

= ∑
n∈N exe

k

fkn = fk, ∀k ∈ M (14)

where the constraint C7′ is a monotonically decreasing function of τ, τmin = Qn and
τmax = ∑n∈N exe

k
(λn/ fk + Qn). Use the bisection method to calculate the optimal objective

function value τ within the upper and lower bounds. The computing resource allocation
process is shown in Algorithm 2.

Algorithm 2: Computing Resource Allocation based on Fairness Perception

Input: C, X , tolerance ξ

Output: F , τ, τave
1: for k ∈ M do
2: for n ∈ N exe

k do
3: τmin = Qn;

4: τmax = ∑
n∈N exe

k

(
λn
fk
+ Qn

)
;

5: while |τmax − τmin| ≥ ξ

6: τmid = τmax−τmin
2 ;

7: if ∑
n∈N exe

k

λn
τmid−Qn

≥ fk

8: τmin = τmid;
9: else
10: τmax = τmid;
11: end if
12: end while
13: τn = τmin;
14: end for
15: F ← fkn ← τn , according to Equation (14);
16: end for
17: τmax = max

n∈No f f
{τn};

18: τave =

∑
n∈No f f

τn

|No f f | ;

4.3. Bilateral Matching Task Offloading Based on Revenue Preference

In the previous section, a fixed task offloading strategy was used to allocate computing
resources. However, it is necessary to continuously adjust the offloading scheme according
to a reliable offloading strategy. At this point, the optimization problem is transformed into:

P4 : min
X

max
n∈N

Tn

s.t. C2, C6
(15)



Sensors 2022, 22, 6760 10 of 18

where the value of Tn is given in Equation (7).
The set of BSs that cache the services required by the task In is defined asMcandidate

n .
The locations where the task can be executed include the local TU and MEC m, satisfying
∀m ∈ Mcandidate

n . Each TU sends the offloading request to its own associated BS at the
beginning of a time slot, and the set of offloading requests received by the associated
BS is defined as N req

m , which includes the tasks offloaded by the associated TUs and the
collaborative BSs. If the associated BS m belongs toMcandidate

n , that is, its local cache hits
the service required by the task In. Then, these tasks hit will be added toN candidate

m , and the
missed will be added to the set N no

m . The initial task offloading scheme assumes that all
tasks in N candidate

m are executed by MEC m, each task in N no
m sends its offloading request

to collaborative BSs with the highest preference value inMcandidate
n , and the collaborative

BS executes all tasks received. Meanwhile, the computing resources allocation strategy of
TUs is computed by Formula (14). So far, the initial service caching, task offloading, and
computing resource allocation scheme are obtained.

With the updated service caching decision, the task offloading strategy adopts a
preference-based bilateral matching algorithm to select the appropriate offloading location.
Calculate the objective function value Tn of each TU under the current offloading decision. If
all TUs meet their maximum delay requirements and do not exceed the computing resources
constraint of each BS, then the offloading scheme at this time is suitable. Otherwise, define
the difference between the task maximum latency limit and its actual latency as the task
offloading revenue, that is γnm = tmax

n − Tn. Calculate the offloading revenue of each TU
in N exe

m , and select the task with the smallest revenue in turn for further offloading. Then,
remove it from N exe

m to N o f f
m , until all the remaining tasks in N exe

m can meet the maximum
delay and computing resources constraints. So far, we obtain the set Nexe

m of user tasks
calculated by the associated BS, and the set N o f f

m of user tasks rejected by the associated BS
and need to be further offloaded.

For each TU in N o f f
m , a preference-based approach is adopted to select an appropriate

offloading location. Each task to be further offloaded has a preference for different offload-
ing locations, and the preference value is related to the estimated delay of the offloading
location. The larger the estimated offloading delay, the smaller the preference value. In this
case, the task In is rejected by the MEC m and needs to be further offloaded has a preference
value for the collaborative BS k, which can be expressed as

xm,In(k) =
1

Dn
Rnm

+ Dn
Rmk

+ λn
fkn

, ∀m ∈ M, k ∈ Mcandidate
n (16)

The task In that is rejected by the edge device m and needs to be further offloaded has
a preference value for its local TU, which can be expressed as

xm,In(0) =
1
λn
f L
n

(17)

The task In sends its offloading request to the location with a high preference value
preferentially. If the location requested is the local TU, then the offloading request will be
accepted directly, and let xn0,In = 1. If the location requested is the collaborative BS, then
the BS reply is needed. If the offloading request is rejected, then it will be sent to the next
best offloading location in the next iteration until it is accepted and let xnk,In = 1 at once.
Repeat the above process until all offloading decisions are confirmed, then the algorithm
terminates. The preference-based bilateral matching task offloading process is shown in
Algorithm 3.



Sensors 2022, 22, 6760 11 of 18

Algorithm 3: Preference-Based Bilateral Matching Offloading Algorithm

Input: I , C
Output: X
1: InitializeMcandidate

n , N req
m , N candidate

m , N no
m , N rec

m , N o f f
m , N exe

m equal to Ø;
2: User side: each user sends an offloading request to its associated BS;
3: MEC side: BSs mutually forward the users offloading requests;
4: Initial task offloading:
5: for m ∈ M do
6: N req

m ← received offloading requests;
7: N candidate

m , N no
m ← C0 ;

8: Initial offloading strategy X0: N candidate
m → xnm,In = 1 , N no

m → according to user preferences,
with full acceptance of offloading requests;
9: Initial resource allocation strategy: F0 ← X0 , according to Algorithm 2;
10: end for
11: for n ∈ N do
12: Computing Tn ← Equation (7);
13: N exe

m ← m← X ;
14: if Tn ≤ tmax

n and Σ
n∈N exe

m

fmn ≤ fm(∀m ∈ M, ∀n ∈ N exe
m )

15: N exe
m = N exe

m ;
16: xnm,In = 1;
17: else
18: Computing γnm(∀n ∈ N exe

m );
19: Sort γnm in descending order, select a task with the smallest value to offload in turn, let
N exe

m = N exe
m \{n} and N o f f

m = N o f f
m ∪ {n} until and ∑

n∈N exe
m

fmn ≤ fm(∀n ∈ N exe
m );

20: end if
21: end for
22: for n ∈ N o f f

m do
23: Computing offloading preference xm,In (k)(∀k ∈ Mcandidate

n );
24: Sort xm,In (k) in descending order, select a collaborative BS k with the biggest value to send
the offloading request preferentially.
25: if k = 0 do
26: Accept the offloading request of In, let N o f f

m \{n}, xn0,In = 1;
27: else
28: if k accepts the offloading request of In, let N o f f

m \{n}, xnk,In = 1;
29: else send the offloading request of In to the suboptimal collaborative BS k, until it is
accepted, let xnk,In = 1;
30: end if
31: end if
32: end for

4.4. Complexity Analysis

The outer layer in JTOSC iteratively updates the service caching decisions based on
Gibbs sampling. Its time complexity is O(L), where L represents the number of iterations
for the outer layer of proposed algorithm. The inner layer in JTOSC adopts the fairness-
aware computing resources allocation algorithm for MEC servers. With a precision ξ and
an initial interval (τmax − τmin), the resource allocation algorithm can be resolved by the
bisection method within O(log2

τmax−τmin
ξ ) iterations. Let N1 = |N exe

m | to represent the set
of TUs executed by the MEC m. Considering there are M MEC servers, the complexity of
resource allocation for a task offloading scheme is O(M× N1 × log2

τmax−τmin
ξ ). Eventually,

the time complexity of our proposed JTOSC iterative algorithm is the product of internal
and external code complexity, that is O(L×M× N1 × log2

τmax−τmin
ξ ).



Sensors 2022, 22, 6760 12 of 18

5. Simulation Results and Performance Analysis
5.1. Simulation Setting

Considering the edge computing scenario where four BSs and many users are ran-
domly distributed, each BS is deployed with an MEC server. The system bandwidth is set
to 20 MHz, and the background noise power is −100 dBm. The path loss factor used in
this paper refers to the setting of [17], i.e., L[dB] = 140.7 + 36.7 log10 d[km]. For computing
tasks, we consider face detection and recognition applications for airport security and
surveillance, and they can benefit from collaboration between TUs and the MEC plat-
form [34]. In most simulations, unless otherwise specified, we consider the number of user
tasks as 20, the input size of the task to be set to Dn = 420 KB, the number of CPU cycles
required of task to be set to λn = 1000 Megacycles, and the computing capability of MEC as
20 GHz. Assume they contain six types of services, which satisfies all task requirements in
system. Simulation is performed on MATLAB to evaluate the performance of the proposed
joint optimization strategy of task offloading and service caching. The main simulation
parameters are listed in Table 2.

Table 2. Main Simulation Parameters.

Parameters Value

Number of users [10, 50]
Number of BSs 4

Number of service types 6
System bandwidth 20 MHz

User transmitting power 20 dBm
Path loss 140.7 + 36.7 log10 d[km] dB

Background noise power −100 dBm
Input data size of one task 420 KB

CPU cycles required of one task 1000 Megacycles
Maximum delay limit of one task 1.5 s

Local computing capability of user 1 GHz
Computing capability of MEC 20 GHz

The transmission rate between BSs 500 Mbps
Data size of one service [30, 80] GB

Storage capacity of one MEC [50, 200] GB
Smoothing parameter 10−6

5.2. Strategies Comparison

In order to better evaluate the performance of the proposed strategy, we compared it
with the following four task offloading strategies.

(1) Computation Offloading and Resource Allocation algorithm (CORA) [18]. Tasks
generated by TUs are calculated locally or by the cloud, and the edge servers do not
cache any services;

(2) Joint Task Offloading and Resource Allocation algorithm (JTORA) [17]. Task offload-
ing and resource allocation in a multi-users and multi-severs scenario is optimized
without considering MEC collaboration, using the caching strategy in this paper for
service caching;

(3) Optimizing Service Placement and Resource Allocation algorithm (OSPRA) [13]. Ser-
vice placement and resource allocation are optimized without considering MEC col-
laboration, using service popularity to greedy cache relatively more popular services;

(4) Collaborative Data Caching and Computation Offloading (CDCCO) [14]. MEC collab-
orates with each other for task offloading, and we adopt the dynamic programming
algorithm that caches data in the original algorithm for service caching.

The performance of each strategy is evaluated by four indicators: the maximum
execution delay of all users, the average execution delay, the number of load tasks, and the
local service caching hit ratio of each edge server. The local service caching hit ratio refers



Sensors 2022, 22, 6760 13 of 18

to the ratio of hit services number to required services number about the associated BS and
its users.

5.3. Analysis of Simulation Results

In Figure 2, the maximum delay of all users, which reflects user fairness sideways, is
compared. It can be seen from Figure 2 that TUs generate the largest delay when choosing
the CORA strategy because of the weak computing capability of TUs themselves and the
far distance between TUs and the cloud, leading to high execution delay and transmission
delay, respectively. Compared with the CORA strategy, the tasks can be offloaded to MEC
servers, which brings more resources and closer distance. Hence, the maximum delay of all
users of the other four strategies was cut down as a result.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

(3) Optimizing Service Placement and Resource Allocation algorithm (OSPRA) [13]. Ser-
vice placement and resource allocation are optimized without considering MEC col-
laboration, using service popularity to greedy cache relatively more popular services; 

(4) Collaborative Data Caching and Computation Offloading (CDCCO) [14]. MEC col-
laborates with each other for task offloading, and we adopt the dynamic program-
ming algorithm that caches data in the original algorithm for service caching. 
The performance of each strategy is evaluated by four indicators: the maximum exe-

cution delay of all users, the average execution delay, the number of load tasks, and the 
local service caching hit ratio of each edge server. The local service caching hit ratio refers 
to the ratio of hit services number to required services number about the associated BS 
and its users. 

5.3. Analysis of Simulation Results 
In Figure 2, the maximum delay of all users, which reflects user fairness sideways, is 

compared. It can be seen from Figure 2 that TUs generate the largest delay when choosing 
the CORA strategy because of the weak computing capability of TUs themselves and the 
far distance between TUs and the cloud, leading to high execution delay and transmission 
delay, respectively. Compared with the CORA strategy, the tasks can be offloaded to MEC 
servers, which brings more resources and closer distance. Hence, the maximum delay of 
all users of the other four strategies was cut down as a result. 

Simultaneously, the JTOSC and CDCCO strategies show better performance than the 
JTORA and OSPRA strategies—the reason is whether to consider the collaboration be-
tween MECs. The tasks not hit locally can be offloaded to the collaborative MECs satisfy-
ing demands preferentially rather than the remote cloud directly, which reduces the trans-
mission delay and balances the edge load. Besides, the JTOSC and JTORA use an itera-
tively updated strategy based on probability in this paper to perform service caching, bet-
ter than the dynamic programming cache in CDCCO and the greedy cache in OSPRA. 
Therefore, the JTORA strategy shows slightly better performance than the OSPRA, and 
the JTOSC strategy displays the most excellent performance. 

 
Figure 2. The maximum delay of users under different strategies. 

In Figure 3, the impact of the different numbers of users on the average delay of tasks 
is illustrated, where the average delay is the overall tasks delay divided by the number of 
tasks executed. With the increasing number of users, the average delay of all tasks pre-
sents an upward trend. Increasing users lead to intensified communication competition 
among them, then in turn raises the delay slightly in the CORA strategy. Meanwhile, due 

M
ax

im
um

 d
el

ay
 o

f u
se

rs
 / 

s

Figure 2. The maximum delay of users under different strategies.

Simultaneously, the JTOSC and CDCCO strategies show better performance than
the JTORA and OSPRA strategies—the reason is whether to consider the collaboration
between MECs. The tasks not hit locally can be offloaded to the collaborative MECs
satisfying demands preferentially rather than the remote cloud directly, which reduces the
transmission delay and balances the edge load. Besides, the JTOSC and JTORA use an
iteratively updated strategy based on probability in this paper to perform service caching,
better than the dynamic programming cache in CDCCO and the greedy cache in OSPRA.
Therefore, the JTORA strategy shows slightly better performance than the OSPRA, and the
JTOSC strategy displays the most excellent performance.

In Figure 3, the impact of the different numbers of users on the average delay of tasks
is illustrated, where the average delay is the overall tasks delay divided by the number
of tasks executed. With the increasing number of users, the average delay of all tasks
presents an upward trend. Increasing users lead to intensified communication competition
among them, then in turn raises the delay slightly in the CORA strategy. Meanwhile, due
to the constrained resources of MECs, queuing and further offloading cause redundant
waiting and transmission delay, respectively, in the other four strategies, leading to more
overall delay and average delay. From Figure 3, it can be concluded that the CDCCO and
JTOSC strategies show better performance. As there are more computing resources for task
offloading because of the MECs’ collaboration, the delay is relatively reduced.



Sensors 2022, 22, 6760 14 of 18

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19 
 

 

to the constrained resources of MECs, queuing and further offloading cause redundant 
waiting and transmission delay, respectively, in the other four strategies, leading to more 
overall delay and average delay. From Figure 3, it can be concluded that the CDCCO and 
JTOSC strategies show better performance. As there are more computing resources for 
task offloading because of the MECs’ collaboration, the delay is relatively reduced. 

 
Figure 3. The impact of the number of users on the average delay of users. 

In Figure 4, the impact of the computing capabilities of MEC servers on the maximum 
delay of all users is illustrated. The improvement of the computing capabilities does not 
have any influence on the CORA strategy, since its edge servers do not cache computing 
services and cannot participate in computing any user tasks. In the remaining four strate-
gies, with the computing capabilities of edge servers increasing, the computing resources 
allocated to user increase, then the computing delay decrease. However, due to the limi-
tation of storage resources of edge servers, they are unable to cache more services to per-
form more tasks, so the downward trend gradually stabilizes. In addition, it can be visu-
alized from Figure 4 that the performance difference between MECs’ non-collaboration 
(OSPRA and JTORA) and collaboration (CDCCO and JTOSC) strategies gradually de-
creases. This is because that the number of user tasks, which can be processed by the as-
sociated MEC itself, increases with the greater computing capabilities. 

 
Figure 4. The impact of the computing capabilities of MEC servers on the maximum delay of users. 

10 15 20 25 30 35 40 45 50
Number of users

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 d
el

ay
 o

f u
se

rs
 / 

s

CORA
JTORA
OSPRA
CDCCO
JTOSC

18 20 22 24 26 28 30
Computing capabilities of MEC servers / GHz

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
ax

im
um

 d
el

ay
 o

f u
se

rs
 / 

s

CORA
JTORA
OSPRA
CDCCO
JTOSC

Figure 3. The impact of the number of users on the average delay of users.

In Figure 4, the impact of the computing capabilities of MEC servers on the maximum
delay of all users is illustrated. The improvement of the computing capabilities does not
have any influence on the CORA strategy, since its edge servers do not cache computing
services and cannot participate in computing any user tasks. In the remaining four strate-
gies, with the computing capabilities of edge servers increasing, the computing resources
allocated to user increase, then the computing delay decrease. However, due to the limita-
tion of storage resources of edge servers, they are unable to cache more services to perform
more tasks, so the downward trend gradually stabilizes. In addition, it can be visualized
from Figure 4 that the performance difference between MECs’ non-collaboration (OSPRA
and JTORA) and collaboration (CDCCO and JTOSC) strategies gradually decreases. This
is because that the number of user tasks, which can be processed by the associated MEC
itself, increases with the greater computing capabilities.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19 
 

 

to the constrained resources of MECs, queuing and further offloading cause redundant 
waiting and transmission delay, respectively, in the other four strategies, leading to more 
overall delay and average delay. From Figure 3, it can be concluded that the CDCCO and 
JTOSC strategies show better performance. As there are more computing resources for 
task offloading because of the MECs’ collaboration, the delay is relatively reduced. 

 
Figure 3. The impact of the number of users on the average delay of users. 

In Figure 4, the impact of the computing capabilities of MEC servers on the maximum 
delay of all users is illustrated. The improvement of the computing capabilities does not 
have any influence on the CORA strategy, since its edge servers do not cache computing 
services and cannot participate in computing any user tasks. In the remaining four strate-
gies, with the computing capabilities of edge servers increasing, the computing resources 
allocated to user increase, then the computing delay decrease. However, due to the limi-
tation of storage resources of edge servers, they are unable to cache more services to per-
form more tasks, so the downward trend gradually stabilizes. In addition, it can be visu-
alized from Figure 4 that the performance difference between MECs’ non-collaboration 
(OSPRA and JTORA) and collaboration (CDCCO and JTOSC) strategies gradually de-
creases. This is because that the number of user tasks, which can be processed by the as-
sociated MEC itself, increases with the greater computing capabilities. 

 
Figure 4. The impact of the computing capabilities of MEC servers on the maximum delay of users. 

10 15 20 25 30 35 40 45 50
Number of users

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 d
el

ay
 o

f u
se

rs
 / 

s
CORA
JTORA
OSPRA
CDCCO
JTOSC

18 20 22 24 26 28 30
Computing capabilities of MEC servers / GHz

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
ax

im
um

 d
el

ay
 o

f u
se

rs
 / 

s

CORA
JTORA
OSPRA
CDCCO
JTOSC

Figure 4. The impact of the computing capabilities of MEC servers on the maximum delay of users.



Sensors 2022, 22, 6760 15 of 18

In Figure 5, the impact of the caching capacities of MEC servers on the maximum delay
of all user tasks is illustrated. Similarly, the increase of the storage capacities of edge servers
does not affect the maximum delay of all users, since the edge servers cannot participate
in computing any user tasks in the CORA strategy. In the remaining four strategies, with
the storage capacities of the edge servers increasing, the services required will be cached
with a greater probability, reducing further offloading to collaborative MECs and remote
cloud, and the maximum delay decreases with it. Moreover, it can be seen from Figure 5
that the downward trend gradually becomes stable while the caching capacity reaches
about 125 GB. This means that the edge servers are limited mainly by their own computing
resources at this time.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

In Figure 5, the impact of the caching capacities of MEC servers on the maximum 
delay of all user tasks is illustrated. Similarly, the increase of the storage capacities of edge 
servers does not affect the maximum delay of all users, since the edge servers cannot par-
ticipate in computing any user tasks in the CORA strategy. In the remaining four strate-
gies, with the storage capacities of the edge servers increasing, the services required will 
be cached with a greater probability, reducing further offloading to collaborative MECs 
and remote cloud, and the maximum delay decreases with it. Moreover, it can be seen 
from Figure 5 that the downward trend gradually becomes stable while the caching ca-
pacity reaches about 125 GB. This means that the edge servers are limited mainly by their 
own computing resources at this time. 

 
Figure 5. The impact of the caching capabilities of MEC servers on the maximum delay of users. 

In Figure 6, the comparison of the number of load tasks executed by each edge server 
and cloud under four strategies is illustrated. The CORA strategy is not compared, since 
all tasks will be offloaded to the remote cloud for execution under CORA. Both the OSPRA 
and JTORA strategies do not consider the horizontal collaboration between edge servers, 
resulting in an unbalanced load among MECs. On the contrary, the CDCCO and JTOSC 
strategies consider the horizontal collaboration among MECs, and their loads are rela-
tively balanced. Besides, the number of tasks performed by each edge server is related to 
its own service cache hit rate. Most tasks were performed by MECs in JTOSC because of 
its better iteratively update service caching strategy. 

 
Figure 6. Comparison of the number of load tasks computed by MECs with different strategies. 

M
ax

im
um

 d
el

ay
 o

f u
se

rs
 / 

s
N

um
be

r o
f l

oa
d 

ta
sk

s c
om

pu
te

d 
by

 M
EC

s

Figure 5. The impact of the caching capabilities of MEC servers on the maximum delay of users.

In Figure 6, the comparison of the number of load tasks executed by each edge server
and cloud under four strategies is illustrated. The CORA strategy is not compared, since
all tasks will be offloaded to the remote cloud for execution under CORA. Both the OSPRA
and JTORA strategies do not consider the horizontal collaboration between edge servers,
resulting in an unbalanced load among MECs. On the contrary, the CDCCO and JTOSC
strategies consider the horizontal collaboration among MECs, and their loads are relatively
balanced. Besides, the number of tasks performed by each edge server is related to its own
service cache hit rate. Most tasks were performed by MECs in JTOSC because of its better
iteratively update service caching strategy.

In Figure 7, the comparison of the local service cache hit ratio of edge servers under
four strategies is illustrated. Similarly, the CORA strategy does not participate in the
comparison. As we can see, the JTOSC strategy proposed in this paper possesses the
highest hit ratio, and the second one is the JTORA, indicating that the performance of the
proposed caching strategy is excellent. The dynamic programming method for caching in
CDCCO is better than the greedy cache in OSPRA. Because the greedy cache preferentially
chooses popular services, relatively unpopular services can only be stored in the cloud,
resulting in high transmission delay.



Sensors 2022, 22, 6760 16 of 18

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19 
 

 

In Figure 5, the impact of the caching capacities of MEC servers on the maximum 
delay of all user tasks is illustrated. Similarly, the increase of the storage capacities of edge 
servers does not affect the maximum delay of all users, since the edge servers cannot par-
ticipate in computing any user tasks in the CORA strategy. In the remaining four strate-
gies, with the storage capacities of the edge servers increasing, the services required will 
be cached with a greater probability, reducing further offloading to collaborative MECs 
and remote cloud, and the maximum delay decreases with it. Moreover, it can be seen 
from Figure 5 that the downward trend gradually becomes stable while the caching ca-
pacity reaches about 125 GB. This means that the edge servers are limited mainly by their 
own computing resources at this time. 

 
Figure 5. The impact of the caching capabilities of MEC servers on the maximum delay of users. 

In Figure 6, the comparison of the number of load tasks executed by each edge server 
and cloud under four strategies is illustrated. The CORA strategy is not compared, since 
all tasks will be offloaded to the remote cloud for execution under CORA. Both the OSPRA 
and JTORA strategies do not consider the horizontal collaboration between edge servers, 
resulting in an unbalanced load among MECs. On the contrary, the CDCCO and JTOSC 
strategies consider the horizontal collaboration among MECs, and their loads are rela-
tively balanced. Besides, the number of tasks performed by each edge server is related to 
its own service cache hit rate. Most tasks were performed by MECs in JTOSC because of 
its better iteratively update service caching strategy. 

 
Figure 6. Comparison of the number of load tasks computed by MECs with different strategies. 

M
ax

im
um

 d
el

ay
 o

f u
se

rs
 / 

s
N

um
be

r o
f l

oa
d 

ta
sk

s c
om

pu
te

d 
by

 M
EC

s

Figure 6. Comparison of the number of load tasks computed by MECs with different strategies.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19 
 

 

In Figure 7, the comparison of the local service cache hit ratio of edge servers under 
four strategies is illustrated. Similarly, the CORA strategy does not participate in the com-
parison. As we can see, the JTOSC strategy proposed in this paper possesses the highest 
hit ratio, and the second one is the JTORA, indicating that the performance of the pro-
posed caching strategy is excellent. The dynamic programming method for caching in 
CDCCO is better than the greedy cache in OSPRA. Because the greedy cache preferentially 
chooses popular services, relatively unpopular services can only be stored in the cloud, 
resulting in high transmission delay. 

 
Figure 7. Comparison of the local service cache hit ratio under different strategies. 

6. Conclusions 
In this paper, a collaborative task offloading problem assisted by dynamical service 

caching in MEC is investigated to reduce the maximum delay of all users by jointly con-
sidering the service caching decisions, task offloading decisions, and computing resource 
allocation. A service caching strategy based on Gibbs sampling is proposed to select ap-
propriate services for computing. Furthermore, a computing resources allocation strategy 
based on fairness is presented to improve the equity among users certainly. Moreover, an 
offloading revenue preference-based bilateral matching strategy is introduced for offload-
ing location options. The simulation results have demonstrated that the proposed JTOSC 
can effectively reduce the maximum delay of all users, improve the user experience, and 
balance the edge load. In this work, it is assumed that all users share communication re-
sources equally, and the inter-cell interference is ignored. Communication interference 
management will be studied in the next research work. This study can be reviewed as a 
reference for task offloading in MEC. 

Author Contributions: Conceptualization, X.L. and Y.W.; Methodology, G.L.; Software, F.H.; Vali-
dation, X.L., X.Z. and T.H.; Formal Analysis, X.Z.; Investigation, G.L.; Resources, Y.W. and T.H.; 
Data Curation, X.Z. and F.H.; Writing—Original Draft Preparation, X.L.; Writing—Review & Edit-
ing, G.L. and Y.W.; Project Administration, Y.W. and T.H.; Funding Acquisition, X.Z. and F.H. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the 2021 State Grid Corporation of China Science and Tech-
nology Program, grant number 5700-202141454A-0-0-00. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

86.72

52.66

76.81

91.63

JTORA OSPRA CDCCO JTOSC
Offloading Strategy

0

20

40

60

80

100

Lo
ca

l s
er

vi
ce

 c
ac

he
 h

it 
ra

tio
 / 

%

Figure 7. Comparison of the local service cache hit ratio under different strategies.

6. Conclusions

In this paper, a collaborative task offloading problem assisted by dynamical service
caching in MEC is investigated to reduce the maximum delay of all users by jointly con-
sidering the service caching decisions, task offloading decisions, and computing resource
allocation. A service caching strategy based on Gibbs sampling is proposed to select ap-
propriate services for computing. Furthermore, a computing resources allocation strategy
based on fairness is presented to improve the equity among users certainly. Moreover,
an offloading revenue preference-based bilateral matching strategy is introduced for of-
floading location options. The simulation results have demonstrated that the proposed
JTOSC can effectively reduce the maximum delay of all users, improve the user experience,
and balance the edge load. In this work, it is assumed that all users share communication
resources equally, and the inter-cell interference is ignored. Communication interference
management will be studied in the next research work. This study can be reviewed as a
reference for task offloading in MEC.



Sensors 2022, 22, 6760 17 of 18

Author Contributions: Conceptualization, X.L. and Y.W.; Methodology, G.L.; Software, F.H.; Valida-
tion, X.L., X.Z. and T.H.; Formal Analysis, X.Z.; Investigation, G.L.; Resources, Y.W. and T.H.; Data
Curation, X.Z. and F.H.; Writing—Original Draft Preparation, X.L.; Writing—Review & Editing, G.L.
and Y.W.; Project Administration, Y.W. and T.H.; Funding Acquisition, X.Z. and F.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the 2021 State Grid Corporation of China Science and Tech-
nology Program, grant number 5700-202141454A-0-0-00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Liu, J.; Argyriou, A.; Ci, S. MEC-Assisted Panoramic VR Video Streaming over Millimeter Wave Mobile Networks.

IEEE Trans. Multimed. 2019, 21, 1302–1316. [CrossRef]
2. Liu, J.; Zhang, Q. Code-Partitioning Offloading Schemes in Mobile Edge Computing for Augmented Reality. IEEE Access 2019, 7,

11222–11236. [CrossRef]
3. Yang, L.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. A Distributed Computation Offloading Strategy in Small-Cell Networks

Integrated with Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2762–2773. [CrossRef]
4. Vallina-Rodriguez, N.; Crowcroft, J. Energy Management Techniques in Modern Mobile Handsets. IEEE Commun. Surv. Tutor.

2013, 15, 179–198. [CrossRef]
5. Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018,

5, 439–449. [CrossRef]
6. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
7. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.

[CrossRef]
8. Open Data Center Committee. Available online: http://www.odcc.org.cn (accessed on 8 October 2021).
9. Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic Task Offloading and Resource Allocation for Mobile-Edge

Computing in Dense Cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [CrossRef]
10. Li, Y.; Wang, X.; Gan, X.; Jin, H.; Fu, L.; Wang, X. Learning-Aided Computation Offloading for Trusted Collaborative Mobile Edge

Computing. IEEE Trans. Mob. Comput. 2020, 19, 2833–2849. [CrossRef]
11. Bi, S.; Huang, L.; Zhang, Y.-J.A. Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge

Computing Systems. IEEE Trans. Wirel. Commun. 2020, 19, 4947–4963. [CrossRef]
12. Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N.; et al.

Cloud Programming Simplified: A Berkeley View on Serverless. Available online: http://arxiv.org/abs/1902.03383 (accessed on
9 February 2019).

13. Lin, Z.; Bi, S.; Zhang, Y.-J.A. Optimizing AI Service Placement and Resource Allocation in Mobile Edge Intelligence Systems.
IEEE Trans. Wirel. Commun. 2021, 20, 7257–7271. [CrossRef]

14. Feng, H.; Guo, S.; Yang, L.; Yang, Y. Collaborative Data Caching and Computation Offloading for Multi-Service Mobile Edge
Computing. IEEE Trans. Veh. Technol. 2021, 70, 9408–9422. [CrossRef]

15. Chen, L.; Wu, J.; Zhang, J.; Dai, H.-N.; Long, X.; Yao, M. Dependency-Aware Computation Offloading for Mobile Edge Computing
with Edge-Cloud Cooperation. IEEE Trans. Cloud Comput. 2020, 99, 1. [CrossRef]

16. Ji, T.; Luo, C.; Yu, L.; Wang, Q.; Chen, S.; Thapa, A.; Li, P. Energy-Efficient Computation Offloading in Mobile Edge Computing
Systems with Uncertainties. IEEE Trans. Wirel. Commun. 2022, 21, 5717–5729. [CrossRef]

17. Tran, T.X.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks.
IEEE Trans. Veh. Technol. 2019, 68, 856–868. [CrossRef]

18. Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems
with Min-Max Fairness Guarantee. IEEE Trans. Commun. 2018, 66, 1594–1608. [CrossRef]

19. Zhou, J.; Zhang, X. Fairness-Aware Task Offloading and Resource Allocation in Cooperative Mobile-Edge Computing.
IEEE Internet Things J. 2022, 9, 3812–3824. [CrossRef]

20. Dong, Y.; Guo, S.; Liu, J.; Yang, Y. Energy-Efficient Fair Cooperation Fog Computing in Mobile Edge Networks for Smart City.
IEEE Internet Things J. 2019, 6, 7543–7554. [CrossRef]

21. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C.M. An Efficient Computation Offloading Management Scheme in the Densely
Deployed Small Cell Networks with Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

http://doi.org/10.1109/TMM.2018.2876044
http://doi.org/10.1109/ACCESS.2019.2891113
http://doi.org/10.1109/TNET.2018.2876941
http://doi.org/10.1109/SURV.2012.021312.00045
http://doi.org/10.1109/JIOT.2017.2767608
http://doi.org/10.1109/COMST.2017.2682318
http://doi.org/10.1109/JIOT.2017.2750180
http://www.odcc.org.cn
http://doi.org/10.1109/JIOT.2020.2967502
http://doi.org/10.1109/TMC.2019.2934103
http://doi.org/10.1109/TWC.2020.2988386
http://arxiv.org/abs/1902.03383
http://doi.org/10.1109/TWC.2021.3081991
http://doi.org/10.1109/TVT.2021.3099303
http://doi.org/10.1109/TCC.2020.3037306
http://doi.org/10.1109/TWC.2022.3142685
http://doi.org/10.1109/TVT.2018.2881191
http://doi.org/10.1109/TCOMM.2017.2787700
http://doi.org/10.1109/JIOT.2021.3100253
http://doi.org/10.1109/JIOT.2019.2901532
http://doi.org/10.1109/TNET.2018.2873002


Sensors 2022, 22, 6760 18 of 18

22. Guo, M.; Wang, W.; Huang, X.; Chen, Y.; Zhang, L.; Chen, L. Lyapunov-Based Partial Computation Offloading for Multiple
Mobile Devices Enabled by Harvested Energy in MEC. IEEE Internet Things J. 2022, 9, 9025–9035. [CrossRef]

23. Yan, J.; Bi, S.; Zhang, Y.J.; Tao, M. Optimal Task Offloading and Resource Allocation in Mobile-Edge Computing with Inter-User
Task Dependency. IEEE Trans. Wirel. Commun. 2020, 19, 235–250. [CrossRef]

24. Jia, M.; Cao, J.; Liang, W. Optimal Cloudlet Placement and User to Cloudlet Allocation in Wireless Metropolitan Area Networks.
IEEE Trans. Cloud Comput. 2017, 5, 725–737. [CrossRef]

25. Xiao, Z.; Dai, X.; Jiang, H.; Wang, D.; Chen, H.; Yang, L.; Zeng, F. Vehicular Task Offloading via Heat-Aware MEC Cooperation
Using Game-Theoretic Method. IEEE Internet Things J. 2020, 7, 2038–2052. [CrossRef]

26. Fan, W.; Liu, Y.; Tang, B.; Wu, F.; Wang, Z. Computation Offloading Based on Cooperations of Mobile Edge Computing-Enabled
Base Stations. IEEE Access 2018, 6, 22622–22633. [CrossRef]

27. Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative Task Offloading in Three-Tier Mobile Computing Networks: An
ADMM Framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [CrossRef]

28. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Privacy-Preserved Task Offloading in Mobile Blockchain With Deep
Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2536–2549. [CrossRef]

29. Yang, P.; Zhang, N.; Zhang, S.; Yu, L.; Zhang, J.; Shen, X. Content Popularity Prediction Towards Location-Aware Mobile Edge
Caching. IEEE Trans. Multimed. 2019, 21, 915–929. [CrossRef]

30. Liang, J.; Zhu, D.; Liu, H.; Ping, H.; Li, T.; Zhang, H.; Geng, L.; Liu, Y. Multi-Head Attention Based Popularity Prediction Caching
in Social Content-Centric Networking with Mobile Edge Computing. IEEE Commun. Lett. 2021, 25, 508–512. [CrossRef]

31. Xu, J.; Chen, L.; Zhou, P. Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks. In
Proceedings of the IEEE Infocom 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018;
pp. 207–215.

32. Chen, L.; Shen, C.; Zhou, P.; Xu, J. Collaborative Service Placement for Edge Computing in Dense Small Cell Networks. IEEE Trans.
Mob. Comput. 2021, 20, 377–390. [CrossRef]

33. Pham, Q.-V.; Leanh, T.; Tran, N.H.; Park, B.J.; Hong, C.S. Decentralized Computation Offloading and Resource Allocation for
Mobile-Edge Computing: A Matching Game Approach. IEEE Access 2018, 6, 75868–75885. [CrossRef]

34. Soyata, T.; Muraleedharan, R.; Funai, C.; Kwon, M.; Heinzelman, W. Cloud-Vision: Real-Time Face Recognition Using a Mobile-
Cloudlet-Cloud Acceleration Architecture. In Proceedings of the 2012 IEEE Symposium on Computers and Communications
(ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 59–66.

http://doi.org/10.1109/JIOT.2021.3118016
http://doi.org/10.1109/TWC.2019.2943563
http://doi.org/10.1109/TCC.2015.2449834
http://doi.org/10.1109/JIOT.2019.2960631
http://doi.org/10.1109/ACCESS.2017.2787737
http://doi.org/10.1109/TVT.2019.2892176
http://doi.org/10.1109/TNSM.2020.3010967
http://doi.org/10.1109/TMM.2018.2870521
http://doi.org/10.1109/LCOMM.2020.3030329
http://doi.org/10.1109/TMC.2019.2945956
http://doi.org/10.1109/ACCESS.2018.2882800

	Introduction 
	Related Works 
	System Model 
	Network Model 
	Communication Model 
	Computation Offloading Model 
	Local Computing 
	Associated Base Station Computing 
	Non-Associated Collaborative Base Station Computing 

	Service Caching Model 
	Service Caching Model 

	Joint Optimization Strategy of Task Offloading and Service Caching 
	Service Caching Model 
	Computing Resource Allocation Based on Fairness Perception 
	Bilateral Matching Task Offloading Based on Revenue Preference 
	Complexity Analysis 

	Simulation Results and Performance Analysis 
	Simulation Setting 
	Strategies Comparison 
	Analysis of Simulation Results 

	Conclusions 
	References

