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Abstract: For decades, co-relating different data domains to attain the maximum potential of
machines has driven research, especially in neural networks. Similarly, text and visual data (images
and videos) are two distinct data domains with extensive research in the past. Recently, using
natural language to process 2D or 3D images and videos with the immense power of neural nets has
witnessed a promising future. Despite the diverse range of remarkable work in this field, notably in
the past few years, rapid improvements have also solved future challenges for researchers. Moreover,
the connection between these two domains is mainly subjected to GAN, thus limiting the horizons of
this field. This review analyzes Text-to-Image (T2I) synthesis as a broader picture, Text-guided Visual-
output (T2Vo), with the primary goal being to highlight the gaps by proposing a more comprehensive
taxonomy. We broadly categorize text-guided visual output into three main divisions and meaningful
subdivisions by critically examining an extensive body of literature from top-tier computer vision
venues and closely related fields, such as machine learning and human–computer interaction, aiming
at state-of-the-art models with a comparative analysis. This study successively follows previous
surveys on T2I, adding value by analogously evaluating the diverse range of existing methods,
including different generative models, several types of visual output, critical examination of various
approaches, and highlighting the shortcomings, suggesting the future direction of research.

Keywords: Text-to-Image; Text-to-Visual; computer vision; neural networks

1. Introduction

Artificial intelligence, specifically neural networks, is the recreation of human intel-
ligence. The primary goal of neural networks is to sense various surrounding stimuli,
understand raw data, and interpret meaningful results in a similar manner to humans.
In order to match or surpass human intelligence, machines must be able to analyze and
correlate multiple domains of data, such as visual, auditory, and natural language. There-
fore, over the past few years, researchers have shifted their focus to the concept of learning
cross-domain data interpretation.

More importantly, humans’ innate ability to visualize pictures and provoke imagina-
tion from natural language, also known as “seeing with the mind’s eye” [1] is a crucial
aspect of cognitive function. A few years ago, it was unbelievable that machines could
interpret natural language or even execute intelligent visual tasks. Thus, in the beginning,
some researchers tried using traditional hard-coded Al techniques [2], which suffer from
several drawbacks such as inconsistency, low quality, lack of diversity, and handcrafted
algorithms, but the advent of extraordinary neural networks turned myth into reality,
especially the generative models such as GANs and VAE. These models are capable of
generating unseen plausible images automatically. Similarly, the field of natural language
flourished as researchers understood this phenomenon to pass it to machines using various
AI techniques.
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Although the idea of multimodal learning stemmed from [3,4], proposing the condi-
tioning of additional variables on generative models, the dynamic generation of images or
videos from natural language remains an unsolved problem due to the lack of semantic
correlation between language as text and visual domain. Aiming at this gap, Manis-
mov et al. [5] introduced alignDRAW, an extended version of Deep Recurrent Attentive
Writer (DRAW) [6], that can generate images from captions. Since recurrent neural net-
works and autoencoders had limitations, Reed et al. [7] in 2016 made the first attempt
at T2I utilizing the power of a generative network, GAN, following which T2I received
considerable attention.

T2I has made significant progress in the last 5 years. Thus, several studies [8–11] have
put forth a semantic taxonomy for adversarial text-to-image synthesis (T2I), summarizing
the efforts made using GAN [12] mainly. In contrast, this paper focuses on two primary
gaps in previous studies. First, we complement the previous work on GAN-based T2I
by revising the list of GAN models with current state-of-the-art (SOTA) techniques while
providing an in-depth review and a comparative analysis with the previous ones. Second,
we conceptualize T2I as a broader research area, Text-guided Visual-output (T2Vo), which
is a parent node with three significant subcategories: image, story, and video. Depending
on the output task, dimension, and method, each category is further subdivided into
generation or manipulation, 2D or 3D, and simple AI or deep learning, where our focus is
on deep learning. Additionally, as a continuation of previous T2I reviews, our emphasis is
on other T2Vo tasks, i.e., story and video, and generative visual models other than GAN,
such as auto-regressive and VAE.

Based on this critical analysis of text-visual cross-modality for generating visual output,
we present an outline of the current research direction with existing defects that require
further attention by the community. Moreover, we discuss new avenues of research in
this domain, ranging from improved datasets to the discovery and refinement of various
generative models with more reliable assessment criteria.

Even though cross-domain learning is a wide field of research, this paper attempts
to comprehend only the text-guided visual output, as shown in Figure 1. As the scope
of applications and categories increases, it becomes increasingly difficult to identify new
directions and gaps without a comprehensive record of previous research. Our contribution,
therefore, is threefold:

• Viewing T2I as a vast domain, we comprehensively present a semantic taxonomy of
Text-guided Visual-Output (T2Vo) contrary to either text-to-image synthesis [8] or T2I
using GAN exclusively [9–11].

• We comparatively analyze previous and new SOTA approaches over conventional
evaluation criteria [11] and datasets by paying particular attention to the models
missed by earlier studies.

• By critically examining different methodologies and their problem-solving approaches,
we can set the stage for future research that can assist researchers in better understand-
ing present limitations.

In the real world, data exist in various forms, also known as modalities. These are
often found in textual and visual content with a lengthy application history in AI. Therefore,
studies related to multimodal learning [13,14] also resemble our work. However, due to the
broad spectrum, surveys on multimodal learning, explicitly targeted at the text-to-visual
output, are scarce and lack in-depth analysis. To the best of our knowledge, there is no
comprehensive research on text-to-visual output.

For a thorough understanding of text-guided visual output, an understanding of the
fundamentals is necessary. So, Section 2 lays the foundation for T2Vo, followed by the
selection criteria mentioned in Section 3 to narrow down the domain. We then provide
the broad-spectrum semantic taxonomy for T2Vo detailed in Sections 4–6. Next, Section 7
summarizes the different datasets mentioned in the literature, using which Section 8
enlists the evaluation metrics commonly used in these studies. Based on these profound
approaches to intelligent tasks, Section 9 lists the current industrial and future applications
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for T2Vo. After applications, we highlight the current challenges in Section 10. Finally,
Section 11 describes the future directions for T2Vo through an analysis of current SOTA
methods, then we discuss some key insights and conclude the paper in Section 12.

Figure 1. Task of the survey.

2. Foundation

This section discusses the critical components to understanding the concept of T2Vo,
mainly the image and text models, which are then combined to form the joint representation.

2.1. Language and Vision AI
2.1.1. Language Models

Natural language is amongst the most common methods of communication, so training
machines to understand and communicate in natural language with humans is essential for
machine–human interaction [15]. Before the deep learning era, considerable efforts were
made for natural language processing (NLP), manipulating only traditional AI techniques
such as rule-based approach [16] or simple machine learning techniques [17]. A primary
drawback of utilizing the carefully designed hand-crafted features for application-specific
algorithms is that there is limited intelligence, which cannot handle large amounts of
data. Therefore, this has resulted in the need for neural networks, which feed on data and
computational power, to deal with such complex data [18].

For assimilating T2Vo, frequently used NLP models, RNN, LSTM, GRU, Transformer,
GPT, and BERT need to be revisited before Section 3. However, conceptualizing such
models first requires an understanding of NLP’s core concepts, spanning three primary
divisions: feature representation, seq2seq framework, and reinforcement learning [18].

Text analysis can incorporate various forms and levels of features that represent
meaningful and desirable information. The process of extracting information from a corpus
consisting of several paragraphs with sentences created from a semantic combination
of words can be complicated, making it imperative to learn distributed representations.
Therefore, depending on the application under consideration, text features exist at different
levels [19], from characters [20] or symbols to words [21], sentences [22], paragraphs,
and documents, as shown in Figure 2. Furthermore, text conversion to a form readily
acceptable by machines, text vectorization, otherwise known as text embeddings, extends
from simple, such as one-hot [23], BoW [24], CBOW [25], WCBOW [26], and TF-IDF [27],
to more complex models utilizing neural nets, such as word-level [25,28,29], subword-
level [30], and character-level [23] encoding. These representations typically serve the
purpose of capturing the semantic and syntactic context or word to differentiate between
other corpora.
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Figure 2. Representation of different types of text levels used in the T2Vo tasks, where different levels
pay attention to one or more output detail. Figures obtained from (a) PororoQA, (b,c) CUB 2011
datasets, which represent the concept used in (a) [31], (b) [7,32], and (c) [33,34].

Another key concept for NLP is the Seq2Seq framework, which usually involves an
encoder–decoder design by implementing RNN [35], LSTM [36], GRU [37], or CNN [38]
cells, more recently replaced by Transformer [39]. The input and output of this framework
are considered as a sequence. The workflow of RNN and its variants such as GRU and
LSTM are the same, i.e., processing information temporally and thus memorizing previous
states for future predictions. However, RNN suffers from memory loss and gradient van-
ishing, so LSTM and GRU prevent this situation by inducing additional gates. LSTM uses a
forget-output-memory gate while GRU employs an update-reset gate [40]. Although the
sequential processing of RNN models can be leveraged by CNN [41,42], which follows a hi-
erarchical architecture for parallel processing, it fails to effectively capture the dependencies
among different combinations of words [43]. So, in short, LSTM and GRU mitigate distant
information loss using recurrence, but their sequential nature inhibits them from parallel
computation, whereas CNN is impractical for long-term dependencies. Consequently, these
constraints led to the development of the most advanced model, called Transformer—an
approach to sequential processing by eliminating recurrent connections and introducing a
self-attention module [44]. This model garnered much attention as it defined a new state-of-
the-art, laying the foundation for future deep learning architectures such as BERT [45] (by
Google) and the GPT series [46–48] (by OpenAI). BERT (Bidirectional Encoder Representa-
tions from Transformers) and GPT (Generative Pre-trained Transformer) are pre-trained
models trained on massive unsupervised data for multiple downstream tasks with discrim-
inative fine-tuning on application-specific data. GPT followed the Transformer decoder
and only applied unidirectional training. Comparatively, BERT’s distinguishable features
are focused on the Transformer encoder architecture with Bidirectional training.

Finally, Reinforcement Learning (RL) is another approach in which an agent learns
how to choose an action correctly within a particular environment to maximize rewards. It
is effectively applied in NLP to mitigate two primary issues faced in the seq2seq framework:
exposure bias and training–testing inconsistency [18]. Exposure bias occurs due to the
optimization objective via Teacher Forcing [49], which, during training, uses the previous
state and ground truth as inputs for the decoder to generate the current state. However, at
testing, it relies only on the previous state and induces an error growth, handled in [49] with
scheduled sampling as a solution. Moreover, the training–testing inconsistency is forced
when non-differentiable measures such as METEOR [50] and ROUGE [51] are used for eval-
uation. So, the use of RL in NLP has recently shown excellent potential [52], among which
actor–critic models [53,54] and policy gradient techniques [55,56] are commonly used.
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Initially, SEARN [57] used model predictions for seq2seq modeling and generation
during training, which is categorized as reinforcement learning and trains the policy to
predict optimal action from a sequence of actions. In addition, actor–critic training works
slightly differently: the actor is a network that generates output while the critic model
estimates its performance. However, a critical problem in using RL for NLP is the immense
action space responsible for slow training and difficulty in the correct action selection.

2.1.2. Visual Models

In addition to text models, visual models and their basics hold equal significance
for a thorough knowledge of T2Vo. The study of digital images and their processing is
a well-established topic with tremendous research in the past. Similar to text, semantic
representation of raw pixel values, also called features, is necessary to derive meaningful
results for machine processing. This task of feature representation can be as simple as
splitting white and black colors based on some threshold and as complex as representing
complicated objects in the medical field, such as radiology [58]. Based on the level of
processing, vision can be low-level, such as segmentation and edge detection, or high-level
involving machine learning, including Image classification [59], object detection [60], and
Image generation [61]. High-level vision in machine learning, especially Deep Learning,
can be either discriminative or generative, as represented in Figure 3.

Figure 3. A high-level division of the deep learning vision models based on output type highlights
the difference between them.

Discriminative models usually learn image features via training from a labeled
dataset, referred to as supervised learning, and often serve as feature encoders. Among
these models, convolutional neural networks (CNNs) have provided a significant contri-
bution in presenting an operative class of models to understand the content present in
an image better, resolving different realm problems in recent decades. Their effectiveness
on images is due to the convolutional layers followed by pooling layers, which reduce
the number of parameters to converge faster. Thus, the CNN reduces dimensionality by
exploiting context information in a small neighborhood of pixels [62]. In this way, cascaded
convolutional layers can learn complex features by stacking simple learned features at
multiple stages.

The first CNN model is LeNet-5 [63], trained to recognize handwritten characters
and utilizes convolutional, pooling, and fully connected layers. This pioneering work is
moderately immune to shift, scale, and distortion. However, it still struggles to surpass the
traditional SVM algorithms.

Following LeNet-5, in 2012, CNN called AlexNet [64] expanded the basic idea by
proposing a deep and wide network having more convolutional layers with ReLU as an
activation function to mitigate the gradient vanishing problem. It harnessed the power of
GPUs for the first time. Additionally, they use dropout and data augmentation to avoid
over-fitting along with max-pooling to reduce blurriness. Furthermore they employed LRN
for normalization.
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Although AlexNet provided a solid foundation to apply CNN models for the images
but failed to explain the relationship between the depth and performance of the model.
Therefore, VGGNets [65] prove that performance is moderately related to the depth of the
model. So, the results were improved by increasing the depth of the model without LRN
and a small kernel size (3 × 3) while having reduced model parameters.

The earliest work on a large-scale CNN model was by GoogleNet [66]. These extensive
models came into existence by stacking multiple Inception modules for the first time,
which they split into four versions. In Inception-v1, multi-size convolutional kernels
were introduced to reduce the computational cost while extracting multi-scale feature
maps. Afterward, Batch normalization was employed in Inception-v2 [67] to solve internal
covariate shift problems while increasing the robustness. Then to increase depth and non-
linearity in Inception-v3 [68], the RMSprop optimizer is introduced, and the factorization
of (5 × 5) kernel to (1 × 7, 7 × 1) and (3 × 3) to (1 × 3, 3 × 1). Inception-v4 [69], however,
is based on the ResNet structure, which further extends the depth of these networks and
improves their performance; it is also known as Inception-ResNet.

Previous studies have proved the superior performance of deep networks compared
to shallow ones. However, they cannot exceed a specific limit due to gradient vanishing
and exploding. The introduction of ResNet [70], in 2016, proposed a 34-layer neural
network with a crucial contribution of residual blocks, consisting of 2 or 3 layers with
bypass connections. After this, many studies followed ResNet and achieved better results,
including wide ResNet [71] and ResNet in ResNet [72].

Although Xception [73] came just after ResNet-50, inspired by Inception’s architecture,
they replaced the standard Inception modules with depthwise separable convolutions. It
was accomplished by simply performing depthwise convolution with a filter of (3 × 3) or
(5 × 5) to all channels, followed by pointwise convolution across channels with a (1 × 1)
kernel. Moreover, this model also made use of residual connections proposed in ResNet.
This slight modification enhances the efficiency with the same parameters as Inception-v3.

To summarize the relation between Inception and Resnet, the first reduces the com-
putational cost by going broader, while the second focuses on computational accuracy by
going deeper. Different from these two, another method of efficient feature learning is
by resolution scaling at the expense of high computational cost, which unfortunately is
not stable for large networks as it immediately lowers accuracy gains. Conclusively, the
latest work on CNN is the EfficientNet [74] exploring compound scaling by a compound
coefficient to obtain the best from all dimensions: depth, width, and resolution. This
baseline network results from Neural Architecture Search (NAS), followed by a family of
models, EfficientNets, achieving the best results from models that are about 6× faster and
8× smaller.

To augment EfficeintNet, Noisy Student training [75] proved its importance. This
idea is the fusion of self-training and distillation with added noise for student training.
Compared to the Knowledge Distillation [76], the innovation of this model is knowledge
expansion. In this way, it surpasses the teacher with the help of a more challenging
environment, noise, by an iterative process that learns a larger student model from the
trained teacher model.

Capsule networks [77] are implemented to solve CNN problems, spanning localization,
information loss, and low 3D viewpoint variation. These problems arise because of the
dependency on local pixel groups and the pooling layers. In the most high-level notion,
instead of forwarding individual neuron activation from one layer to another, as in CNN,
capsule networks represent each capsule as a small nested neural network that outputs a
whole vector. This full-length vector encodes the probability of detecting a specific feature,
where the direction helps define the state of the feature, e.g., location, pose, and scale.
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Recently, the exceptional progress and attention to Transformers in NLP changed the
focus of the computer vision researchers to adopt new models to vision tasks, such as
DETER [78]. However, until last year, no work proposed the direct use of Transformers to
vision tasks except Vision Transformer (ViT) [79]. The reported performance of this model
is remarkable, especially with an 80% decrease in training time with comparable accuracy
from the best CNN models. A reasonable explanation of this improvement is the direct use
of image patches rather than filtered data of a small area of pixels from an image, ignoring
the relationship between parts of the image, thus losing some valuable information.

A detailed summary of CNN models and their evolution in the last few years have
been presented by other studies [62,80]. Based on these reviews and the combination
with the latest techniques, we present a brief hierarchy of the deep discriminative models
in Figure 4. The latest techniques such as Caps-Net [77], Noisy Student training [75],
and Vision Transformer (ViT) [79] are in the maturation phase and are less studied for
T2Vo tasks.

Generative models, unlike their counterparts, assume the signal to be deterministic,
which is obtained from a defined transformation on some latent variable [81] to learn
unsupervised data. Generally, generative models are classified as cost function-based and
energy-based models. Generative adversarial networks (GANs) and Autoencoders are cost-
based generative models, while Boltzman Machine, its variants, and Deep Belief Networks
(DBFs) are energy-based models. However, according to the study by Ian Goodfellow [82],
the generative models derived from maximum likelihood are distinguished based on their
representation. To combine both ideas, Figure 5 shows the classification of generative
models. Since most of the work in the underlined topic is based on GAN with minor
achievements in other generative models. It implies the elaboration of GAN and other
principal generative models to highlight their key features, exploiting the pros and cons.

Figure 4. Classification of deep learning discriminative models based on their architecture,
extending [80], where Deep CNN is the most studied topic for T2Vo tasks and is further categorized.
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Figure 5. Classification of generative models: this figure is modified version of [82,83]. Orange color
specifies the most popular models.

Among the most famous generative models, the earliest work utilized the Boltzmann
machine (BM) [84] in 1983 to find the best combinations of hypotheses satisfying the
input data constraints. After this, there are series of implementations advancing the idea,
namely Binary Boltzmann machine [85], Restricted Boltzmann Machine (RBM) [86], Deep
Belief Networks (DBN) [87], and Deep Boltzmann Machine (DBM) [88]. Theoretically, all
these models can learn complex distributions, but practically BM suffers from tractability
problems. So, RBM was designed to resolve it, and its advanced version is called DBM,
which has multiple layers trained in two stages: pre-training and fine-tuning. Figure 6
shows the structure of BM, RBM, DBN, and DBM in comparison.

Figure 6. Boltzmann machine (BM) and its variants, where black and white nodes represent hidden and
visible layers, respectively. (a) Original BM with all undirected connections. (b) Restricted Boltzmann
Machine (RBM) with fewer connections. (c) Three 2-layer RBMs (Red, Blue, Green) combine to form a
Deep belief Network (DBN), with the top 2 layers having directed connections (blue). However, when
all connections are undirected (orange), a Deep Boltzmann machine (DBM) is formed.

One of the most challenging limitations of the Boltzmann machine is its extension,
for which the variational autoencoder (VAE) [89] implemented a directed model purely
trainable with gradient-based methods. VAE is a modification of Autoencoders [90],
utilizing encoder–decoder architecture for recreating input at its output while reducing the
dimension. However, it should not learn identity function but instead learn underlying
patterns of data distribution for generating new data. So, the sole intention of VAE is
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to train a parametric encoder producing distribution parameters by learning code layer
distribution, assuming it follows Gaussian distribution. As a result, we obtain noisy data
unsuitable for many applications.

The most explored generative model since 2014 is GAN [12]. This model derives
from the cost function following a minimax 2-player game modeled as zero-sum, where
the absolute difference of rewards is minimal, to help learn both simultaneously. At its
core, there are two networks, Generator G and Discriminator D, trying to defeat each
other, where G generates data from stochastic noise and D is supposed to distinguish
the generated (fake) data from the original one. To sum the idea of GAN, consider G
as a differential function, accepting random noise as its parameter to produce data that
probably follows the given data distribution, where D is a classifier function to map the
data distribution to a probability which defines the likelihood of data to be the actual data.
However, training these models is no simple task and requires delicate handling. Generally,
learning in GAN is split into two separate but consecutive stages: first, D is trained while
suspending G for some epochs; then, D is held so that G can learn by mistakes, and vice
versa. Although the best results are from these models, they are held back due to the
restrictions of hard training, divergence trap, insignificant occurrences, 3D perspective,
Global structure of images, and finally, Mode collapse, which is the worst of all.

2.2. Joint Representation

T2Vo requires the semantic concatenation of language and visual data, which is not
a trivial task. Therefore, a common multimodal representation of the two domains is
necessary. In terms of multimodal representations, two types of divisions exist [14], joint
and coordinated. For learning joint distribution, unimodal signals are defined into the same
space, whereas the signals processed separately followed by enforced similarity constraints
converge onto the coordinate space. The first division, joint representation, is generally
suitable for applications where multimodal data resides for both training and testing, which
is mostly the case of T2Vo. Additionally, most of the work on T2Vo represents the two data
distributions in the same space. So, we keep our attention only on this type.

Early approaches to joint representations acquire conventional methods briefly dis-
cussed in [91]. However, the deep learning methods for this task either use graphical
models, neural networks, sequential models, or generative models, as shown in Figure 7.
We adopt this classification from [91] and modify it to highlight text-visual multimodal rep-
resentation exclusively. In T2Vo, visual data is generally dealt with CNN models, whereas
sequential models are responsible for the text. In Figure 7, the highlighted parts indicate
predominantly used models for text-to-visual multimodal learning.

Figure 7. Hierarchy of joint-representation.
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3. Text-Guided Visual-Output

To be concise, the vast domain of text-to-visual output requires a careful selection of
papers and a thorough study to merge and relate various proposed ideas, distinguishing
the main contributions from minor improvements. Therefore, initially, we introduce
the paper selection procedure, inclusive of selection criteria, methods of selection, and
screening procedures.

To begin with, we narrowed the domain of our search by only focusing on text-to-
visual output, more precisely, augmenting the visual field with the help of text, not the other
way around. Additionally, a targeted search from top-tier journals and conferences is a
vital source to view the literature. To further decrease the span, the center of attention is the
progress based on deep learning techniques, roughly originating from 2009. Nonetheless,
considering the whole notion, we have also briefly introduced the earliest work.

Once the tentative rules are defined, the next step to our paper selection procedure
involves search strategies, for which we adopted two methods: search engines and the
related work section of SOTA methods. Explicitly, research article databases such as IEEE
Xplore, ACM Digital Library, arXiV, and Papers With Code (PWC) helped identify the
trending research in the specified domain, leading to previous SOTA methods. Besides these
databases, some manually selected top-tier conferences related to Artificial Intelligence
and Machine Learning also played a vital role in the selection process, mentioned in
Table 1 specifying the elected number of publications as well. Finally, the papers deemed
potentially relevant are put through screening to evaluate them as being inclusive or
exclusive of thorough analysis, indicating significant changes.

Table 1. Targeted venue for manual search.

Venue Acronym Selected
Publications

Computer Vision and
Pattern Recognition CVPR 46

International Conference on
Computer Vision ICCV 11

Advances in Neural Information
Processing Systems NeurIPS 12

AAAI Conference on
Artificial Intelligence AAAI 5

International Conference on
Machine Learning ICML 5

European Conference on
Computer Vision ECCV 9

International Joint Conferences on
Artificial Intelligence IJCAI 2

International Conference on
Learning Representations ICLR 5

In this study, we present a broad-spectrum taxonomy for text-guided visual results.
First, we categorize it into image, story, and video based on the consistency of the
generated output. Next, we distinguish these categories in terms of complexity from a
dimensionality viewpoint, which is further subject to either generation or manipulation
depending on the input. After the broad division of visual output, we further cluster
different models based on the approach used for producing the output. Since the study
focuses on deep learning techniques for T2Vo, we mainly concentrate on the generative
models rather than the retrieval or conventional ones. These deep generative models
belong to one of the four classes, GAN, VAE, Auto-regressive, and energy-based models.
However, for the sake of wholeness, we shortly mention the retrieval methods as well.
For the semantic clustering within each class, we critically evaluate the models and point
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the significant contributions along the way. Additionally, we specify the efforts made
for minor improvements to the relevant area. The proposed taxonomy of T2Vo is shown
in Figure 8. Table 2 shows the summarized characteristics of the selected studies in
Figure 8.

Figure 8. Taxonomy of Text-to-Visual output, where dark red markings indicate repetitions and light
ones indicate the exceptional cases mentioned in the text. The papers listed in gray boxes are shown
for the sake of completion and are not discussed in the paper.



Sensors 2022, 22, 6816 12 of 65

Table 2. Characteristics of the listed models. The references highlighted in red represent studies
previously mentioned in [11], whereas those highlighted in blue are studies used for 3D visual output,
as given in Figure 8.

Static
(Image) Generation

Model Abbreviation Year
(Final-Version) Characteristics

Modalities
1. Input
2. Output

Neural Networks
1. Text Model
2. Visual Model

Energy-based

[92] MATDH 2005 Multi-wing harmonium based on 2-layer random fields, contrastive divergence, and
variational algorithm for learning

label, text
image

Poisson model + bag-of-words
Color-histogram by Guassian model

[93] MLDBM 2012 Bi-modal DBM as a generative model for learning joint representation of multimodal data label, text
image

text-DBM
image-DBM

[94] LVIS 2013 Conditional Random Field for generating scenes by handling 2 nouns and 1 relation,
Abstract Scene dataset through MTurk

caption
image

Sentence parsing
Conditional Random-Field

[95] MDRNN 2014 RBM with contrastive divergence and multi-prediction training, Minimize variation of
information, Recurrent encoding structure for finetuning

label
image

text-RBM
image-RBM

Autoregressive

[96] PixelCNN 2016 Multi-conditioning (label, latent embeddings), work as Image autoencoder, gated-CNN
layer

label
image

one-hot encoding
Gated-CNN

[97] PixelCNN-
spatial

2017 PixelCNN for T2I with controllable object location using segmentation masks or keypoints
caption+segmentation-map/
keypoint-map
image

char-CNN-GRU
CNN (for seg/keypoint),
modified PixelCNN

[98] Multiscale
PixelCNN

2017 Parallel PixelCNN through conditionally independent pixel groups, multiscale image
generation, multiple tasks (label-image, T2I, action-video)

caption + keypoint-map, label,
action-video
image: 512 × 512,
video-frame: GRP

char-CNN-GRU
ResNet+PixelCNN, Conv-LSTM (for video)

[99] CoDraw 2019 Collaborative image drawing game for CoDraw dataset, Multiple AI models for depicting
Tell-Draw game

caption+previous-image
abstract scene

LSTM-attention
BiLSTM, Reinforcement learning

[100] Text2Scene 2019 Seq2seq framework, ConvGRU for recurrent drawing, 2 attention-based decoders, unified
framework for 3 generation tasks (cartoon, semantic layout, image)

caption+
previous-image=>layout
image: 256 × 256

BiGRU
CNN+ConvGRU (for previous)

[101] DALL-E 2021 Large pre-trained Autoregressive transformer, zero-shot learning, generates 512
images/caption and selects 1 through CLIP

caption
image: 256 × 256

256-BPE+CLIP
discrete-VAE+ResNet+Transformer [102]

[103] CogView 2021
Large pre-trained GPT-transformer with VQ-VAE, caption-loss evaluation metric,

PB-relaxation and Sandwich-LN to stablize training, zero-shot generation, self-reranking to
avoid CLIP

captions
image: 256 × 256

{SentencePiece [104]
VQ-VAE}=>GPT

[105] ImageBART 2021
The hierarchical bidirectional contextualized into autoregressive transformer model,

inverting multinomial diffusion by Markov chain, addressing unidirectional and
single-scale limitations

caption, label, previous-image
image: 256 × 256, 300 × 1800

CLIP
CNN+Markov-Chain + Transformer [39]

Knowledge Distillation

[106] SDN 2018 T2I using a Distillation network with VGG19 as a teacher and a similar student generative
model, 2-stage training with different distillation

caption+real-image
image: 224 × 224

char-CNN-GRU
VGG19

[107] CKD 2019 Transfer knowledge from image classifier and captioning model, a multi-stage distillation
paradigm to adapt to multiple source models

caption+real-image=>caption
image: 299 × 299

Captioning model [108], Text-encoder [43]
Inception-v3, VGG19

Variational Auto-encoder

[5] CwGAN 2016 Conditional alignDRAW model with soft attention mechanism, post-processing by
LAPGAN

caption
image: 32 × 32

BiLSTM-attention
LSTM-VAE

[109] disCVAE 2016 Attribute to Image model, General energy minimization algorithm for posterior
inference,separate image foreground, and background with layered VAE

visual attributes
image: 64 × 64

multi-dimension vectors
VAE

[110] CVAE-cGAN 2018 Context-aware stacked cross-model (CVAE, cGAN) framework, CVAE decouples
foreground and background while cGAN refines it

caption
image:256 × 256

char-CNN-GRU + CA
CVAE-cGAN

[111] PNP-Net 2018 PNP-Net, a generic canonical VAE T2I framework, with zero-shot learning neural modules
for modifying visual appearance of objects

tree-structure description
image: 128 × 128

NMN + LSTM [112]
VAE

[113] VQ-Diffusion 2022
Non-autoregressive Vector-quantized diffusion, VQ-VAE with denoising diffusion model,

eliminates unidirectional bias and adds mask-replace diffusion to remove error
accumulation

caption, label
image: 256 × 256

BPE-encoding [114] + CLIP (ViT-B)
VQ-VAE + Diffusion-transformer [115]

GAN-based
Direct
Simple

[4] Conditional
GAN

2014 Introduction of conditional GAN, unimodal task of class2image, and multimodal task of
image-tagging

label, tag
image: 28 × 28

Skip-gram [25], one-hot-vector
deep-CNN

[116] ITTGAN 2016 Solutions to unstable training of GAN, focuses on 2 applications of GAN, introduces IS
evaluation metric and human evaluation through MTurk

label
image: 128 × 128

one-hot encoder
cGAN

[7] GAN-INT-
CLS

2016 Introduction to GAN model for T2I, matching-aware discriminator, manifold interpolation
regularizer for text in generator, showed style-transfer

caption
image: 64 × 64

char-CNN-LSTM
DC-GAN

[117] AC-GAN 2017 Improved training of T2I GAN, label-prediction discriminator, higher-resolution,
introduces MS-SSIM evaluation metric, identify GAN issues

label
image: 128 × 128, 64 × 64;
class-label

one-hot vector
AC-GAN

[118] TAC-GAN 2017 Improving perceptual quality, the generator optimizes contextual and perceptual loss caption
image: 64 × 64

char-CNN-RNN
DC-GAN

[119] Perceptual-
GAN

2017 AC-GAN for T2I caption, label
image: 128 × 128

Skip-thought
DCGAN

[120] Text2Shape 2018 End-to-End framework for text-to-3D Shape, joint representation for retrieval, generation
with conditional wassertein GAN, 2 datasets as Primitives and ShapeNetCore

description
voxels: 32 × 32 × 32

CNN-RNN (GRU)
3D-CNN + Wassertian-GAN

[121] HR3D-GAN 2019 2-stage high-resolution GAN model for voxels, critic-net for multiple roles, multiple
indices for comparison

description
voxels: 64 × 64 × 64 Text2Shape

[122] Intelligent-
3DH

2020 House-plan-generative model (HPGM), new dataset as Text-to-3D house model,
2-subtasks (floor-plan by GC-LPN, interior textures by LCT-GAN),

description=>scene-graph
texture-images: 160 × 160;
floor-plan: drawings

Scene-graph-parser [123]
Graph-conv-net + Bounding box-regression
+ text-image-GAN

[124] DF-GAN 2021 1-stage T2I for high-resolution, text-image fusion block, skip-z with truncation,
target-aware discriminator having matching-aware–gradient-penalty (MA-GP)

caption
image: 256 × 256

Bi-LSTM-Inception-v3 (DAMSM) + CA
unconditional GAN (Geometric-GAN)

Stacked

[32] StackGAN 2017 Stacked-GAN for high-resolution T2I, introduces conditioning augmentation for text,
improved details, and diversity

caption
image: 256 × 256

char-CNN-RNN (pre-train) + CA
residual-CNN

[33] StackGAN++ 2018 Multi-stage tree-like GAN design, the t-SNE algorithm used for identifying mode-collapse,
stability by multiscale image distribution, and conditional–unconditional joint distribution

caption
image: 256 × 256

char-CNN-RNN (pre-train) + CA
residual-CNN
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Table 2. Cont.

Model Abbreviation Year
(Final-Version) Characteristics

Modalities
1. Input
2. Output

Neural Networks
1. Text Model
2. Visual Model

[125] FusedGAN 2018 2-fused generators (conditional, unconditional), sampling images with controlled diversity,
semi-supervised data for training, avoids additional intermediate information

caption
image: 64 × 64

char-CNN-RNN + CA
DC-GAN

[126] HDGAN 2018 Depth-wise adversarial learning using one hierarchical generator and multiple
discriminators, higher resolution, multi-purpose adversarial loss, introduces the VSSM

evaluation metric

caption
image: 512 × 512

char-CNN-RNN (pre-train) + CA
res-CNN

[127] PPAN 2019 1-pyramid generator with 3 discriminators for feed-forward coarse-to-fine generation,
perceptual loss for semantic similarity, multi-purpose discriminator for consistency and

invariance

caption
image: 256 × 256

char-RNN (pre-train) + CA
residual-CNN

[128] HfGAN 2019 Hierarchically fused GAN with 1 discriminator, generator fuses features based on residual
learning, local–global feature separation, skip connection to avoid degradation problem

caption
image: 256 × 256

DAMSM + CA
DC-GAN

Static
(Image) Generation

Attention

[34] AttnGAN 2017 Attention model for T2I with multi-stage attentional-generative-network (AGN),
deep-attentional-multimodal-similarity-model (DAMSM) for image–text matching loss

caption
image: 256 × 256

DAMSM + CA
Attn-GAN

[129] RIGRA 2019 Shows regular-grid region with word-attention causes problems, introduces true-grid
attention regions by auxiliary bounding boxes and phrases, considered word phrases

caption
image: 256 × 256

DAMSM + phrase-LSTM + CA
Attn-GAN

[130] SEGAN 2019 Semantic-consistency module (SCM) for image consistency, sliding loss to replace
contrastive loss, Attention-competition module (ACM) for adaptive attention weights,

Siamese net with 2 semantic similarities

caption
image: 256 × 256

DAMSM + Cross-modal-similarity (ACM) + CA
Attn-GAN

[131] Control-GAN 2019 High quality, controlled part generation, word-level spatial and channel-wise
attention-driven generator, word-level discriminator, adoption of perceptual loss

caption
image: 256 × 256

DAMSM + CA
AttnGAN

[132] MS-GAN 2019 Multi-stage attention-modulated generators (AMG), similarity-aware discriminators (SAD) caption
image: 256 × 256

DAMSM + CA
3-stage GAN

[133] ACGAN 2020 Attentional concatenation with multilevel cascaded structure, higher resolution, minibatch
discrimination for discriminator to increase diversity

caption
image: 1024 × 1024

DAMSM + CA
Residual-CNN

[134] TVBi-GAN 2020 Consistency by 2 semantic-enhanced modules, Semantic-enhanced attention (SEAttn) for
realism, Semantic-enhanced batch normalization (SEBN) to balance consistency and

diversity

caption
image: 256 × 256

DAMSM + CA
Deep-CNN

[135] TIME 2020 Avoiding pre-trained models by end-to-end Transformer training, and sentence-level text
features are 2 unnecessary techniques (2D positional, hinge loss) for better attention and

learning paces

caption
image: 256 × 256

Transformer
Transformer-modified + AttnGAN

[136] DAE-GAN 2021 Multiple granuality text representation (sentence, word, aspect), Aspect-aware Dynamic
Re-drawer (ADR), ADR from Attended Global Refinement (AGR), and Aspect-aware Local

Refinement (ALR)

caption
image: 256 × 256

(LSTM+DAMSM+CA) + NLTK (POS-tagging)
Inception_v3

Siamese

[137] Text-SEGAN 2019 Focused text semantics by 2 components, Siamese mechanism in discriminator for
high-level semantics, semantic-conditioned-batch-normalization for low-level semantics

caption
image: 256 × 256

Bi-LSTM
Semantic-Conditioned
Batch Normalization (SCBN)

[138] SD-GAN 2019 Avoids mode-collapse, AC-GAN discriminator measuring semantic relevance instead of
class prediction, training triplet with positive–negative sampling to improve training

caption
image: 64 × 64

char-CNN-RNN
GAN-INT-CLS

Knowledge Distillation

[139] KT-GAN 2020 Semantic distillation mechanism (SDM) for teaching text-encoder in T2I through
image-encoder in I2I, Attention-transfer mechanism updates word and subregions

attention weights

caption
image: 256 × 256

BiLSTM+DAMSM+CA
AttnGAN + AATM + SDM-(I2I+T2I)

[140] ICSDGAN 2021 Interstage knowledge distillation, cross-sample similarity distillation (CSD) blocks caption
image: 256 × 256

Bi-LSTM [34]
MS-GAN [132]

Cycle Consistency

[141] PPGN 2017 Prior on latent improves quality and diversity, unified probabilistic interpretation of
related methods, shows multi-condition generation, improves inpainting,

modality-agnostic approach

caption, label, latent
image: 227 × 227

2-layer LSTM
AlexNet DNN, MFV

[142] I2T2I 2017 Novel training method by T2I-I2T for T2I, 3-module network (image-captioning,
image-text mapping, GAN), textual data augmentation by image-captioning module

caption
image: 64 × 64

LSTM
Inception_v3 + GAN-CLS

[143] MirrorGAN 2019 Semantic text-embedding module (STEM), global–local attentive cascaded module
(GLAM), semantic text regeneration and alignment module (STREAM),

Cross-entropy-based loss

caption
image: 256 × 256; caption

DAMSM+CA
Attn-GAN, CNN-RNN

[144] SuperGAN 2019 Adoption of the cycle-GAN framework, 2 main components (synthesis and captioning),
cycle-consistent adversarial loss and training strategy, new color-histogram evaluation

metric

caption
image: 128 × 128; caption

Skip-thought
StackGAN, AlexNet-LSTM

[145] Dual-GAN 2019 Introduction of latent space disentangling of content and style, dual inference mechanism,
content learned in a supervised and unsupervised way, style only unsupervised

caption=>latent-space
image: 64 × 64

char-CNN-RNN + CA
HDGAN, BiGAN

Memory

[146] DM-GAN 2019 Dynamic memory-based model for high-quality images when initial image is fuzzy,
memory writing gate for selecting relevant word, response gate to fuse image–memory

information

caption
image: 256 × 256

parameter-fix-DAMSM + CA
KV-MemNN [147] + GAN

[148] CPGAN 2020 Memory structure to parse textual content during encoding, Memory-Attented Text
encoder, Object-aware Image encoder, Fine-grained conditional discriminator

memory+caption
image: 256 × 256

Bi-LSTM + DAMSM
+ (Yolo_v3+BUTD)=>memory
Yolo-v3 + AttnGAN [149]

Contrastive learning

[150] Improving-
T2I

2021 Contrastive learning for semantically consistent visual–textual representation, synthetic
image consistency in GAN, flexible to be fitted in previous methods

caption
image: 256 × 256

BiLSTM + DAMSM + contrastive-learning
Inception_v3 + (AttnGAN, DMGAN)

[151] XMC-GAN 2022 Single-stage GAN with several contrastive losses, benchmark on OpenImages dataset caption
image: 256 × 256

BERT
conditional-GAN + VGG

Unconditional

[152] Bridge-GAN 2019 Transitional space as a bridge for content-consistency, 2 subnetworks (Transitional
mapping and GAN), ternary mutual information objective function for optimizing

transitional space

caption
image: 256 × 256

char-CNN-RNN
Transitional-mapping + GAN

[153] ENAT2I 2020 Single-stage architecture with 1 G/D using residual net, text image editing via arithmetic
operations, sentence interpolation technique for smooth conditional space, and

augmentation

caption
image: 256 × 256

modified-DAMSM (BiGRU with
global-vector only) + Sentence-Interpolation (SI)
Bi-GAN-deep [154]

[155] textStyleGAN 2020 Unifying pipeline (generation manipulation), a new dataset of CelebTD-HQ with faces and
descriptions, pre-trained weight manipulation of textStyleGAN for facial image

manipulation

caption, attribute
image (T2I and A2I):
256 × 256,
1024 × 1024

pre-train a Bi-LSTM-CNN-CMPM-CMPC [156]
+ CA StyleGAN [157]

[158] N2NTCIN 2020 Reuse of expert model for multimodality, a flexible conditionally
invertible-domain-translation-network (cINN), computationally affordable synthesis, and

generic domain transfer

caption, attribute
image (T2I and A2I):
256 × 256

BERT
BigGAN

[159] FuseDream 2021 CLIP+GAN space, zero-shot learning, 3-techniques to improve (AugCLIP score,
initialization strategy, bi-level optimization)

caption
image: 512 × 512

CLIP + AugCLIP
BiGAN

[160] LAFITE 2022 T2I in various settings (Language-free, zero-shot, and supervised), VinVL [161] as image
captioning for T2I, reduced model size

caption
image: 256 × 256

CLIP
StyleGAN2 + ViT
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Table 2. Cont.

Model Abbreviation Year
(Final-Version) Characteristics

Modalities
1. Input
2. Output

Neural Networks
1. Text Model
2. Visual Model

Static
(Image) Generation

Supervised
Multiple descriptions

[162] C4Synth 2018 Introduced multi-caption T2I, 2 models as C4Synth and Recrrenct-C4Synth, Recurrent
model removes caption limitation, also tested for image style transfer

multi-captions
image: 256 × 256

char-CNN-RNN + CA
CycleGAN + RecurrentGAN

[163] GILT 2019 Introduced indirect long-text T2I, comparing 2 embedding types (no-regularize and
regularize), NOREG for image generation, REG for classification

sentences
(instructions+ingredients)
image: 256 × 256

ACME [164]
StackGAN-v2

[165] RiFeGAN 2020 Attention-based caption-matching model to avoid conflicts and enrich from prior
knowledge, self-attentional embedding mixtures (SAEM) for features from enriching

captions, high quality

multi-captions
image: 256 × 256

RE2 [166] + BiLSTM + CA + SAEM
+ MultiCap-DAMSM
AttnGAN

[167] MA-GAN 2021 Captures semantic correlation between sentences, progressive negative sample selection
mechanism (PNSS), single-sentence generation and multi-sentence discriminator module

(SGMD)

multi-senteces
image: 256 × 256

AttnGAN + CA
AttnGAN

Dialog

[168] Chat-Painter 2018 High quality using VisDial dialogues and MS-COCO captions, highlights GAN problems
(object-centric, mode-collapse, unstable, no end-to-end training)

caption+dialogue
image: 256 × 256

char-CNN-RNN (caption),
Skip-Thought-BiLSTM (dialogue)
StackGAN

[169] GeNeVA 2019 Recurrent-GAN architecture~Generative Neural Visual Artist (GeNeVA), new i-CLEVR
dataset, new relationship similarity evaluation metric

sequential-text+prev-image
image: computer-graphics

GloVe [170] + BiGRU
shallow-residual-CNN

[171] VQA-GAN 2020 Introduced QA with locally related text for T2I, new Visual-QA accuracy evaluation metric,
3-module model (heirarchical QA encoder, QA-conditional GAN, external VQA loss)

Visual-QA+layout+label
image: 128 × 128

2-level-BiLSTM + CA + DAMSM
AttnGAN-EVQA (Global-local pathway)

[172] SeqAttnGAN 2020 Introduced interactive image editing with sequential multi-turn textual commands, Neural
state tracker for previous images and text, 2 new datasets such as Zap-Seq and

DeepFashion-Seq

image, sequential-interaction
image: 64 × 64

Bi-LSTM + RNN-GRU + DAMSM
modified-AttnGAN (multi-scale joint G-D)

[173] VQA-T2I 2020 Combining AttnGAN with VQA [174] to improve quality and image–text alignment,
utilizing VQA 2.0 dataset, create additional training samples by concatenating QA pairs

caption+QA
image: 256 × 256

Bi-LSTM + DAMSM
AttnGAN + VQA [174]

Layout

[43] GAWWN 2016 Text-location control T2I for high-resolution, text-conditional object part completion model,
new dataset for pose-conditional text–human image synthesis

caption+Bounding box/
keypoint
image: 128 × 128

char-CNN-GRU (average of 4 captions)
Global-local pathway

[175] GMOSDL 2019 Fine-grained layout control by iterative object pathway in generator and discriminator,
only bounding box and label used for generation, added discriminator for semantic

location

(caption+label)=>layout
image: 256 × 256

char-CNN-RNN + one-hot vector + CA
(StackGAN+AttnGAN) + STN [176]

[177] OP-GAN 2020 Model having object-global pathways for complex scenes, new evaluation metric called
Semantic object accuracy (SOA) based on pre-trained object detector

(caption+label)=>layout
image: 256 × 256

RNN-encoder + DAMSM
AttnGAN

[178] OC-GAN 2020 Scene-graph similarity module (SGSM) improves layout fidelity, mitigates spurious objects
and merged objects, conditioning instance boundaries generates sharp objects, new

SceneFID evaluation metric

scene-graph+boundry-map
+layout
image: 256 × 256

GCN [179] + Inception-v3
SGSM

Semantic-map

[180] ISLHT2I 2018 Heirarchical approach for T2I inferring semantic layout, improves image–text semantics,
sequential 3-step image generation (bbox-layout-image)

caption=>(label+bbox)=>mask
image: 128 × 128

char-CNN-RNN
LSTM with GMM [181], Bi-convLSTM [182],
Generative-model [183]

[184] Obj-GAN 2019 Object-centered T2I with layout-image generation, object-driven attentive generator, new
fast R-CNN-based object-wise discriminator, improved complex scenes

caption=>(label+bbox)
=>shape
image: 256 × 256

Bi-LSTM + DAMSM + GloVe
attentive-seq2seq [185], Bi-convLSTM,
2-Stage GAN

[186] LeicaGAN 2019 Textual–visual co-embedding network (TVE) containing text–image and text–mask
encoder, mulitple prior aggregation net (MPA), cascaded attentative generator (CAG) for

local–global features

caption=>mask
image: 299 × 299

Bi-LSTM
Inception-v3

[187] CSSW 2020 Introduced weakly supervised approach, 3 inputs (maps, text, labels),
foreground–background generation, resolution-independent attention module,

semantic-map to label maps by the object detector

caption+attributes
+semantic-map
image: 256 × 256

BERT, bag-of-embeddings (class+attribute)
SPADE [188]

[189] AGAN-CL 2020 Model to improve realism, the generator has 2 sub-nets (contextual net for generating
contours, cycle transformation autoencoder for contour-to-images), injection of contour in

image generation

caption=>contour
image: 128 × 128

CNN-RNN
VGG16, Cycle-transformation-autoencoder
([190] + ResNet)

[191] T2ISC 2020 End-to-End T2I framework with spatial constraints targetting multiple objects, synthesis
module taking semantic and spatial information to generate an image

caption=>layout
image: 256 × 256

BiLSTM
Multi-stage GAN

Scene-graph

[192] Sg2Im 2018 Introduced Scene-graph-to-image, graph-convolution net for processing input, generates
layout by Bounding box and segmentation mask, cascaded-refinement net for

layout-to-image

scene-graph=>layout
image: 64 × 64, 128 × 128

Scene-graph [123]
Graph-convolution-Net (GCN)
+ Layout-prediction-Net (LPN)
+ Cascaded-refinement-net(CRN) [193]

[194] IIGSG 2019 Interactive image generation from incrementally growing scene-graph, recurrent
architecture for Sg2Im generation, no–intermediate supervision required

expanding-scene-graph
=>layout
image: 64 × 64

Scene-graph [195]
Recurrent (GCN + LPN + CRN)

[196] Seq-SG2SL 2019 Transformer-based model to transduce scene-graph and layout, Scene-graph for
semantic-fragments, brick-action code segments (BACS) for semantic-layout, new SLEU

evaluation metric

scene-graph => SF
semantic-layout

Scene-graph [197]
(SF+BACS => layout ) + Transformer

[198] SOAR 2019 Dual embedding (layout–appearance) for complex scene-graphs, diverse images
controllable by user, 2 control modes per object, new architecture and loss-terms

scene-graph=>mask=>layout
image: 256 × 256

Scene-graph [195]
Autoencoder

[199] PasteGAN 2019 Object-level image manipulation through scene-graph and image-crop as input,
Crop-Reining-Net and Object–Image Fuser for object interactions, crop-selector for

compatible crops

scene-graph=>object-crops
image: 64 × 64

Scene-graph [195]
GCN + Crop-selector + crop-refining-net
+ object-image-fuser + CRN

[200] stacking-
GAN

2020 Visual-relation layout module using 2 methods (comprehensive and individual),
3-pyramid GAN conditioned on layout, subject–predicate–object relation for localizing

Bounding boxes

scene-graph=>layout
image: 256 × 256

Scene-graph [195]
GCN + comprehensive-usage-subnet +
RefinedBB2Layout + conv-LSTM + GAN (CRN)

[201] VICTR 2020 Example of text-to-scene Graph, new visual–text representation information for T2I, text
representation also for T2Vision multimodal task

caption=>scene-graph
image: 256 × 256

Parser [202] + GCN
AttnGAN, StackGAN, DMGAN

Mouse-traces

[203] TReCS 2021 Sequential model using grounding (mouse-traces), segmentation image generator for the
final image, descriptions retrieve segmentation masks and predict labels aligned with

grounding

mouse-traces+segmentation-
mask + narratives
image: 256 × 256

BERT
Inception-v3
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Table 2. Cont.

Model Abbreviation Year
(Final-Version) Characteristics

Modalities
1. Input
2. Output

Neural Networks
1. Text Model
2. Visual Model

Static
(Image) Manipulation

Autoregressive

[204] LBIE 2018 Generic framework for text-image editing (segmentation and colorization), recurrent
attentive models, region-based termination gate for fusion process, new CoSaL dataset

image+description
image: 512 × 512, 256 × 256

Bi-LSTM (GRU-cells)
VGG, CNN

[205] LDIE 2020 Language-request (vague, detailed) image editing task for local and global, new GIER
dataset, baseline algorithm with CNN-RNN-MAttNet

image+description
image: 128 × 128 (training),
variable

Bi-LSTM
ResNet18 + MattNet [206]

[207] T2ONet 2021 Model for interpretable global editing operations, operation planning algorithm for
operations and sequence, new MA5k-Req dataset, the relation of pixel supervision and

Reinforcement Learning (RL)

image+description
image: 128 × 128 (training),
variable

GloVe + BiLSTM
ResNet18

GAN-based
Local
Direct

[208] SISGAN 2017 Image manipulation using GAN (realistic, text-only changes), end–end architecture with
adversarial learning, a training strategy for GAN learning

image+caption
image: 64 × 64

OxfordNet-LSTM [209] + CA
VGG

[210] TAGAN 2018 Text-adaptive discriminator for word-level local discriminators of text-attributes image+caption
image: 128 × 128

training BiGRU + CA + fastText [30]
SISGAN

[211] FiLMedGAN 2018 cGAN model (FiLMedGAN) using Feature-wise Linear Modulation (FiLM [212]), feature
transformations and skip-connections with regularization

image+caption
image: 128 × 64

fastText + GRU
VGG-16, SISGAN

[213] TEA-cGAN 2019 Two-sided attentive cGAN architecture with fine-grained attention on G/D, 2-scale
generator, high resolution, Attention-fusion module

image+caption
image: 256 × 256

BiLSTM + fastText
AttnGAN

[214] LBIE-cGAN 2019 Language-based image editing (LBIE) with cGAN, conditional Bilinear Residual Layer
(BRL), highlights representation learning issue for 2-order correlation between 2

conditioning vectors in cGAN

caption+caption
image: 64 × 64

OxfordNet-LSTM [209]
VGG, SISGAN

[215] ManiGAN 2020 2 key modules (ACM and DCM), ACM correlates text-relevant image regions, DCM
rectifies mismatch attributes and completes missing ones, new manipulative-precision

evaluation metric

image+caption
image: 256 × 256

RNN (TAGAN, AttnGAN)
Inception-v3 + ControlGAN

[216] DWC-GAN 2020 Textual command for manipulation, 3 advantages of commands (flexible, automatic, avoid
need-to-know-all), disentangle content and attribute, new command annotation for CelebA

and CUB

text-command+image
image: 128 × 128

LSTM + Skip-gram-fastText
GMM-UNIT [217]

Intermediate supervision

[218] MC-GAN 2018 Image manipulation as foreground–background by generating a new object, introduces
synthesis block

image+caption+mask
image: 128 × 128

char-CNN-RNN + CA
StackGAN

[219] TGPIS 2019 Text-guided GAN-based pose inference net, new VQA-perceptual-score evaluation metric,
2-stage framework (pose-to-image) using attention-upsampling and multi-modal loss

image+pose+caption
image: 256 × 256

BiLSTM
Pose-encoder [220], CNN

[221] LWGAN 2020 Word-level discriminator for image manipulation, word-level supervisory labels,
lightweight model with few parameters

image+caption
image: 256 × 256

BiLSTM + CA + ACM +
attention (spatial-channel) + PoS-tagging
Inception-v3 + VGG-16

[222] TDANet 2021 Text-guided dual attention model for image inpainting, inpainting scheme for different
text to obtain pularistic outputs

corrupt-image+caption
image: 256 × 256

GRU (AttnGAN)
ResNet

Latent space

[223] StyleCLIP 2021 3-techinques for CLIP+StyleGAN (text-guided latent-optimizer, latent-residual-mapper,
global-mapper)

image+caption/attribute
image: 256 × 256 CLIP + prompt-engineering [224]StyleGAN

Cyclic

[225] TGST-GAN 2021 Style transfer-based manipulation from 3 components (captioning, style generation,
style-transfer net), module-based generative model

image+caption=>caption
=>style-image
image: -

LSTM + AttnGAN
ResNet101 + AttnGAN + VGG19

Global

[226] LGEIT 2018 Global image editing with text, 3 different models (hand-crafted bucket-based, pure
ended-end, filter-bank), Graph-RNN for T2I, a new dataset

image+caption
image: -

GloVe + BiGRU, Graph-GRU [227]
cGAN, GAN-INT-CLS, StyleBank [228]

Both

[229] TediGAN 2021 A unified framework for generation and manipulation, a new Multi-modal Celeb-HQ
dataset, GAN-inversion for multi-modalities (text, sketch, segmentation-map)

caption, sketch,
segmentation-mask, image
image: 1024 × 1024

Text-encoder (RNN) + Visual-linguistic-
similarity StyleGAN

Consistent
(Stories) Generation

Autoregressive

[230] C-SMART 2022 Introduced a Bidirectional generative model using multi-modal self-attention on long-text
and image as input, cyclically generated pseudo-text for training (text–image–text), high

resolution

story (sequence-of-sentences)
+image image-sequences:
128 × 128

Transformer VQ-VAE +
Recurrent-transformer
(with gated memory)

GAN-based
Basic

[231] StoryGAN 2019 Sequential-GAN consists of 3 components (story-encoder, RNN-based context encoder,
GAN), Text2Gist module, 2 new datasets (Pororo-SV and CLEVR-SV)

story
image-sequences: 64 × 64

(USE [232])-story_level + (MLP + CA + GRU
+ Text2Gist)-sentence_level
RNN-(Text2Gist) + Seq-GAN (2-discriminators
as story and image)

[31] PororoGAN 2019 Aligned sentence encoder (ASE) and attentional word encoder (AWE), image patches
discriminator

story
image-sequences: 64 × 64 StoryGAN

[233] Improved-
StoryGAN

2020 Weighted activation degree (WAD) in discriminator for local–global consistency, dilated
convolution for the limited receptive field, gated convolution for initial story encoding

with BiGRU

story
image-sequences: 64 × 64

USE-Gated_convolution (story-level)
+ BiGRU-Text2Gist (sentence-level)
Dilated-convolution [234]

Supervised

[235] CP-CSV 2020 Character preserving framework for StoryGAN, 2 text-encoders for sentence and
story-level input, 3 discriminators (story, image, figure segmentation), new FSD evaluation

metric

story=>segmentation-maps
image-sequences: 64 × 64 StoryGAN + Object-detection-model [236]

Captioning

[237] DUCO-
StoryGAN

2021 Dual learning via video redescription for semantic alignment, copy transform for a
consistent story, memory augmented recurrent transformer, Evaluation metrics

(R-precision, BLEU, F1-score)

story
image-sequences: 64 × 64

CA + (MART [238] + GRU)~context-encoder
2-stage GAN + copy-transform

[239] VLC-
StoryGAN

2021 Model using text with commonsense, dense-captioning for training, intra-story contrastive
loss between image regions and words, new FlintstonesSV dataset

story
image-sequences: 64 × 64

GloVe + (MARTT+CA) +
(ConceptNet [240] + Transformer-graph [241])
2-stage GAN + Video-captioning [242]
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Table 2. Cont.

Model Abbreviation Year
(Final-Version) Characteristics

Modalities
1. Input
2. Output

Neural Networks
1. Text Model
2. Visual Model

Dynamic
(Video)

Generation

Autoregressive (Retrival, dual-learning)

[243] CRAFT 2018 Sequential training of Composition-Retrival-and-Fusion net (CRAFT), 3-part model (layout
composer, entity retriever, background retriever), new dataset of FlintStones

caption=>layout
=>entity-background retrival
video: 128 × 128; frames: 8

BiLSTM
CNN, MLP

[244] CMDL 2019 End-to-End crossmodal dual learning, dual mapping structure for bidirectional relation as
text–video–text, multi-scale text-visual feature encoder for global and local representations

description=>video=>
decription
video: -

LSTM, (GloVe + BiLSTM [245])
3D-CNN [246] + VGG19

[247] SA3D 2020 2-stage pipeline for static and animated 3D scenes from text, new IScene dataset, new
multi-head decoder to extract multi-object features

description=>Layout
video: computer-graphics

TransformerXL [248]
(LSTM + Attn-BLock) + Blender [249]

Variational Auto-Encoder

[250] Sync-DRAW 2017 Introduced T2V task by attentive recurrent model, 3 components (read-mechanism, R-VAE,
write-mechanism), a new dataset of Bouncing MNIST video with captions, and KTH with

captions

caption, prev-frame
video: 64 × 64, 120 × 120;
frames: 10, 32

Skip-thought [251]
LSTM+VAE

[252] ASVG 2017 Text–video generation from long-term and short-term video contexts, selectively
combining information with attention

caption, prev-frame
video: 64 × 64, 120 × 120;
frames: 10, 15

BiLSTM-attention
ConvLSTM+VAE

[253] T2V 2017 Hybrid text–video generation framework with CVAE and GAN, a new dataset from
Youtube, intermediate gist generation helps static background, Text2Filter for dynamic

motion information

caption
video: 64 × 64; frames: 32

Skip-thought
CVAE+GAN

[254] GODIVA 2021 Large text–video pretrained model with 3-dimensional sparse attention mechanism, new
Relative matching evaluation metric, zero-shot learning, auto-regressive prediction

caption
video: 64 × 64, 128 × 128;
frames: 10

positional-text-embeddings
VQ-VAE

GAN-based

[255] TGANs-c 2018 Temporal GAN conditioned on the caption (TGAN-c), 3-discriminators (video, frame,
motion), training at video-level and frame-level with temporal coherence loss

description
video: 48 × 48; frames: 16

BiLSTM-words + LSTM-sentence
Deconv-cGAN (3-discriminators:
video, frame, motion)

[256] IRC-GAN 2019 Recurrent transconvolutional generator (RTG) having LSTM cells with 2D transConv net,
Mutual-information introspection (MI) for semantic similarity in 2 stages

description
video: 64 × 64; frames: 16

one-hot-vector + BiLSTM + LSTM-
encoder LSTM + TransConv2D +
cGAN

[257] TFGAN 2019 Multi-scale text-conditioning on the discriminative convolutional filter, a new synthetic
dataset for text–video modality

description
video: 128 × 128; frames: 16

CNN + GRU-recurrent
modified-MoCoGAN

[258] Latent-Path 2021
Introduced T2V generation on a real dataset, discriminator with single-frame (2D-Conv)

and multi-frame (3D-Conv), and Stacked-pooling block for generating frames from latent
representations

description
video: 64 × 64; frames: 6, 16

BERT
2D/3D-CNN + stacked-upPooling

[259] TiVGAN 2021
Text-to-image-to-video GAN (TiVGAN) framework, 2-stage model (T2I and

frame-by-frame generation), training stabilization techniques (independent sample pairing,
2-branch discriminator)

description=>image
video: 128 × 128; frames: 22

Skip-thought+PCA
GAN-INT-CLS+GRU

Manipulation

GAN-based

[260] M3L 2022 Introduced language-based video editing task (LBVE), Multi-modal multi-level
transformer for text–video editing, 3 new datasets (E-MNIST, E-CLEVR, E-JESTER)

description+video
video: 128 × 128; frames: 35

RoBERTa [261] 3D
ResNet

4. Image (Static)

In the underlined subject of T2Vo, the most studied topic in the recent few years is
text-to-image (T2I) generation; therefore, an extensive amount of research is devoted to this
task. Consequently, we can now generate more appealing and realistic images from text. In
our proposed taxonomy, we divide this task into 5 different categories depending on the
type of model used for generation.

4.1. Energy-Based Models

Models under this category mainly rely on generating images from conditioned
energy-based generative models, chiefly on variants of Boltzmann machines.

The initial work of Xing et al. [92] to model a joint distribution between images and text
from an energy-based generative model is through the use of the multi-wing harmonium
model, utilizing a two-layer random field, which is considered as a form of Restricted
Boltzmann Machine (RBM). This RBM model uses Gaussian hidden units combined with
Gaussian and Poisson visible units, and learning is performed by a derived contrastive
divergence and variational algorithm. However, this model is too shallow to learn various
data modalities with different statistical properties. So, the model only generates results for
classification and retrieval.

Nitish et al. [93], intending to deal with distinct statistical properties of multi-modal
data, uses a separate 2-layer Deep Boltzmann Machine (DBM) for each modality as a genera-
tive model for obtaining a joint representation by combining features across modalities. For
image–text bimodal DBM, the Gaussian model represents image features and a Replicated
Softmax model for text features over word count. In this way, sampling from conditional
distributions allows the model to learn representations even when some data modalities
are missing. The experimental results on image–text and audio–video data represent the
capability of this model as a classification or retrieval and still struggle for generation tasks.

Previous models on Conditional Random Fields (CRF) for text–image modality are lim-
ited to labels as text, whereas the text in natural form comprises sentences containing infor-
mation about objects, attributes, and spatial relations. For this reason, Lawrence et al. [94]
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explore learning visual features corresponding to semantic phrases derived from sentences.
From sentences, extracted predicate tuples of two nouns and one relation along with CRF
[262] formulation with nodes as objects and edges as the relation form a scene. Since the
goal is to relate images with sentence-based text, scene generation is still retrieval-based
with the invention of a new dataset named abstract scenes.

Generally, multi-modal representation learning involves learning joint representa-
tions on top of model-specific network layers, as in [92,93]. However, it cannot reason
about missing data in the presence of the rest, highlighting the insufficient association
between different modalities. Therefore, improving joint representation learning for multi-
modalities through deep generative models is the goal of Kihyuk et al. [95]. They suggested
a novel multi-modal representation learning framework trained to maximize the variation
of information rather than maximum likelihood. The use of the Multi-modal Restricted
Boltzmann Machine (MRBM) with new contrastive divergence and multi-prediction train-
ing algorithms helped test this theoretical insight. Furthermore, the model extended with a
deep recurrent network for finetuning achieved a significant performance on the visual
recognition and retrieval task.

4.2. Auto-Regressive Models

Autoregressive (AR) models are feed-forward sequential models and predict future
values based on the past ones. Unlike RNN, the past values act as input rather than the
hidden state. Due to this, it applies to data having some correlation between values in
time series and among one another. We group the models which employ this approach
without any other generative model such as GAN or VAE under the autoregressive models
for text-conditioned image generation.

4.2.1. Generation

CNN-based: Van et al. in [263], proposed PixelCNN and PixelRNN as generative
models for modeling image distribution through a deep neural network that sequentially
predicts pixels in an image. Built on this theory, the continual work of Van et al. [96] intro-
duced conditional image generation based on PixelCNN architecture as a pioneering image
density model. This new model combines the individual strengths of speed from PixelCNN
and performance from PixelRNN to a gated variant of PixelCNN, Gated PixelCNN. The
conditioning vector for Gated PixelCNN can either be labels, tags, or latent embeddings
from other networks. Furthermore, this model shows excellent capability as an image
decoder in an autoencoder.

Following the approach of Van et al. [96], Reed et al. [97] implemented caption-
conditioned image generation from Gated PixelCNN to compare its performance with the
GAN-based generative model [43]. Apart from text conditioning, additional condition on
part key-points and segmentation masks resulted in the controlled generation of images.
In this improved model, a character-level text encoder and image generation network are
jointly trained end-to-end via maximum likelihood.

In PixelCNN, although training is fast, costly inference requiring one network evalua-
tion per pixel limits its use for practical implementation. A joint work by Reed and Van [98]
highlighted this constraint and proposed parallelized PixelCNN for more efficient inference.
In this variant, by modeling a specific group of pixels as conditionally independent, the new
PixelCNN model achieved competitive density estimation and was orders of magnitude
faster. The main design principle follows a coarse-to-fine ordering of pixels. Due to the new
conditional independence structure, generating higher-resolution images up to 512 × 512
is possible. As tested before, the conditioning is either on class, caption, or layout with an
additional task of action-conditioned video generation.

Pursuing human–machine interaction by grounding language into perception and
action, Xinlei et al. [99] created the CoDraw dataset based on abstract scenes. They formed
this dataset through a collaboration between a human teller and a drawer, aimed to generate
semantically rich scenes from the dialog-based language in an interactive way. Initially, two
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human players played the game of telling and drawing, but for automation, agents based
on one of the two methods, rule-based or neural-based, performed the task on the collected
dataset. So, utilizing a bidirectional LSTM, the neural drawer encodes text and then uses a
feed-forward network to create a scene. On the other hand, the teller uses Reinforcement
learning on LSTM for generating captions.

Similar to CoDraw, Text2Scene [100] also generates scenes from natural language,
but unlike CoDraw, which uses chat logs, the language is sequential captions for pro-
gressively generating an image. The model consists of a text and image encoder for
obtaining sequential input representation and current image state, respectively. Next, a
convolutional-recurrent module keeps track of the already generated scene, followed by
two attention-based predictors that sequentially focus on different parts of the text to de-
cide about object type and location. Optionally, a foreground embedding step determines
the appearance for patch retrieval in synthetic image generation. The authors showed
the model, under minor modifacations, can generate different forms of scenes, including
cartoon-like, natural, and synthetic ones.

Transformer-based: Another study, focused on zero-shot learning for T2I, trained
a 12-billion parameter autoregressive transformer on 250 million image–text pairs [101].
The authors named it DALL-E, and it follows a two-stage training procedure due to the
computational limits. In the first stage, a discrete VAE is trained to compress images into a
grid of image tokens, whereas stage two concatenates the image–text tokens and learns
an autoregressive transformer to model the joint distribution of the text–image pair. We
can visualize the overall procedure as maximizing evidence lower bound (ELB) [89] on the
joint likelihood of the model distribution over images, captions, and tokens.

Similar to DALL-E, CogView [103] is another pre-trained model for text-image pairs.
However, this transformer-based model has 4 billion parameters after training on 30 million
high-quality Chinese text–image pairs, where the images are compressed by a trained
VQ-VAE [264]. Compared to DALL-E, pretrained CogView is finetuned to apply on
downstream tasks, such as image captioning and super-resolution. Additionally, this
model enables self-reranking for post-selection to avoid the CLIP [224] model as in DALL-
E, with a new evaluation metric, called caption loss, to measure quality and accuracy for
text–image generation. For stabilized training of a large-scale transformer, two techniques,
PB-relaxation and Sandwich-LN, are also utilized to eliminate overflow in forwarding.

Earlier autoregressive models incorporate the image in a linear 1D order, which is
unidirectional and overlooks large parts of the scene until generation, and process the
entire image on a single scale, thus ignoring more global contextual information. From
these observations, recently, a more advanced version of the autoregressive model for a
variety of tasks, including text-to-image synthesis and image inpainting, was presented in
ImageBART [105]. As a remedy for the mentioned problems, this model incorporated a
coarse-to-fine hierarchy of context by combining autoregressive formulation with a multi-
nomial diffusion process. Specifically, first, a multistage diffusion process [265] coarsens an
image by successively removing information to learn a compressed image representation,
which then is inverted by a trained short-Markov chain. Individual transition probabilities
from this chain form an independent autoregressive encoder–decoder model based on
transformer architecture [39].

Distillation networks: Although the models discussed in this section are auto-regressive,
being sequential, some outliers lacking any other generative model for text-to-image synthe-
sis also fall under this category due to the use of the deep CNN model for image generation.
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The first study to utilize knowledge distillation for text-to-image generation uses a
symmetrical distillation network (SDN) [106]. This model visualizes T2I issues in two gaps,
heterogeneous and homogeneous. To exploit this, a generic discriminative model, VGG19,
guides the training of a generative model on a high level for bridging the text–visual
heterogeneous gap and a mid-to-low level for realistic images as the homogeneous gap.
The target generative model, the student, is symmetrical to the source discriminative model,
the teacher, with two-stage training exploiting coarse-to-fine learning.

The authors of SDN further extended their method in [107] for text-to-image syn-
thesis (T2IS). In this extension, two main contributions include knowledge distillation
from two models, classification and captioning, for T2IS, and a multi-stage distillation
paradigm for adaptation to various source models. Practically, they added a third distilla-
tion from the captioning model, following [108] with Inception-v3, over the first two from
the classification model, VGG19.

4.2.2. Manipulation

The manipulation task deals with the type models, which can understand the pro-
vided input, where, based on some given condition, they can modify the required part.
Autoregressive models also share this capacity to manipulate a given image from user-
provided text.

Language-based image editing (LBIE) [204] initiated the use of a neural network
for image manipulation, specifically, a generic framework for modeling two subtasks,
segmentation and colorization. The framework uses recurrent attentive models with a
termination gate for each image region to dynamically decide to continue extrapolating
additional text information after every step. At a high level, the model comprises a deep
CNN as an image encoder and a bi-LSTM with GRU cells as a text encoder, on top of
which there is another LSTM with attention for fusion between text-image features through
termination gates. For evaluation, a newly created dataset, named CoSaL, is used for
experimentation with two other datasets. On the oxford-102 flower dataset, this study is
the pioneering work to perform colorization.

Image editing, until language-driven image editing (LDIE) [205] explored either image
retouching operation without text input [266,267] or text-guided manipulation of simple
object-centered images [169,172,210,268]. More importantly, language-based single editing
tasks, such as retouching [226] or recoloring [204] also exist. Additionally, a model for
text-based image editing, PixelTone [269], is also present in the literature. However, it
requires detailed voice instruction with manually selected image regions. Therefore, LDIE
is the first study to incorporate language-driven image editing at both local and global
levels, where every editing operation acts as a sub-module that can automatically predict
operation parameters. To solve the LDIE task, the authors created a new language-driven
image editing dataset with editing operation and mask annotations, called Grounded
Image Editing Request (GIER). A baseline method applicable to this dataset takes an input
image with requests to a multi-label classifier for operation prediction. Next, the operation
grounding model outputs the grounding mask for each operation from image, request, and
operations. Finally, a cascaded operation modular network generates the final result.

Continuation of the LDIE work, Learning by planning [207], targeted the limitations
of GAN-based models for image manipulation, presented by the same authors. They
developed a text-to-operation model (T2ONet) for converting text requests to a series of
editing operations, guided by pseudo ground truth of possible editing sequences from the
target image through a novel operation planning algorithm. Different from their earlier
work [205], which needed operation annotation for training, they created an operation
planning algorithm to obtain an operation–parameter sequence by comparing input and
target images. In addition, they collected another dataset, which they named MA5k-Req,
and revealed the connection between pixel supervision and reinforcement learning.



Sensors 2022, 22, 6816 20 of 65

4.3. Variational Auto-Encoder (VAE)

Among the most popular generative models, variational autoencoder (VAE) is one.
These models learn the posterior distribution P(Y|X) via the Bayesian rule. Explicitly,
unlike GAN, VAE learns the likelihood distribution P(X|Y) through loss function. From
an architectural viewpoint, the encoder in VAE reduces the dimenstionaly of input data
to obtain a latent space with distributions, and through a regularization term, KL-back
divergence, on this space, a sample is then obtained from this space to prouce the output
through a learned decoder. In this way, VAE maximize the variational lower bound of
the loglikelihood. We combine the models that perform image generation by following
this technique.

Success on conditional image generation motivated AlignDRAW [5] to generate im-
ages from natural language instead of labels through the use of recurrent variational
autoencoder with an alignment model over words. This model is the first to initiate text-
to-image generation from VAE and is an extension to the DRAW [6] network. Overall a
bi-LSTM encodes text and is combined with a latent sequence sampled from prior through
inference RNN, given to the generative RNN for creating the final image, which is refined
by post-processing using Laplacian Pyramid GAN [270]. The model follows a sequence-to-
sequence framework, where the captions and images are sequences of words and patches
on canvas, respectively.

Attribute2Image [109] is another study that makes use of VAE for conditional image
generation. However, the conditioning is on visual attributes instead of natural language,
expressed in terms of multi-dimensional vectors. This work focused on the conditional VAE
(CVAE) and proposed a layered foreground–background generative model. The model
obtains the posterior inference through a general optimization-based method, applied in
the context of image reconstruction and completion.

CVAE-cGAN [110] explored the complementarity of two different generative models,
VAE and GAN, for generating high-quality images considered as the composition of
foreground and background. This stacking of VAE and GAN facilitates an effective and
stable image generation. First, a context-aware conditional VAE (CVAE) designs a text-
based basic image layout, with individual attention to the background and foreground.
Next, a conditional GAN (cGAN) refines the generated output of CVAE.

To explore, for the first time, the generalization of the VAE framework for T2I, in-
cluding zero-shot learning, Probabilistic Neural Programming Network (PNP-Net) [111]
proposed a modular programmable framework with probabilistic modeling. This approach
constructs priors for the generative modeling of complex scenes. The model consists of two
core components, first is a set of mapping functions that converts distributions from input
over the latent space, such as combine, describe, transform, and layout. Second, a canonical
VAE probabilistic modeling framework for inference and learning using the latent space.

The existing autoregressive methods for text-to-image generation suffer from uni-
directional bias and accumulated prediction errors, whereas GAN-based methods are
limited to simple scenes, for which Shuyang et al. devised VQ-Diffusion [113]. Therefore,
based on the vector quantized variational autoencoder (VQ-VAE) [264], where its latent
space is modeled by a conditional Denoising Diffusion Probabilistic Model (DDPM) [115],
VQ-Diffusion can generate complex images independent of image resolution for efficient
computation. The core design of this technique is to model the latent space of VQ-VAE in a
non-autoregressive manner, where the mask-and-replace diffusion strategy removes the
accumulation of errors.

4.4. Generative Adverserial Networks (GAN)

Owing to the property of generating sharp and high-quality images compared to
VAE and directly without sequential processing, as in autoregressive models, GAN-based
models for T2I are the most studied topic in this domain. Therefore, many studies are
devoted to summarizing the advances in GAN-based models for T2I while providing
limitations and future directions. Recently, Stanislav et al. [11] proposed an in-depth
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analysis of GAN-based models for T2I while organizing different works in a reasonable
and comprehensible manner. We complement this taxonomy in the following ways:

• First, we expand over the previous list by adding additional papers and categorizing
them into the already given taxonomy.

• Second, we separate these models into generation or manipulation based on model input.
• Third, we not only consider the image as 2D but include studies beyond the 2D image,

such as 3D images, stories, and videos.

Generation: T2I generation is the process of generating images from text. These
models take natural language as input and produce pixel space output. However, modeling
a joint distribution of text and image for T2I is not a trivial task and hence requires the
careful design of a generative model conditioned on text embeddings. For this reason,
over the past few years, after the advent of GAN, various GAN-based techniques have
been explored, either generating images directly from the text while exploiting the GAN
model for improving this task or introducing intermediate supervision for generating better
results on complex data. So, we split the T2I generation task from GAN models into two
divisions, direct T2I and supervised T2I, which we discuss in the following section.

4.4.1. Direct T2I

Direct T2I methods include the models which directly perform image generation from
the text, exploring the capabilities of the GAN model. First, conditional GANs are enlisted
as modified GANs to express the introductory T2I task. Second, to improve upon the
image quality, stacked architectures are discussed. Quality without text consistency is
useless, so we describe attention mechanisms next. Further improvements for T2I utilizing
different architectures, such as Siamese, knowledge distillation, cycle consistency, and
Memory networks, are then mentioned. Finally, we examine approaches that implement
unconditional models for T2I.

Conditional GAN: Initially, Mirza et al. [4] proposed conditional GAN for label-
conditioned image generation. However, training GAN to find a Nash equilibrium between
a generator and discriminator is difficult, upon which Salimans et al. [116] improved the
GAN framework through new training procedures and architectural features of feature
matching, minibatch, virtual batch normalization, historical averaging, and one-sided
label smoothing. An extension to conditional GAN, Reed et al. presented GAN-INT-
CLS [7] by conditioning the generator on whole sentence embedding from a pretrained
text-encoder. A matching-aware discriminator is trained in GAN-INT-CLS to distinguish
between real and synthetic text-image pairs, with three pair types: real-image–matching-
text, generated-image–related-text, and real-image–mismatching-text. In addition to the
matching-aware discriminator, inspired from AC-GAN [117], TAC-GAN [118] employed
an auxiliary classification loss from one-hot encoded class labels. Perceptual-GAN [119], is
another advancement over GAN-INT-CLS by introducing perceptual loss in training along
with contextual loss and mean-squared error with Frobenius norm.

More recently, a single pair GAN proposed for T2I is shown in DF-GAN [124]. Op-
posed to other models that utilize a stacked backbone for T2I, mentioned in the later section,
DF-GAN can generate compelling images with a single-stage GAN. It does so from a novel
deep text–image fusion block in the generator and a target-aware discriminator composed
of a matching-aware gradient penalty (MA-GP) and one-way output. Furthermore, the
generator is provided with a stable text latent space through a novel approach of skip-z
with truncation.

Stacked GAN: Simple T2I models [7,118,119] were limited to generating low-resolution
images from 64 × 64 to 128 × 128. Therefore, inspired by [270], stacked architectures were
applied for T2I. StackGAN [32] is the first to employ a stacked design for T2I, where the
first stage generates a coarse 64 × 64 image from noise and text embeddings, and the
second stage generates the final 256 × 256 image from the initial picture with encoded text.
However, in StackGAN, the model is trained in two steps, for which StackGAN++ [33]
improved the architecture via an end-end framework with three generator-discriminator
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pairs jointly trained for multi-scale conditional and unconditional image distributions with
an additional color-consistency regularization term. In addition to coarse-to-fine image
generation for high-quality images, both in StackGAN and StackGAN++, conditioning
augmentation (CA) is proposed for a smooth conditioning manifold by sampling text
embeddings from a Gaussian distribution. Based on this joint training of multi-level genera-
tors, FusedGAN [125] utilizes a single-stage pipeline with two generators for unconditional
and conditional generation, partially sharing a mutual latent space for training on extensive
unsupervised data.

All previous Stacked models for T2I either use a multi-stage GAN framework or mul-
tiple generators. So, HDGAN [126] proposed a single-stream generator with hierarchically
nested discriminators at multi-scale intermediate layers trained end-to-end to generate
512 × 512 images. This approach is unique in terms of adversarial learning along the
generator depth with specific discriminators at different resolutions, trained to distinguish
real and synthetic image patches alongside the matching aware pair loss. Hence, the
objective function helps generate more consistent images between multiple scales. Simi-
lar to HDGAN, PPAN [127] also uses one generator, having a pyramid framework with
three distinct discriminators to join strong low-resolution semantic features with weak
high-resolution ones through a laterally connected down-to-top pathway. Furthermore,
image diversity, semantic consistency, and class invariance are achieved with the help of a
pre-trained VGG network-based perceptual loss, image patch loss, and auxiliary classifi-
cation loss, respectively. In comparison with HDGAN and PPAN, HfGAN [128] employs
a hierarchically fused architecture but with only one discriminator. The generation again
follows a coarse-to-fine process, where the extracted multi-scale global features from dif-
ferent stages are adaptively fused, requiring only one discriminator. For fusion, following
ResNet [71], identity addition, weighted addition, and shortcut connections are adopted.

Attention Mechanisms: Focusing on specific input regions is crucial as some com-
ponents signify more importance than others. Consequently, the attention mechanism
by weighing essential segments more allows the network to focus on specific aspects of
an input.

Introductorily, AttnGAN [34] incorporates an attention mechanism into a multi-stage
refinement pipeline, built upon StackGAN++. This mechanism enables word-based fine-
grained details on top of the global sentence vector for T2I through a Deep Attentional
Multimodal Similarity Model (DAMSM) loss, where attention is given to the most relevant
words for image sub-regions. The DAMSM loss computes the similarity between input text
at sentence-level and word-level information with the generated image.

The work of Huang et al. [129] improved the DAMSM loss by introducing true-grid
regions inside every bounding box with word phrases, where attention weights depend on
the bounding box and phrase information. So, this mechanism extends the regular grid-
based attention that utilizes additional phrase features through parts-of-speech tagging
besides sentence and word features.

AttnGAN gives attention to each sentence word, which is inefficient. Consequently,
in SEGAN [130], an attention competition module focuses only on keywords by retaining
their attention weights through a newly introduced attention regularization term, inspired
from [271,272].

Attention at only the spatial level correlates words with partial regions, ignoring
the feature selectivity of channels. As a result, spatial attention mainly focuses on color
information while channel-wise concentration semantically associates significant parts
with relevant words. Viewing that, ControlGAN [131] proposed a word-level spatial and
channel-wise attention-driven generator generating coarse-to-fine images with a word-level
discriminator. Furthermore, a perceptual loss is also adopted to reduce the randomness in
the generation.
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In a more current setting, an efficient, lightweight model, called TIME [135], is pro-
posed that jointly learns a generator with an image-captioning discriminator. Since previous
methods assess T2I as a uni-directional task, needing a pre-trained language model for
text-image consistency, TIME neglects extra pre-trained modules. For this, transformers
modeling cross-modal connections between image features and word-embeddings with
annealing conditional hinge loss are devised, balancing adversarial learning. This model
is a unified framework for T2I and image-to-text (I2T). The authors regarded attention in
AttnGAN as a simplified version of the transformer, where features are flattened from a
three-dimensional to a two-dimensional sequence. So, a 2D positional encoding for better
attention operation is shown, which does not need sentence-level text features.

Similar to [129], Dynamic Aspect-awarE GAN (DAE-GAN) [136] refers to the impor-
tance of aspect in the input text. The model represents text information from multiple
granularities of sentence-level, word-level, and aspect-level, for which, besides other at-
tention mechanisms, the aspect-aware dynamic re-drawer (ADR) module is employed.
ADR module contains two alternating components, the Attended Global refinement (AGR)
module utilizing word-level embeddings for image enhancement and the Aspect-aware
Local refinement (ALR) module for enriching aspect-level image details.

Siamese Architectures: Siamese architecture benefits from a small training dataset
by learning more than one identical subnetworks in parallel, having shared parameters
operating on a pair of inputs. The goal is to learn a similarity function for grouping inputs
with similar patterns.

Above, we mentioned SEGAN [130] as the model with the attention competition
module. This model adopts the Siamese architecture for semantic alignment through
ground truth images by minimizing the feature distance between the generated and original
image while maximizing for another image with a different caption. Motivated by Focal
loss [273], sliding loss is applied to adapt the relative importance of easy and hard samples.

Text-Segan [137] highlights the importance of controlled negative sampling to im-
prove GAN training, demonstrated on cGAN. Rather than selecting random mismatching
negative samples for learning, negative samples are picked based on semantic distance
from positive class examples, following curriculum learning [274]. Moreover, the auxiliary
classification task for T2I can cause a decrease in diversity, so a regression task for semantic
correctness based on the semantic distance to encoded text is employed.

SDGAN [138] also employs a Siamese architecture with two branches, individually
processing text to produce an image from shared parameters. Similar to SEGAN, feature
distances are minimized and maximized depending on whether there is an intra-class pair
(captions from the same image) or inter-class pair (captions from different images) by the
use of contrastive loss [275]. As a result, semantic commons are learned with a possibility
to skip fine-grained semantic diversity, requiring a new module of semantic-conditioned
batch normalization to adjust visual feature maps from textual cues.

Knowledge Distillation: Knowledge distillation is a transfer learning method by
transferring knowledge from a teacher model to a student model, initially proposed for
model compression [76].

Introducing knowledge distillation in GAN is first explored by KTGAN [139]. This
study introduced two mechanisms for fine-grained T2I. First is the alternate attention-
transfer mechanism (AATM), which alternatively updates the word and image sub-region
attention weights. The second one is the semantic distillation mechanism (SDM), where
a trained image-to-image encoder guides the learning of a text encoder in the text-to-
image task.

T2I from multistage coarse-to-fine generation lack interactions among stages and
ignores cross-sample consistency. So, ICSDGAN [140] proposed interstage cross-sample
similarity distillation model based on GAN. This model uses cross-sample similarity distil-
lation blocks in a three-stage network, where knowledge distillation is achieved from the
refined to coarse stage.
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Cycle Consistency: Models which form a cyclic process for learning a T2I generator,
either with an image captioning (I2T) or an image encoder network (I2I), are classified as
cycle consistency approaches. Nguyen et al. [276] showed a way to synthesize novel images
through gradient ascent in the latent space of the generator network, maximizing activations
of multiple neurons in a classifier network. In expansion, Nguyen et al. [141] introduced an
additional prior on the latent code to improve sample quality and diversity. Furthermore, a
unified probabilistic interpretation of activation maximization methods is provided, called
Plug and Play Networks, which comprises a generator and a replaceable condition network.
This condition network can be a classifier or a captioning network, where the goal is to
iteratively find a latent code for the generator that maximizes a feature activation in the
feedback network. Among the proposed variants of PPGN models, the Noiseless Joint
PPGN model comprising a GAN and three interleaved denoising autoencoders (DAE) gave
the best performance.

Hao et al. [142] gave a primitive cycle consistency approach for T2I by training
Image–Text–Image (I2T2I), which integrates two separate models for improving T2I. Deep
CNN-RNN for image captioning and image–text mapping added with the GAN-CLS
module build I2T2I.

As an inspiration from CycleGAN [190], MirrorGAN [143] generates images by re-
description architecture through learning semantically matching representations between
images and text. It is accomplished by appending a captioning network to generate a
semantically similar caption of the synthesized image with the original input. Sentence and
word embeddings for global and local attention, respectively, guide the cascaded generator,
which is in line with an image captioning network [277] for producing a caption of the newly
generated image that is made consistent with original input text by cross-entropy-based
reconstruction loss.

SuperGAN [144] is similar to MirrorGAN in terms of cycle-consistent adversarial
learning with a cycle-consistent loss. However, its authors proposed a new evaluation
metric for measuring sample diversity, and instead of [277] as a captioning model, they
trained a CNN-RNN model from AlexNet and LSTM.

Lao et al. [145] learned to disentangle style via noise and content via text in the
latent space of a GAN in an unsupervised manner, motivated by adversarial inference
methods [278,279]. They used a supplementary encoder that infers the two latent variables,
where the cycle-consistency loss retains consistency between the encoder and decoder.
Added to the adversarial loss, a discriminator helps to distinguish between joint pairs of
images and latent codes.

Memory Networks: Networks that harness the information from explicit memory
storage with attention can be organized into a distinct category, so we cluster T2I GAN
models which employ memory structure.

Most of the existing GAN-based methods for T2I generate images in a coarse-to-fine
manner, which is highly dependent on the quality of the original image, where a fixed text
representation for image refinement further worsens the result. Therefore, DM-GAN [146]
utilizes a dynamic memory module to refine initial fuzzy images with a memory writing
gate to select important text information from initially generated images. Additionally, to
adaptively fuse the memory and the image features information, DM-GAN uses a response
gate. This model operates on unconditional adversarial image and text-conditioned image–
text matching loss.

Different from DM-GAN, CPGAN [148] designed a memory structure that analyzes the
textual content during text encoding by examining the semantic correspondence between
all vocabulary words with visual contexts across relevant images. Meanwhile, the images
are generated in an object-aware manner with the help of a conditional discriminator
for fine-grained correlation between words and image sub-regions. In summary, three
components perform content parsing: Memory-attended text encoder, object-aware image
encoder, and fine-grained conditional discriminator for text–image alignment.
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Contrastive Learning: A popular form of self-supervised learning is contrastive learn-
ing. It encourages augmentations (views) of identical input to have a close relationship
than the augmentations of different inputs [280]. Thus, studies that exploit this technique
are mentioned under this topic.

Recently, synthetic images which are more coherent, clear, and photo-realistic are mod-
eled from XMC-GAN [151] via multiple contrastive losses, which capture inter-modality
and intra-modality correspondences. This model uses a simple one-stage GAN with an
attentional self-modulation generator enforcing text–image resemblance with a contrastive
discriminator as critic and feature encoder for contrastive learning.

Since human-annotated captions have significant variance, the linguistic discrepancy
between captions causes deviating images. Consequently, Hui et al. [150] developed a
contrastive learning approach for semantically consistent visual and textual representations,
where consistency for synthetic images is enhanced during GAN training. Because their
technique is flexible and can be implemented to any existing GAN model, AttnGAN and
DM-GAN are set as the base methods. In contrast to XMC-GAN, the authors implied
different objectives for contrastive loss, among caption–caption pair and fake–fake pair,
which are complementary to the ones in XMC-GAN.

Unconditional Models: Unconditional image generation is promising and compara-
tively easier than the conditional task because of the uni-modality. Lately, the progress in
this domain has encouraged researchers to adapt the architecture of these unconditional
models for T2I.

Similar to [281], a progressively growing generator and discriminator during training
is employed in Bridge-GAN [152]. It uses an intermediate network, following [157], to
map text embedding and noise into a transitional space acting as a bridge with two mutual
information-based losses to enhance reality and consistency. The mutual information objec-
tive optimizes the transitional space and improves quality, aimed at learning interpretable
representation to reduce the cross-modal discrepancy.

BiGAN [278] has shown interesting results on class-conditioned image generation,
adapting which Douglas et al. [153] presented T2I. Unlike conditioning augmentation
(CA) in StackGAN, which uses the normal distribution to smoothen the data manifold,
they introduced sentence interpolation (SI) as a deterministic function that can create
interpolated sentence embeddings from all captions per image.

An extension to StyleGAN [157], the same authors proposed textStyleGAN [155] to
generate higher-resolution images with image manipulation option. A pre-trained image–
text matching network [156] computes word embeddings concatenated with sentence
embeddings and noise to obtain a linear mapping for producing intermediate latent space.
Moreover, an attentionally guided generator with a modified discriminator having two
additional losses is used. These two losses of cross-modal projection matching (CMPM)
and cross-modal projection classification (CMPC) losses [156] aid in aligning input text
with image. As well as generation, image manipulation is possible by finding directions in
the latent space correlating to different attributes.

Robin et al. [158] proposed a network-to-network (N2N) model for unconditional T2I.
They train an invertible network [282,283] to fuse the pre-trained BERT and BiGAN model
while translating their representations for T2I. The most significant contribution is the
domain transfer which can help reuse expert models without learning or fine-tuning them.

Similar to N2N, the authors of FuseDream [159] showed a training-free, zero-shot, and
customizable technique for T2I. Instead of BERT, they utilized CLIP [224] for text, whereas
image generation is again from a BiGAN latent space. However, this fusion of two models
is not an easy task, so with the help of three new techniques, the CLIP score is optimized in
the GAN space. Among the three techniques, the AugCLIP score robustifies the standard
CLIP score, over-parameterization optimization enables navigation in the non-convex GAN
space, and composed generation with bi-level optimization generate multiple images to
overcome data bias.
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In the last few months, LAFITE [160] explored the latent space of the CLIP model for
T2I without the use of text-annotated image data. This requirement of text-conditioning
is relieved via generating text features from image features, considered a language-free
model. Contrastive to the above models, this study utilizes StyleGAN2 [284] for latent
space of image features.

4.4.2. Supervised T2I

Due to the enormous research for T2I with GAN, exploration is not only limited to
GAN models. Instead, various studies have shown the use of additional supervision to
enhance the consistency and quality of the images. Generally, models with more than one
supervision are better, with added annotation for the training data as a trade-off. Hence,
after direct T2I, we review supervised methods which use extra annotation along with
the text. More clearly, multiple captions, instead of one, for better textual consistency,
dialogues for T2I as interactive methods, image layouts for controlled generation, scene
graphs for better image understanding, and semantic masks for high-quality images are
the mentioned extra supervision annotations for T2I.

Multi-captions: Text and image domains have a large dimensionality gap, causing
insufficient information from a single caption. So, we cite the models that signify the
importance of multiple captions for T2I.

Many existing methods ignore the use of multiple captions, where a single caption is
limited and hardly contains the image concepts. C4Synth [162] addressed this by proposing
a new cross-caption cycle-consistency model and a recurrent variant of it, inspired by
CycleGAN [190]. The model follows a consistent hierarchy of text–image–text by predicting
the caption from the generated image and matching it with the succeeding caption from
multiple captions. However, this model is limited by the number of input captions, so a
recurrent variant removes this limitation, called recurrent C4Synth.

Another approach that makes use of multiple sentences is GILT [163]. Unlike C4Synth,
this model generates an image from a long text that does not explicitly mention its contents.
The model is experimented with StackGAN++ on the Recipie1M [164] dataset, having
cuisine images with corresponding ingredients and instructions as textual data.

Different from C4Synth, which requires many inferences for image generation with
an additional captioning model, RifeGAN [165] directly generates an image once per
execution and without the need of a captioning model. This function is due to enriching
the given caption from prior knowledge from the training dataset and a caption-matching
method by using an attentional text-matching model called self-attentional embedding
mixture (SAEM).

Studies relating to semantic consistency among text and images overlook the semantic
correlation between related texts as described in MA-GAN [167]. This method utilizes
a single-sentence generation and multi-sentence discrimination (SGMD) module with a
progressive negative sample selection mechanism (PNSS) to mine suitable negative samples
for better training.

Dialog: Dialogue in a real-world scenario aids the drawer in rectifying and improving
an image through feedback. Unlike multiple captions, dialogue conditioning focuses on
the interactive generation, where each pair of query–response correspond to an intermedi-
ate result.

ChatPainter [168] is an excellent example of the model which leverages dialogue from
the dialogue dataset [285] besides captions to generate images, for which Skip-thought
provides embeddings. StackGAN, meanwhile, is employed for image generation.

The authors of GeNeVA [169] introduced a task named generative neural visual artist.
This task involves a conversation between a teller and a drawer by adopting a recurrent
GAN architecture for iteratively modifying the images. Because of this novelty, they created
the i-CLEVR dataset, which is a sequential version of CLEVR [286] with text descriptions.
Furthermore, a relationship similarity metric is presented to evaluate the positioning of
objects by the model.
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When dealing with dialogue for T2I, during training, there is a need for supervision
at each turn. Moreover, it is challenging to evaluate the consistency between dialogues
and images. Therefore, VAQ-GAN [171] showed that QAs are better than dialogues in
this manner. Built on AttnGAN-OP [175] it has three key components, QA-encoder, QA-
conditioned GAN, and an external VQA loss using VQA model [287] utilizing the VQA
2.0 dataset [288] with additional layout supervision. This study considers VQA model
accuracies for evaluation between input QA and image.

SeqAttnGAN [172] is proposed for image manipulation uses multi-turn commands
and is a form of interactive image generation. Since interactive image editing for fashion is
new, two new datasets, Zap-Seq and DeepFashion-Seq, are also presented in this study.

Like VQA-GAN, VQA-T2I [173] use VQA data but without modifying the architecture
to be effectivly applied to any model. A simple concatenation of QA pairs with other
annotated data for training and an external VQA loss can significantly improve the results
for T2I.

Layout: Layout-to-image generation [289–291] is captivating research where an image
is drawn from objects defined by bounding boxes and labels. It ensures better-localized
objects, which is user-controlled. Naturally, combining layout with text for T2I is explored
by some studies.

GAWWN [43] is one study that can control object location and pose for T2I through
bounding boxes or keypoints. The text encoder used in this study considers the average
of 4-captions. For bounding boxes, noise and text embedding is concatenated to feed
the generator, having local and global path. In keypoint annotations, for the location
representation of various object parts, the model is adjusted with a necessary consideration
of keypoint conditioning. It is worth mentioning that it is highly unlikely that the user
might specify all keypoints in the description.

Comparable to GAWWN, Hinz et al. [175] also suggested the use of layout for T2I, but
without the use of a detailed semantic layout. So, from the given bounding boxes and labels,
they initially generate an intermediate layout for image generation. The model utilizes
StackGAN and AttnGAN with considerable changes. The generator and discriminator
consist of two streams, the global pathway and the object pathway.

As for AttnGAN as baseline architecture, OP-GAN [177] modified it for object-centric
image generation with multiple object and global pathways, similar to [175]. Besides this
model, a new T2I evaluation metric, named semantic object accuracy (SOA), is suggested
in this study.

The model in OC-GAN [178] defines a scene-graph-based retrieval module (SGSM) to
improve layout fidelity, with conditioning on instance boundaries for generating sharp objects.
This model generates images from the layout, where the layouts are obtained from scene
graphs. Further, SceneFID is proposed for a multi-object dataset as an evaluation metric.

Semantic maps: Semantic maps are different from layouts as they provide a more pre-
cise object shape, whereas image layout only provides bounding boxes with labels. Thus, we
group studies which use semantic maps or masks for text-conditioned image generation.
Following a two-step generation, text-to-semantic layout from a layout generator and
layout-to-image from an image generator, Hong et al. [180] proposed a hierarchical ap-
proach for T2I. The newly designed layout generator constructs a semantic layout in a
coarse-to-fine manner by generating bounding boxes for objects and then refining them to
estimate the object shape inside.

Identical to [180], Obj-GAN [184] also generates in two-step process. However, it
consists of an object-driven attentive generator with an object-wise discriminator. This
generator uses GloVe [170] embeddings of object class labels to query relevant words in the
sentence, whereas the discriminator implements a Fast R-CNN [292] to provide feedback
about object realism with matching layout and text.

To mimic the human strategy for T2I, LeicaGAN [186] decomposed T2I into three
sequential phases, learning multiple priors, imagination, and creation. For the first phase,
the text–image encoder and a text–mask encoder learn semantic and layout priors. The
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second phase combines these priors with added noise to stimulate the imagination. Fi-
nally, a cascaded attentive generator with local and global features successively generates
an image.

Naturally, images are not provided with semantic masks and model-generated seman-
tic segmentation maps are often noisy without instance information. With this in mind, a
work by Pavllo et al. [187] on exploiting weakly supervised sparse mask setting, combining
detailed mask with instance information, compared their model to the human-annotated
mask, and semantic segmentation maps ensure localized image manipulation. In contrast
to dense pixel-based masks, sparse instance masks can easily edit images by decomposing
into the background and foreground.

By injecting image contours into the generative network, AGAN-CL [189] enhanced
images generated from text. The model is trained to produce masks and consists of two
sub-networks: a contextual network to generate image contours and a cycle transformation
autoencoder for converting them to images. Moreover, the modified objective function
includes perceptual loss, contextual loss, and cycle-consistent loss.

The authors of [191] introduced an end-to-end framework with spatial constraints
from semantic layout for T2I. Adopting a coarse-to-fine image generation, they fused multi-
scale semantic layouts with text and hidden visual features. During training, the generator
produces an image and a corresponding layout for the relevant discriminator to distinguish
between matching and mismatching the layout–text pair and real–fake layout pair besides
the matching-aware task as in GAN-INT-CLS.

Scene graphs: Structured text (also referred to as scene graphs) for image generation is
a promising approach for T2I. Unlike naturally existing static text, with intricate object inter-
actions and concepts, scene graphs explicitly structure text as directed graphs, where nodes
define objects and edge their relation. A vastly used dataset for image generation, MS-
COCO, lacks scene graph annotation and is constructed from object locations [192]. How-
ever, more advanced data, such as visual genome [197], provide an average of 21 pairwise
relationships per image.

The leading work of Justin et al. [192] utilized a graph neural network [293] for
processing scene graphs [195] to predict an image layout containing bounding boxes and
segmentation masks for every object, compared with ground truth during training. Then, a
cascaded refinement network [193] subsequently generates an image from the combination
of bounding boxes and masks.

An extension to [192] is given by Mittal et al. [194]. They proposed an interactive
framework for incrementally growing scene graph-to-image generation through recurrent
architecture. For image generation, changing the scene graph while preserving previous
content allows a refined image to be updated and produced. For preserving the content
of the previous image, the previous image is passed to the cascaded refinement generator,
instead of noise, with the perceptual loss for image consistency.

The study from Seq-SG2SL [196] focused on the subtask of [192], semantic layout
prediction and explored the non-sequential processing in a sequence-to-sequence manner.
In this work, the scene graph is decomposed into a sequence of semantic fragments (SF)
per relation, where the layout is the consequence of a series of brick-action code segments
(BACS). As the two terms correspond to two unique vocabularies, a transformer-based
seq-to-seq model plays the role of translator. Furthermore, a new metric named semantic
layout evaluation understudy (SELU) is devised to assess the layout prediction technique.

Distinguished from [192], Oron et al. [198] separate the layout and appearance em-
bedding with additional location attributes and stochasticity before creating the masks.
Moreover, three discriminators for mask, object, and image are employed with percep-
tual loss. In this way, their work can achieve more control over image generation of
higher-quality complex scenes.

Previous studies guaranteed image-level semantic consistency but lacked manipula-
tion of every object. Accordingly, PasteGAN [199] introduced a semi-parametric method
for image generation with scene graphs and image crops. For more appealing interactions
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in the final image, a crop-refining network and an Object–image fuser embed objects and
their relations into one map to feed the image decoder. Although the above two networks
operate to align the cropped images, selecting the most-compatible crop is addressed by
the proposed crop selector.

Duc et al. [200] uses scene graph to predict initial object bounding boxes, from which
they anticipate two-box relation units for each individual subject–predicate–object relation.
After prediction, a convolutional LSTM [182] unifies all relation-units and converts them
into a visual-relation layout because each entity is capable of having multiple relations.
This layout reflects the scene graph structure and is used in a conditional pyramid GAN to
generate images.

Another approach that uses scene graph for text-visual relation is VICTR [201]. The
authors of VICTR proposed a new visual contextual text representation for the text–visual
multimodal task, composed of five modules. First, the conversion of raw text to scene
graph from scene graph parser is sent to GCN, having graph and positional embeddings, to
form visual semantic embedding. This embedding, along with word attention, is changed
to a visual contextual text representation. Finally, the encoded text containing words and
sentences aggregates to generate visual contextual word and sentence representation. The
joint representation learned is applied to the T2I task.

Mouse traces: A study with a novel annotation describing the text–visual relation is
highlighted in [294]. It is unique to others as there is no explicit segmentation, just the
rough markings, called mouse traces, with descriptive voice and text descriptions forming
a Local Narrative dataset.

From the initial direction in [294], TRECS [203] uses its dataset, especially mouse trace
annotations with detailed descriptions, to retrieve semantic masks for image generation.
The mouse traces provide sparse, fine-grained visual grounding for the corresponding text
defining an image.

Manipulation: For completion, studies for T2I under GAN-based models also ex-
plored editing the contents of an already given image. In contrast to generation, where only
text is necessary, manipulation requires two inputs, the text and a given image to modify.
Comparatively, manipulation is an advanced form of generation, where besides understand-
ing text, learning image semantics is compulsory to know the exact location of modification.
Currently, image manipulation from GAN models is studied under different variations,
from global [226] to local [213,215,221], directly from text [208,210,211,214,216] or with ad-
ditional supervision [218,219,222,225], and from the latent space of GAN models [223,229].

The first study to purely explore image manipulation from GAN was by Dong et al. [208].
They used a conditional GAN, following [7], where the generator encodes the input image
to features and concatenates it with text semantics to decode the combined representation.
Then the discriminator is allowed to distinguish the synthesized image which matches the
target description.

A parallel work to edit the images globally is presented by Wang et al. [226]. They
showed three trainable models based on RNN and GAN, having the same discriminator
with a different generator that handles the text information differently. Namely, these
models are the handcrafted bucket model, an end-to-end model, and a Filter-bank model.
The generator possesses an encoder–decoder architecture with an RNN network. In addi-
tion, for the filter-bank as a general model, RNN is replaced with Graph RNN to prove its
effectiveness. However, to evaluate the task, the lack of a suitable dataset encouraged the
authors to collect a new dataset.

A limitation of SISGAN [208] is the use of a sentence-level conditional discriminator,
which provides coarse training feedback insufficient to disentangle different image regions.
As a result, TAGAN [210] proposed to split a single sentence-level discriminator into
several word-level local discriminators. In this way, they can pay attention to specific
visual attributes.

The authors of MC-GAN [218] proposed multi-modal conditioned image manipulation
that uses a base image, text, and mask, to synthesize a foreground object on a background
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image. This multi-conditioning is due to a synthesis block that disentangles the foreground
from the background in the training stage. This study is unique from SISGAN, as it
manipulates the given image by creating an object on it rather than modifying the attributes
of the original image.

In FiLMedGAN [211], the model is trained to manipulate the image for fashion. It
uses feature-wise linear modulation (FiLM) [212] to relate and transform visual features
from natural language, implemented in a modified version of SISGAN.

Limited research on image manipulation suffered from two problems: improper
attention to specific parts of the image and low-resolution image generation. Therefore,
Two-sided Attentive conditional GAN (TEA-cGAN) [213] proposed an attention mechanism
on the generator, inspired by AttnGAN, with a discriminator following TAGAN. The
two variants of the generator, single-scale and multi-scale, allow image manipulation
at a single CNN layer or multiple layers. This multi-scale generator can produce high-
resolution images.

Human visual appearance manipulation through natural language is rarely studied.
Motivated by this, Text-guided Person Image synthesis (TGPIS) [219] investigated language-
based human image manipulation task for user-friendly image editing. A two-stage
framework is presented utilizing a GAN-based pose inference network with attention
upsampling modules and a multi-modal loss for establishing semantic relations among
images, poses, and text descriptions. In the first stage, a text-guided pose generator
infers the pose, following [295]. The next stage obtains the target pose to transfer the
text-based visual attributes to the reference image. Since it is dealing with three different
modalities, a newly posed attentional upsampling (AU) module helps incorporate text-
to-visual attention features with pose features at multiple scales. Furthermore, a new
evaluation metric, VQA perceptual score, identifies the correctness of attribute change
corresponding to the body part.

LBIE task from cGAN is explored in [214]. The authors highlighted the limitation of
cGAN as it cannot learn the second-order correlation between two conditioning variables.
Thus, they proposed a bilinear residual layer as an improved conditional layer to learn
powerful representations based on SISGAN.

The direct concatenation of image and global sentence features along channel direction
is responsible for poor performance in [208,210]. So, [215] devised another network called
ManiGAN based on [131], having multiple generator–discriminator pairs along with two
key components, namely affine combination module (ACM) and detail correction module
(DCM). Utilizing this ACM module, they could only manipulate the image corresponding
with the given text description. Apart from the new modules, they suggested a new
evaluation metric to compare their results with those from previous methods. However,
this metric seemed biased, so new techniques avoided this metric.

Previously, there was some trade-off between model size and image quality. So, a
slightly different work [216] explored the idea of unsupervised learning, pointing to another
yet undermined approach, text commands for image manipulation. Instead of using human-
annotated data or complete attribute descriptions to learn the semantical alignment of text
and image features, only a text command specifying the change is sufficient for image
manipulation, given disentangled content features and attribute representations. Despite
the simplicity of the text command still, there is much ambiguity. Consequently, their
overall model utilized GAN with three separate encoders for content, attribute, and text
to process the image before passing it to the generator. Based on the assumption that
content and attributes are separable, GMM-unit [217] modeled the latter, while for non-
deterministic translation, they combined various loss functions, including reconstruction,
domain, adversarial, and attribute loss.

ManiGAN [215] consumed a lot of memory and training time but produced detailed
images, so ref. [221] proposed a lightweight network composed of a single generator
and discriminator and, thus, a reduced number of parameters as a trade-off for a slightly
degraded-quality image. Furthermore, LWGAN addressed the limitations of the previ-
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ous discriminators used in [131,210,215]. Therefore, a new word-level discriminator was
introduced, which minimized the cross-entropy between word-weighted image features
and target labels, obtained by labeling each word. Comparatively, two image encoders,
Inception-v3 and VGG-16, were used to obtain the semantic and detailed image, respec-
tively. However, the text encoder was the same as the previous studies, bidirectional RNN.
In contrast, for text smoothing and text–image feature concatenation, conditioning augmen-
tation (CA) and text–image affine combination module (ACM) were adopted, respectively.

Sometimes images are distorted and comprise incomplete regions. Studies that focus
on filling the missing part of an image are termed neural image inpainting. A similar study,
named TDANet [222], proposed an inpainting model harnessing the text information.
First, the model uses a dual-attention mechanism to extract corrupted region semantic
information by comparing text and image areas through reciprocal attention. Next, an
image–text matching loss maximizes the semantic similarity between the text and image.

Advancements in GANs can generate high-quality photorealistic images, specifically
from StyleGAN. An inspiration to learn the latent code of this network for image manip-
ulation, ignoring other modalities. Moreover, the models for T2I are mostly limited to a
single task, either generation or manipulation. From these issues, TediGAN [229] proposed
a novel unified framework for both multi-modal image generation and manipulation to
create diverse high-resolution images without multi-stage processing. Additionally, a GAN
inversion technique capable of mapping information to a common latent space of StyleGAN
is suggested, harnessing knowledge from multi-modalities. The implementation of the
TediGAN involved three key components, StyleGAN inversion module, visual-linguistic
similarity module, and instance-level optimization. For practical evaluation of this model,
focusing on T2I for faces, a new dataset is introduced, named Multi-modal Celeb-HQ.

Similar to TediGAN, StyleClip [223] explored the best available vision–language joint
representation model, CLIP [224], for text-based image manipulation by learning Style-
GAN [284] latent space. Additionally, three combination techniques, latent optimization,
latent mapper, and global directions, are also analyzed to investigate the benefit of com-
bining these two models. The first two methods work in W+ space, where the former
optimizes this space of a given image by minimizing CLIP-space loss for each image–text
pair. In contrast to other similar models, such as DALLE and TediGAN, this model requires
less computational power, and the quality of the generated output is improved.

Togo et al. [225] exploited style-transfer-based image manipulation framework. Their
framework has three components, image captioning, style image generation, and style
transfer net. They can perform image manipulation without the style image, and follows a
module-based generative model.

3D scenes: Some studies in T2I explore deep generative models, especially GAN, for
creating 3D scenes from the given text. However, due to the limited research in this field,
the generated results are far from the real-world scenes and mostly rely on retrieval-based
tasks [296–298].

Motivated by the limitations of retrieval-based 3D scene generation, Text2Shape [120]
proposed an end-to-end instance-level association learning framework for cross-modal
associations between text and 3D shapes. First, it learns a joint embedding, inspired by [299],
of text and 3D shapes for the text-to-shape retrieval task, then introduces a text-to-colored
voxel generation task with conditional Wasserstein GAN, following [300]. For the new
technique, two new datasets are shown to be effective for evaluation. This model is different
from GAN-INT-CLS as it does not require a pre-trained model or massive annotated data
for training.

In the previous method [120], generating high-resolution 3D shapes requires extensive
GPU memory or a long training time. So, Fukamizu et al. [121] considered the low-
resolution problem and followed a two-stage approach by using StackGAN knowledge.

A different application of a text-conditioned deep generative model for the 3D scene
is shown by Chen et al. [122]. They applied the knowledge of Graph scene parser [123]
to obtain the layout by a graph-conditioned layout prediction network (GC-LPN) with
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language-conditioned texture GAN (LCT-GAN) to generate 3D models of houses. The
overall task is split into building a layout and refining with texture synthesis. As a challenge
to the proposed application, no dataset exists in the literature, so they introduced a new
dataset called the text-to-3D house model.

5. Story (Consistent)

After mentioning the advances in the text-to-image domain, we shed light on the stud-
ies which focus on generating visual stories from the given natural language. In contrast to
T2I, text-to-story (T2S) is one step ahead, where the generated images are coherently consis-
tent with the previous scene based on the semantics but without any continuity in the gener-
ated frames. This is different from video since it lacks continuous frame prediction, having
a temporal relation to show a smooth motion transition. However, the literature reports
only a few studies on the story-generation task, most of which are retrieval-based [301–303],
while some pay attention to GAN models [31,231,233,235,237,239] and almost none of the
other generative models are explored, except [230].

5.1. GAN Model

Distinct from the story-retrieval task [303], GAN-based models implement the gen-
eration of an unseen image rather than finding the best match for the given text. Limited
research on the story-visualization task from the text typically focuses on GAN models.

The first-ever implementation of generating visual representations of textual stories by
a GAN model is studied in StoryGAN [231]. The authors named this task story visualization,
and from the multi-sentence paragraph, they visualize the story by a sequence of images
per sentence. The model consists of a deep context encoder to track the story and two
discriminators for image quality and story consistency. StoryGAN follows a two-level GAN
framework with RNN to incorporate the previous image with the currently generating
image supervised by a context encoder module. This module contains a stack of GRU
and Text2GIST cells. Additionally, two new datasets, called Pororo-SV and CLEVR-SV, are
collected for the newly introduced task.

To further improve the visual quality and semantic relevance, PororoGAN [31] jointly
considers story-to-image sequence, sentence-to-image, and word-to-image patch align-
ment. Precisely, they introduced an aligned sentence encoder (ASE) to improve global
relevance and an attentional word encoder (AWE) for local consistency. Besides previous
discriminators, image patch discriminator is added to enhance the image reality.

Improved-StoryGAN [233] is an extension to StoryGAN. In this work, simple con-
volution is replaced with dilated-convolution, inspired by [234], to expand the receptive
field of the kernel. Additionally, the weighted activation degree (WAD) introduced in the
discriminators enhances consistency between images and the target story. Finally, the use
of gated convolution in initial state encoder obtains better feature representations with
Bi-GRU as context encoder.

Emphasis on preserving the global consistency of characters and scenes across different
story pictures, in CP-CSV [235], a character-preserving coherent model, is shown, which
uses a segmentation mask to separate the foreground from the background. The framework
is split into three crucial modules: story and context encoder for feature representation
learning; figure–ground segmentation as an auxiliary task for preserving characters; and
figure–ground generation to generate a sequence of images. Moreover, the authors of
CP-CSV suggested Frechet Story Distance (FSD) as an evaluation metric for this task.

Since limited text describing an image in the story lacks semantic alignment, DUCO-
StoryGAN [237] implemented dual learning via video redescription. This dual learning
with a copy transform mechanism in the GAN framework enables sequentially consistent
stories. Furthermore, to model the correlation between word phrases and corresponding
image regions, a memory-augmented recurrent transformer (MART) [238] is employed.
However, the lack of proper evaluation metrics encouraged the authors to present a diverse
set of new metrics.
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The authors of DUCO-StoryGAN enhanced the story-visualization task in VLC-
StoryGAN [239]. They showed that integrating linguistic information with common-
sense knowledge, motivated by [304], can generate better results. From CP-CSV and
DUCO-StoryGAN, which use segmentation mask and video captioning, respectively, as
an auxiliary task, generate uni-modal outputs. Therefore, to combine the benefits of both,
dense captioning as the dual task is applied. Moreover, implementing an extra intra-story
contrastive loss between image regions and words improves semantic alignment between
captions and visual stories.

5.2. Autoregressive Model

From one reported work on an autoregressive model for story visualization, mul-
tiple descriptions per image are essential for the generalization of the generator. How-
ever, the Pororo-SV dataset consists of only a single text–image pair, which the previous
studies [31,233,235] are limited to use in training. Recently, an autoregressive model based
on the transformer, called C-SMART [239], studies story visualization generated from text.
The name C-SMART emphasizes the cyclic story visualization by a multi-modal recurrent
transformer. The term cyclic refers to the image–text–image stream, where pseudo-text
generated during this approach helps train a T2I generator. Furthermore, to achieve the
temporal consistency among images, a dynamic gated-memory module is applied to the
multi-modal recurrent autoregressive transformer following [237,238].

6. Video (Dynamic)

Video generation from text is a significant and challenging task. It shares some
similarities with T2I and T2S as it generates new visual content as video frames from
text conditions. However, the main difference between the other two is the continuity of
the output, as video frames are temporally more consistent and should share consistency
throughout the video. Initial research on text-to-video generation (T2V) utilizes rule-based
retrieval models [305–309] that lack the power to create new videos and are limited to a
set of pre-defined options. However, after the advent of T2I, a few studies attempted T2V
using either autoregressive models, VAE, or GAN.

6.1. VAE Models

Models under VAE selectively learn by maximizing the variational lower bound of
the observation while keeping the approximate posterior distribution close to the prior
distribution. So, now we mention the models leveraging this generation technique for
creating video frames, where frames are made consistent with the help of an RNN network.

Starting from Sync-DRAW [250], T2V is pioneered by the combination of a recurrent
attention mechanism with VAE. The attention mechanism attends to each frame in synchro-
nization, while VAE learns the latent distribution of the whole video at the global level.
This work is similar to [6], but spatial attention differs from spatiotemporal attention.

From the authors of Sync-DRAW, an improvement for T2V in [252] suggests the
use of captions combined with long-term and short-term dependencies between video
frames for incrementally generating video. This way, they can perform variable length
semantic video generation from unseen captions, maintaining a strong consistency between
consecutive frames.
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In parallel, a hybrid framework employing VAE and GAN for T2V is given by
Li et al. [253] in the same year as Sync-DRAW. They propose to extract static and dy-
namic information from the text to train a conditional generative model. The static features,
called gist, sketch text-conditioned background color, and object layout, where trans-
forming text to image filter models better dynamic features. Additionally, it provides a
method to construct a new training dataset from Youtube videos accompanied with titles
and descriptions.

The need for high computational power limits T2V for generating compelling results,
so GODIVA [254] trained a large-scale model capable of creating videos from the text in
an autoregressive manner using a three-dimensional sparse attention mechanism. It is
distinguished from GAN and utilizes the VQ-VAE approach while sharing similarities
with autoregressive models. This pretrained model uses the HowTo100M [310] dataset
containing more than 136 million text–video pairs to scale the generation for zero-shot
settings. However, previously poor evaluation metrics led to the need for a new relative
matching (RM) metric for quality and semantic match.

6.2. Auto-Regressive Models

Sequentially generating new data from the previous data is termed autoregressive.
However, we consider some studies [243,244] autoregressive due to the sequential predic-
tion of frames, similar to others, but without using GAN or VAE models. These models
typically fuse the two domains, text and video, for learning joint embedding.

6.2.1. Generation

In CRAFT [243], text-conditioned video creation is completed by a compositional
retrieval task. Following the caption, the model sequentially predicts a temporal layout of
objects and retrieves the Spatio-temporal entity segments from a video dataset, where the
fused segments create the final video. Consisting of three parts, layout composer, entity
retriever, and background retriever, the model first predicts the location and scale of an
entity and then seeks the best entity with a suitable background. These components are
sequentially trained on the newly proposed dataset of FLintStones. Precisely, this model is
retreival-based T2V.

The unstable training in GAN and blurry videos from VAE initiated the need for a
similar study, CMDL [244], where instead of GAN or VAE, a deep learning model utilizing
a dual learning algorithm is proposed. The model learns the joint embedding using
sentence-to-video and video-to-sentence to learn the bidirectional mapping between the
two domains. It is realized with the help of a multi-scale text-to-visual feature encoder for
global and local representations.

6.2.2. Manipulation

For increasing the complexity, SA3D [247] introduced the proof of concept for 3D
scene generation from text, which is different from previous works on 3D scene generation
as it allows free-form text descriptions. Therefore, they showed a two-stage pipeline that
can generate static and animated scenes using a transformer-based text encoder with a
multi-head decoder for predicting object-specific features per head to create an abstract
layout. This layout is passed to a scene renderer [249] to generate the final 3D scene or
video. However, due to the research gap in this area, they created a synthetic dataset, called
IScene, for experimentation.

6.3. GAN Models

As in other tasks, T2I and T2S, T2V is also studied more under GAN models than
others. The reason for this is the well-established research of GAN for T2I, so extending
it to T2V is natural. However, when dealing with the consistency of frames for video,
a challenging task, several studies are found in the literature, among which only a few
targeted T2V, mentioned in this paper.
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6.3.1. Generation

As previously mentioned, in [253], a combination of the GAN framework with condi-
tional VAE (CVAE) explores T2V. Utilizing three components, a conditional gist generator
for the intermediate step using CVAE and a video generator with a discriminator, they
train an end-to-end model.

In the successive year, TGANs-C [255] proposed another framework to explore the
semantic and temporal coherence in GAN for generating videos. Typically, the input noise
concatenated with caption embedding is sent to the generator to transform into a frame
sequence using 3D Spatio-temporal convolutions instead of 2D. Instead of a single naive
discriminator, the model consists of three discriminators. The first one separates real from
synthetic videos, the second aligns the frames with caption while discriminating between
real and fake, and the last emphasizes motion smoothness across frames. The frame-level
discriminator allows the establishing of a connection between the caption and frames,
where the motion level is responsible for coherency over frames.

Previously, simple conditioning on text [250,255] or substituting 2D with 3D convo-
lutions, as in [253,255], is not feasible as the 3D layers may have poor frame quality [311],
while 2D layers fail to tackle temporal dependency. So, IRC-GAN [256] explicitly handled
the two components of T2V generation, quality, and semantic consistency by integrating
LSTM cells with 2D transconvolutional networks. In this way, the 2D transconvolutional
layers focus on more details than 3D. However, to properly align the semantics of video and
text, the inefficient simple matching between the two is added with mutual-information
introspection for consistency. For this, a two-stage training process is adopted, where a
seq2seq text encoder with an introspective network extracts the mutual information be-
tween the text and video in stage one, and stage two tries to minimize the distance between
the two.

Text-filter conditioning GAN (TFGAN) [257] addresses the limitations of [253,255],
which require 3D convolutional layers for fixed-length videos, trained on low-resolution
data with simple text–video feature concatenation. Consequently, following [312], a shared
frame generator employing a recurrent network in the latent space resolves the fixed-length
video problem. Next, the use of ResNet-style architecture in GAN allows higher-resolution
results. Furthermore, utilizing the new multi-scale discriminative convolutional-filter text-
conditioning scheme enhances the text-video correlation. However, existing datasets are
not suitable to validate the effectiveness, so a new synthetic dataset is proposed.

Since text-to-video generation is new, many earlier works deal with limited synthetic
or real data. Hence, Mazaheri et al. [258] showed that instead of traditional RNN and
deconvolutions, which add extra parameters and complexity, temporal dynamics can be
captured by regressing the latent representation of the first and last frame from the text
followed by a context-aware interpolation method for in-between frames. Afterward, to
revert representations back to RGB frames, an upPooling stacking block is introduced that
can progressively increase resolution. Additionally, their discriminator encodes videos
on single and multiple frames for 2D and 3D CNN, respectively. As a result, they gen-
erated videos from free-form sentences on more challenging datasets of A2D [313] and
UCF101 [314].

The authors of TiVGAN [259] make use of the well-studied T2I task to explore T2V
and propose a text-to-image-to-video training framework using GAN. In the first step, a
T2I model creates a high-quality single video frame conditioned on text, then gradually
evolves to create longer frames with the given text. This step-by-step learning stabilizes the
training while producing high-resolution video. However, for further stabilization, several
other techniques are also introduced in this paper.

6.3.2. Manipulation

Very recently, Fu et al. [260] introduced a language-based video editing (LBVE)
task to semantically edit the content of the video given an input video, realizing video-
to-video (V2V). They proposed a multi-modal multi-level transformer that dynamically
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learns the correspondence between video perception and language at different levels. Due
to the newly defined task, they gathered three new datasets containing two diagnostic
and one natural video with human-labeled text. The model consists of a 3D ResNet to
encode the video frames, combined with the sentence, and word-level text embeddings
are fed to the multi-modal multi-level transformer. Inside this, a multi-level fusion (MLF)
mechanism performs the cross-modal fusion between text and video. Then, utilizing this
fused representation, the frame generator produces a video that is discriminated by a dual
discriminator, following [315].

7. Datasets

After listing the various T2Vo methods, now we present the list of the datasets found
in these studies, as shown in Table 3. We classified these datasets into images and videos
and added sections based on particular attributes and characteristics.

Many T2I papers adapt to three datasets, Oxford-102, CUB, and COCO, whereas other
image datasets serve as either zero-shot learning, use of additional annotation, or for a
different task. For T2S, the most used data is Pororo-SV, and in a rare case, another dataset is
also used for generalizability. However, T2V follows diverse datasets, where KTH, MSVD,
and Moving-MNIST are commonly seen in the literature.

In Table 3, we highlight the source of the dataset with given annotations, but in a
few cases, additional annotations are added by other studies, which we marked by the
reference of the paper in the annotation column. In almost all the datasets, data separation
into training, validation, and testing are given by the publishers. However, where there is
no clear distinction, different studies adopt different splits for evaluation.

Moreover, based on data collection, there are two types of datasets, real-world and
synthetic. Real-world data is often obtained from the internet or cameras and is generally
complex with a large storage capacity. On the other hand, the synthetic type is easy to
create and usually requires less storage and computational resources.

Table 3. Datasets found in the selected paper.

Name Year Designed for Source

Stats

AnnotationsApprox. Size
(GB)

Quantity Quality

Training Validation Testing Total
Approx.

Resolution (px)
Image data

Animal datasets

AwA2 [316] 2018 Transfer-learning AwA [317], Internet (Flicker,
Wikipedia) 13 20,142 9698 7460 37,300 - 85 binary-continuous class attributes

AFHQ [318] 2021 Image-to-Image translation Flicker, Pixabay 0.3 13,500 - 1500 15,000 512 × 512 3-domain (cat, dog, wildlife), breed
information

Digit datasets

SVHN [319] 2011 Object-recognition,
Text–natural_image learning

Google Street View 2.3 604,388 - 26,032 630,420 32 × 32 10 classes, character-level Bounding
box, multi-digit representation

MNIST [63] 1998 Pattern-recognition NIST 0.1 60,000 - 10,000 70,000 28 × 28 0–9 labels, 1 digit/image
MNIST-CB [320] 2018

Pattern-recognition

MNIST - 50,000 - 10,000 60,000 256 × 256 0–9 labels, 1 digit/image
Color-MNIST

[111] 2018 MNIST - 8000 - 8000 16,000 256 × 256 2 digits/image, 2 sizes, 6 colors, 4
relations

Multi-MNIST
[175] 2019 MNIST, AIR [321] 0.202 50,000 - 10,000 60,000 256 × 256 3 digits/image, labels,

layout-encoding, split_digits
Object-centric datasets

Oxford-102 [322] 2009 Image-Classification,
Fine-grain Recognition

Internet 0.5 7034 - 1155 8189 -

102 categories, chi2-distance,labels,
segmentation-mask, low-level (color,

gradient-histogram, SIFT), 10
captions/image [43]

CUB-2010 [323] 2010

Subordinate categorization Flicker

0.7 3000 - 3033 6033 -
Bounding Box, Rough Segmentation,
Attributes, labels, 10 captions/image

[43]

CUB-2011 [323] 2011 1.2 8855 - 2933 11,788 -

200-categories, 15 Part Locations, 312
Binary Attributes, 1 Bounding Box,
labels, 10 captions/image [43], text

commands [216]
Application datasets

GRP [324] 2016 Real-world interaction learning Ten 7-DOF robot arms pushing 137 54,000 1500 1500 57,000 640 × 512, 256 × 256
Robot joint-angle, gripper-pose,

commanded gripper-pose, measured
torques, images, 3–5 sec videos

Robotic-videos
[325] 2018 Visuomotor policies Camera recordings, commands 4.7 - - - 10,003 - 10 fps, avg. 20 sec videos, 3 angles, 3

cameras, attention map, pick–push task
Facial datasets

LFW [326] 2007 Face-recognition Faces-in-the-wild [327], Viola-Jones
[328] 1.5 2200 - 1000 13,233 ~total 250 × 250 4 categories (original, 3 aligned), labels,

names

CelebA [329] 2015 Facial-attribute learning CelebFaces [330] 23 160,000 20,000 20,000 200,000 Original, 218 × 178
Bounding boxes, Landmarks,

Attributes, Identity, text commands
[216]

CelebA-HQ [281] 2018 High-quality Facial-learning CelebA 28 - - - 30,000 1024 × 1024 + high quality

FFHQ [157] 2019 Facial-learing Flicker, MFA-ERT [331] 1280 60,000 10,000 - 70,000 Original, 1024 × 1024,
128 × 128 unsupervised high-level face attributes

CelebTD-HQ
[155] 2020 Text-to-faces

Celeb-HQ
- 24,000 - 6000 30,000 1024 × 1024 + 10 descriptions/image

Multi-modal
CelebA-HQ [229] 2021 Text-guided Multi-modal

generation 20 24,000 - 6000 30,000 1024 × 1024, 512 × 512 + 10 descriptions/image, label map,
sketches
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Table 3. Cont.

Name Year Designed for Source

Stats

AnnotationsApprox. Size
(GB)

Quantity Quality

Training Validation Testing Total
Approx.

Resolution (px)
Long-text datasets

VQA [332] 2015

Visual-reasoning

MS-COCO, Abstract-Scenes - 102,783 50,504 101,434 254,721 - 5 captions, 3 questions/image, 10
answers/image

VQA-2.0 [288] 2017 MS-COCO, Abstract-Scenes,
Binary-Abstract-Scenes [333]

- 443,000 214,000 453,000 1,110,000 -
+ 3 question/image, 10

answer/question,
image–question–answer pair

Recipe1M [334] 2017 High-capacity Multi-modal learning ~24 cooking websites 135 619,508 133,860 134,338 887,706 - 1M recipes (ingredients + instructions),
title, labels

Synthetic datasets

Abstract Scenes
[335] 2013 Semantic-information

(vision-language) 58-category clip-arts 0.8 8016 - 2004 10,020 -
58 classes, person attributes,

co-occurrence, absolute spatial location,
relative spatial location, depth ordering

CoDraw [336] 2019 Goal-driven human–machine
interaction

Abstract-Scenes, LViS [94], VisDial
[285] 1 7989 1002 1002 9993 - + dialogues, utterance–snapshot pairs

CLEVR [337] 2016
Visual-reasoning Computer-generated CLEVR-universe 19 70,000 15,000 15,000 100,000 224 × 224 ~unclear Q-A, Scene-graphs,

Functional-program

i-CLEVR [169] 2019 10 30,000 10,000 10,000 50,000 - + sequence of 5 image–instruction
pairs

CLEVR-G [111] 2018 CLEVR-(256 × 256) images 0.06 10,000 - 10,000 20,000 256 × 256 + still images

CLEVR-SV [231] 2019 Text-to-visual story CLEVR - 10,000 - 3000 13,000 320 × 240 4 objects/story, metallic/rubber
objects, 8 colors, 2 sizes, 3 shapes

Anime [338] 2021 Machine-learning DANBOORU-2021 [339] 265 - - - 1,213,000 512 (w,h) hand Bounding boxes, faces, figures,
hand

Real-world datasets

PASCAL-
VOC2007

[340]
2007 Object-detection, Classification,

Segmentation

Flicker

1 2501 2510 5011 10,022

2 classes, viewpoint, Bounding box,
occlusion/truncation, difficult,

segmentation (class, object), person
layout, user tags [341]

MIR-Flicker25k
[342] 2008

Classification, Retrival

3 15,000 - 10,000 25,000 Original multi-level labels, manual tags, EXIF

MIR-Flicker-1M
[343] 2010 12 - - - 100,000 Original, 256 × 256

+ “user-tags”, Pyramid histogram of
words [344], GIST [345], MPEG-7

descriptors [346]
CIFAR-10 [347] 2009

Image generation

Internet (Google, Flicker, Altavista),
WordNet [348]

0.2 50,000 - 10,000 60,000 32 × 32 10 classes, labels

LSUN [349] 2015

Google-images,
Amazon-Mechanical-Turk (AMT),

PASCAL-VOC-2012 [350], SUN
[351]

1736 - - - 60,000,000 256 (w,h) 10 scenes, 20 objects, labels

YFCC100M [352] 2016 Computer vision Flicker 15 - - - 99,206,564 (image),
793,436 (video) -

user tags, pictures, and videos,
geographic location, extraction

timespan, camera info
ILSVRC:

ImageNet [353] 2017 Classification, Retrival,
Detection, Feature extraction

Internet, WordNet [348] 166 1,281,167 50,000 100,000 14,197,122 ~total 400 × 350 Bounding boxes, SIFT features, labels,
synets

MS-COCO [354] 2015 Detection, segmentation Flickr 25 165,482 81,208 81,434 328,124 -

Pixel-level segmentation, 91 object
classes, 5 descriptions, panoptic,

Instance spotting, Bounding boxes,
Keypoint detection, dense pose,
VisDial dialogue, Scene graphs

COCO-stuff [355] 2018 Background in computer vision
MS-COCO

21 118,490 5400 40,900 164,790 - + stuff_labels

LN-COCO [294] 2020 Multimodal tasks (vision–language),
image captioning

7 134,272 8573 - 142,845 - captions, speech, groundings
(mouse-trace)

CC3M [356] 2018 Image-captioning Flumejava [357] 0.6 3,318,333 28,000 22,500 3,368,833 400 (w,h) image–caption pair, labels,

VG [197] 2017 Cognitive-task MS-COCO, YFCC100M 15 - - - 108,077 500~width

Region-descriptions, Objects,
Attributes, Relationships,

Region-graphs, Scene-graphs, Q-A
pairs

VG+ [187] 2020 VG - - - - 217,000 - -
OpenImages

[358] 2020 Image classification Flicker 565 9,011,219 41,620 125,436 9,178,275 1600 × 1200, 300,000-px Class-labels, image-labels, Bounding
boxes, visual relation annotation

LN-OpenImages
[294] 2020 Multimodal tasks (vision-language) OpenImages 21 507,444 41,691 126,020 675,155 - captions, speech, groundings

(mouse-trace)
LAION-400M

[359] 2021 Multi-modal Lanuage-vision
learning Common-Crawl [360] 11,050 - - - 413,000,000 1024, 512, 256 image–caption pair

3D datasets
Primitive Shapes

[120]
2018 Text-to-3D_shape

Voxilizing 6-type primitives 0.05 6048 756 756 7560 32 × 32 synthetic 255 descriptions/primitive, 6
shape labels, 14 colors, 9 sizes

ShapeNetCore
[120] ShapeNet [361], AMT 11 12,032 1503 1503 15,038 32 × 32, 256 × 256, 128

× 128

5 descriptions/shape, color
voxelization (suface, solid), 2

categories (table, chair)
Text–to–3D

House Model
[122]

2020 House-planning - 1 1600~houses,
503~textures - 400~houses,

370~textures
2000~houses,
873~textures

avg. 6 rooms/house, 1 description,
textures_images

IScene [247] 2020 Text-to-3D video generation Computer generated - 100,000~static
100,000~animated

5000~static
5000~animated

6400~static
6400~animated

1,300,000~static
1,400,000~animated - 13 captions/static scene, 14

captions/animated
Editing datasets

ReferIt [362] 2014 Natural language referring the
expression

ImageCLEF IAPR [363], SAIAPR
TC-12 [364] 3 10,000 - 9894 19,894 -

238 object categories, avg. of 7
descriptions/image, labels,

segmenation maps, object attributes

Fashion-
synthesis

[365]
2017 Text-based image editing DeepFashion 8 70,000 8979 78,979 256 × 256

descriptions, labels (gender, color,
sleeve, category attributes),

segmentation maps, Bounding boxes,
dense pose, landmark

CoSaL [204] 2018 Language-Based Image Editing Computer-generated - 50,000 - 10,000 60,000 - 9 shapes, descriptions (direct,
relational)

Global-edit-Data
[226] 2018 Global Image editing AMT, MIT-Adobe-5K [366] - 1378 252 252 1882 -

original edit pair, transformation
rating, phrase description of

transformation

Zap-Seq [172] 2020
Interactive image editing

UT-Zap50K [367] - - - - 8734 - 3–5 image sequences, shoes, attributes,
multi-captions

DeepFashion-Seq
[172] 2020 Deepfashion [368] - - - - 4820 - clothes, attributes, 3-5 image

sequences, multi-captions

GIER [205] 2020 Language-Based Image Editing Zhopped.com [369], Reddit.com
[370], AMT, Upwork 7.5 4934 618 618 6170 128 × 128, 300 × 500 5 language_requests, 23 editing

operations, masks
MA5k-Req [207] 2021 Image editing AMT, MIT-Adobe-5K [366] 9.5 17,325 2475 4950 24,750 - 5 edits/image, 1 description/image

Story datasets

VIST [371] 2016 Sequential vision-to-language YFCC100M, AMT, Stanford
CoreNLP [227] 320 40,108 5013 5013 50,136~stories - 5-image/story, 1-caption/image

PororoQA [372] 2017 Visual question answering Pororo, AMT 11.5 103~episodes,
5521~QA

34~episodes,
1955~QA

34~episodes,
1437~QA

171~episodes,
8913~QA -

40-s video/story (408-movies),
multi-captions/1-s video,

multi-QA/story, 13-characters
Pororo-SV [231] 2019 Text-to-visual story PororoQA - 13,000 - 2336 15,336 - 1-description/story, 5-image/story

Video datasets

TRECVID’03
news [373] 2003 Video information retrieval ABC World News Tonight,

CNN headline news, C-SPAN programs
- 127~h - 6~h 133~h -

Story segmentation, 17 features, shot
separations, (1894 binary word/

video-shot, 166 HSV color correlogram
[92])

FlintstonesSV
[239] 2021 Sequential vision-to-language FlintStones Dataset 5 20,132 2071 2309 24,512 - + 7 characters, 5 images/story

FlintStones
Dataset [243] 2018 Video caption perceptual reasoning,

semantic scene generation
Flintstones, AMT 128 20,148 2518 2518 25,184 -

3 sec clip (75 frames), Bounding boxes,
segmentation maps, 1-4 sentence

descriptions/video, clean background,
labels

MSVD [374] 2011 Machine paraphrasing Youtube, AMT 1.7 1773 - 197 1970 - avg. 40 descriptions/video, 4–10 sec
video, multi-lingual descriptions

MSR-VTT [375] 2016

Text–video embedding

Internet, AMT 6 6513 497 2990 10,000 original, 320 × 240 30 fps, 20 captions/video, 41.2 h video,
20 categories

Text-to-video-
dataset
[253]

2017 Youtube, KHAV [376] - 2800 400 800 4000 original, 256 × 256
SIFT-keypoints, 25 fps, 10 categories,

400 videos/category, title and
description

Zhopped.com
Reddit.com
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Table 3. Cont.

Name Year Designed for Source

Stats

AnnotationsApprox. Size
(GB)

Quantity Quality

Training Validation Testing Total
Approx.

Resolution (px)

Epic-Kitchen
[377] 2018 Egocentric Vision Camera recordings, AMT,

Youtube caption tool
740 272 - 106~seen, 54~unseen 432 1920 ×1080

60 fps, object bounding boxes, action
segmentation, multi-lingual sound

recordings, 1–55 min variable duration

Howto100M [310] 2019

Text–video embedding

Youtube, WikiHow 785 - - - 1,220,000 original, 256 (w,h) caption, avg. 110 clip–caption
pairs/video, 12 categories

Moving Shapes
(v1,v2) [257] 2019 Computer-generated - 129,200 - 400 129,600 256 × 256

3 shapes, 5 colors, 2 sizes, 3 motion
types, 16 frames/video, 1

caption/video
Bouncing MNIST

[250] 2017 Text–video generation Bouncing MNIST - 10,000 2000 - 12,000 256 × 256 single-digit, 2-digit,labels, caption, 10
frames/video

Video editing datasets

E-CLEVR [260] 2022

Text-based video editing

CLEVR, CATER [378] - 10,133 - 729 10,862 128 × 128 20 fps, avg. 13 words/caption, source
target video

E-JESTER [260] 2022 20BN-JESTER [379], AMT - 14,022 - 885 14,907 100 × 176 4 fps, 27 classes, avg. 10 words/caption

E-MNIST [260] 2022 moving-MNIST - 11,070 - 738 11,808 256 × 256 Source target video, 2 types
(S-MNIST, D-MNIST), 30 fps,

avg. 5.5 word/caption,
Human action datasets

MHP [380] 2014 Pose estimation YouTube videos 13 28,821 - 11,701 40,522 -

body–joint positions, torso–head 3D
orientations, joint and body part

occlusion labels, 491 activity labels, 3
captions/image [381]

KTH-Action [382] 2004 Action recognition Camera recordings - 770 766 855 2391 160 × 120
6 actions, 25 people, 25 fps, 4 sec video,
4 scenarios, caption-SyncDRAW [250],

caption-KTH-4 [256]

MUG [383] 2010 Facial understanding Camera images 38 - - - 204,242 896 × 896
86 subjects, 80 facial landmarks, 7

emotions, 19 fps, direct emotions FACS
[384], video induced emotions

UCF-101 [314] 2012

Human action recognition

UCF50 [385], YouTube 127 13,320 2104 5613 21,037 320 × 240

101 classes in 5 types, STIP features, 7.2
sec video avg., 25 fps, 25

groups/action, dynamic background,
Bounding boxes, class attributes

A2D [386] 2015 Youtube 20 3036 - 746 3782 -

avg. 136 frames, 7 actors, 8 actions,
instance-level segmentation,

descriptions [313], frame-level BBox
[387]

KHAV [376] 2017 Youtube, AMT - 253,540 17,804 34,901 306,245 variable 400 classes, min 400 videos/class, avg.
10 sec video

CUHK-PEDES
[388] 2017 Person searching (video

surveillance)

CUHK03 [389], Market-1501 [390],
AMT, SSM [391], VIPER [392],

CUHK01 [393],
- 34,054 3078 3074 40,206 - 2- descriptions/image, attribute labels,

orientation phrase [219]

8. Evaluation Metrics and Comparisons

To complete the discussion of this study, we enlist the evaluation metrics used for
various T2Vo methods, split between automatic evaluation metrics and human-based.
Despite the flaws of current automated metrics, we compile different evaluation metrics
and their scores in a separate table, Table 4, to T2I because of detailed research in this
domain, whereas another table, Table 5, is devoted to T2S and T2V.

8.1. Automatic

First, we discuss the automatic evaluation metrics used for T2Vo tasks, followed by
human-based studies.

8.1.1. T2I

Among the given automated metrics, there are two distinct divisions: one evaluates the
quality of visual output and the other for measuring the semantic alignment between visual
and textual data. Table 4, for automatic T2I evaluation metrics, lists only the frequently used
metrics, such as Inception Score (IS), Fr´echet Inception Distance (FID), Structural Similarity
Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) for quality. Metrics
such as Semantic Object Accuracy (SOA), Visual-semantic Similarity (VSS), R-precision,
and Captioning metrics help evaluate the image–text alignment.

Quality metrics
IS [116] is a numerical assessment method that computes a conditional label distri-

bution by classifying generated images using a pretrained Inception-v3 network. This
distribution should have low entropy to indicate the meaningful images from the genera-
tion network, showing diversity. However, it fails to capture the over-fitting problem and
cannot measure intra-class variations [177].

FID [394] finds the distance between the actual and the generated images using ex-
tracted features from a pre-trained network, which is more consistent than IS. For FID,
multidimensional Gaussian is assumed, which is not necessary every time. Moreover, FID
suffers from high variance when per-class samples are low.
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SSIM is another image quality assessment method based on perception to measure
the similarity between images. It considers image degradation as a perceived change in
structural information while incorporating important perceptual phenomena, including
luminance masking and contrast masking terms.

LPIPS [395] is the L2 distance between features extracted from a deep learning model
of two images, closely resembling human perception. So, the higher the distance, the
greater the diversity, indicating a better generative model.

Semantic metrics
SOA [177] utilizes a pre-trained object detection network to infer the objects within an

image from the given caption. This metric evaluates the individual areas or objects rather
than the holistic image as in IS or FID while considering the captions.

VSS [126] metric measures the distance between the generated image and its caption
using two models that embed images and captions, respectively, and then minimizes the
cosine distance between matching image–caption pairs and vice versa for mismatching.

R-precision [34] on the other hand, performs the same action as VSS, where instead
of a VSS score between a given image and caption, it performs a ranking of the similarity
between the real caption and randomly sampled captions for a given generated image. So,
both these metrics, VSS and R-precision, do not consider the quality of individual objects.

Captioning metrics [180] try to evaluate the T2I models by comparing the original
captions with captions obtained from generated images using a pre-trained caption genera-
tor. Then these two captions are compared by standard language similarity metrics such
as METEOR, CIDEr, and BLEU. The main problem with these metrics is the one-to-many
mapping, as one caption is valid for many. So, they are sensitive to n-gram overlap, which
is insufficient for two sentences to convey the same meaning.

8.1.2. T2S and T2V

The Table 5 for T2S and T2V indicates a diverse range of metrics as there is no standard.
So, next, we briefly define these metrics.

T2S models typically employ classification accuracy as an evaluation metric for the
story characters and the image frame. So, a classifier is trained on images generated by
the network, and then its performance is checked on the original test dataset used to train
the generative network. For the case of character classification, a pre-trained Inception-v3
model identifies the character in the generated image.

Meanwhile, [235], following FID and FVD, proposed FSD that measures the consis-
tency between frames. FVD [396] evaluates a sequence of generated images and adopts
Inflated 3D ConvNet for video but requires a minimum of seven frames. So, FSD based
on [397] as backbone calculates the Frechet distance.

In terms of videos, metrics such as Negative loglikelihood (NLL) as a reconstruction
loss, CLIP-similarity, and Relative matching (RM) [254] evaluate the text–video seman-
tic match and domain-independent generation quality, respectively. Furthermore, some
studies used GAM [398] as an evaluation metric that can directly compare two generative
models by engaging them against each other. Its limitation is the use of only GAN models.
In the video editing task, video activation distance (VAD) as the mean L2 distance between
video frames using ResNext is adopted.

8.2. Human Evaluation

Even though the need for automated evaluation metrics is crucial, their lack of consis-
tency and reliability is a bottleneck to the proper assessment of the T2Vo tasks. So, many
studies additionally performed a human-based evaluation to better judge the quality of
the generated output. A typical setup is to create the output from many models and then
present it to a group of people to rank what they perceive as best. This evaluation technique
is prone to two severe types of mistakes, inconsistent methods, and human error during
evaluation, as people have personal likings that are dependent on many factors. So, we
skip to these metrics in the paper for any comparison.
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Table 4. Comparison of different image models based on the most-used evaluation metrics. Models
marked in dark blue represent additional metrics not listed in the table, whereas light blue shows
the models which do not give any of these metrics in their own paper. To efficiently compact the
table, the symbol “;” separates the datasets within the same row, “-” for no data available, and “,”
for listing.

Model (Categories of image models)

Evaluation Metrics
Quality Semantics

Datasets:
(1) Oxford
(2) CUB
(3) MS-COCO; COCO-stuff
(4) CoDraw/Abstract-Scenes
(5) Conceptual captions

(6) FFHQ; CelebTD-HQ; CelebA-HQ; CelebA; MM-Celeb-HQ
(7) ImageNet
(8) CIFAR-10
(9) Visual-genome
(10) Fashion-data (Zap-seq; DeepFashion-seq; Fashion-synthesis)

(11) Pororo
(12) 3D-houses
(13) LN-data (COCO; OpenImages)
(14) VQA 2.0
(15) CLEVR

(16) Editing-data (GIER; MA5k-Req; MIT-Adobe5k)
(17) CUHK-PEDES
(18) Video-generation (KTH; MSVD; MSR-VTT; Kinetics, MUG; UCF-101; A2D)

IS
(higher-better)

FID, SceneFID
(low-better)

SSIM
(higher-better)

LPIPS
(High-better)

SOA-c, SOA-i %
(High-better)

VS-Similarity
(High-better)

R-precision %
(High-better)

Captioning metrics
(BLEU, METEOR, ROUGE_L,

CIDEr, SPICE, CapLoss)
(High-better)

[100] (3) 24.77 ± 1.59 (3) (0.614, 0.426, 0.300, 0.218),
0.201, 0.457, 0.656, 0.130

[101] (2) 1.35 ± 0.25
(3) 17.9 ± 0.15

(2) 56.10
(3) 27.50

[103] (3) 18.2 (3) 23.6 (3) -, -, -, -, -, 2.43

[105] (5) 15.27± 0.59
(6) 4.49 ± 0.05

(5) 22.61
(6) 10.81
(7) 21.19

(6) (CLIP: 0.23 ± 0.03)

[106] (1) 4.28 ± 0.09
(2) 6.89 ± 0.06

(1) 0.2174
(2) 0.3160

[107] (1) 4.66 ± 0.07
(2) 7.94 ± 0.12

(1) 0.2186
(2) 0.3176

[5] (3) 0.156 ± 0.11

[110] (1) 4.21 ± 0.06
(2) 4.97 ± 0.03

[113]

(1) 14.1
(2) 10.32
(3) 13.86
(6) 6.33

(7) 11.89
[116] (8) 8.09 ± 0.07

[7]
(1) 4.17 ± 0.07
(2) 5.08 ± 0.08
(3) 7.88 ± 0.07

(1) 79.55
(2) 68.79
(3) 60.62

(1) 0.1948
(2) 0.2934
(15) 0.596

(2) 0.082 ± 0.147 (3) 0.077, 0.122, -, 0.160

[117] (8) 8.25 ± 0.07 (12) 220.18

[118] 3.45 ± 0.05

[122] (12) 145.16

[124] (2) 5.10
(2) 14.81
(3) 21.42

(6) -; -; -; -; 137.60
(6) -; -; -; -; 0.581 (3) (CLIP: 66.42 ± 1.49) (3) -, -, -, -, -, 3.09

[32]

(1) 3.20 ± 0.01
(2) 3.70 ± 0.04

(3) 8.45 ± 0.03; 8.4 ± 0.2
(7) 8.84 ± 0.08
(9) 7.39 ± 0.38
(10) 7.88; 6.24

1) 55.28
(2) 51.89

(3) 74.05; 78.19
(7) 89.21
(9) 77.95

(10) 60.62; 65.62

(1) 0.1837
(2) 0.2812

(10) 0.437; 0.316

(1) 0.278 ± 0.134
(2) 0.228 ± 0.162 (2) 10.37 ± 5.88 (3) 0.089, 0.128, -, 0.195;

0.062, 0.095, -, 0.078

[33]

(1) 3.26 ± 0.01
(2) 4.04 ± 0.05
(3) 8.30 ± 0.10
(6) -; -; -; 1.444
(7) 9.55 ± 0.11

2) 15.30
(3) 81.59

(6) -; -; -; 285.48
(7) 44.54

(12) 188.15

(2) 0.028 ± 0.009
(6) -; -; -; 0.292 ± 0.053

(2) 45.28 ± 3.72
(3) 72.83 ± 3.17

[125] (2) 3.00 ± 0.03

[126]
(1) 3.45 ± 0.07
(2) 4.15 ± 0.05

(3) 11.86 ± 0.18; 11.9 ± 0.2

(1) 40.02 ± 0.55
(2) 18.23
(3) 75.34

(1) 0.1886
(2) 0.2887

(1) 0.296 ± 0.131
(2) 0.246 ± 0.157
(3) 0.199 ± 0.183

[127] (1) 3.52 ± 0.02
(2) 4.38 ± 0.05

(1) 0.297 ± 0.136
(2) 0.290 ± 0.149

[128]
(1) 3.57 ± 0.05
(2) 4.48 ± 0.04
(3) 27.53 ± 0.25

(1) 0.303 ± 0.137
(2) 0.253 ± 0.165
(3) 0.227 ± 0.145

[34]

(1) 3.55 ± 0.06
(2) 4.36 ± 0.03

(3) 25.89 ± 0.47; 25.9 ± 0.5
(9) 8.20 ± 0.35
(10) 9.79; 8.28
(13) 20.80; 15.3

(14) 20.53 ± 0.36
(17) 3.726 ± 0.123

(2) 23.98
(3) 35.49; 35.49

(6) -; -; -; -; 125.98
(9) 72.11

(10) 48.58; 55.76
(13) 51.80; 56.6

(14) 44.35

(1) 0.1873
(2) 0.3129

(10) 0.527; 0.405
(17) 0.298 ± 0.126

(6) -; -; -; -; 0.512 (3) 25.88, 38.79 (2) 0.279
(3) 0.071

(1) 20.3 ± 1.5
(2) 67.82 ± 4.43
(3) 85.47 ± 3.69

(CLIP: 65.66 ± 2.83)
(13) 43.88

(3) -, -, -, 0.695 ± 0.005, -, 3.01;
0.087, 0.105, -, 0.251

[129] (3) 23.74 ± 0.36 (3) 34.52 (3) 86.44 ± 3.38

[130] (2) 4.67 ± 0.04
(3) 27.86 ± 0.31

(2) 18.167
(3) 32.276

(2) 0.302
(3) 0.089

[131] (2) 4.58 ± 0.09
(3) 24.06 ± 0.60 (6) -; -; -; -; 116.32 (6) -; -; -; -; 0.522 (3) 25.64, - (2) 69.33 ± 3.23

(3) 82.43 ± 2.43

[132] (2) 4.56 ± 0.05
(3) 25.98 ± 0.04

(2) 10.41
(3) 29.29

[133] (1) 3.98 ± 0.05
(2) 4.48 ± 0.05

[134] (2) 5.03 ± 0.03
(3) 31.01 ± 0.34

(2) 11.83
(3) 31.97

[135] (2) 4.91 ± 0.03
(3) 30.85 ± 0.7

(2) 14.3
(3) 31.14 (3) 32.78, - (2) 71.57 ± 1.2

(3) 89.57 ± 0.9 (3) 0.381, -, -, -, -

[136] (2) 4.42 ± 0.04
(3) 35.08 ± 1.16

(2) 15.19
(3) 28.12

(2) 85.45 ± 0.57
(3) 92.61 ± 0.50

[137] (1) 3.65 ± 0.06

[138] (2) 4.67 ± 0.09
(3) 35.69 ± 0.50; 35.7 ± 0.5 (3) 29.35 (3) 51.68

[139] (2) 4.85 ± 0.04
(3) 31.67 ± 0.36

(2) 17.32
(3) 30.73

[140] (1) 3.87 ± 0.05
(2) 4.66 ± 0.04

(1) 32.64
(2) 9.35

[141] (7) 60.6 ± 1.6

[143] (2) 4.56 ± 0.05
(3) 26.47 ± 0.41; 26.5 ± 0.4

(2) 18.34
(3) 34.71 (3) 27.52, - (2) 60.42 ± 4.39

(3) 80.21 ± 0.39

[145]
(1) 2.90 ± 0.03
(2) 3.58 ± 0.05
(3) 8.94 ± 0.20

(1) 37.94 ± 0.39
(2) 18.41 ± 1.07
(3) 27.07 ± 2.55

[146] (2) 4.75 ± 0.07
(3) 30.49 ± 0.57; 30.5 ± 0.6

(2) 16.09
(3) 32.64; 32.64

(6) -; -; -; -; 131.05
(6) -; -; -; -; 0.544 (3) 33.44, 48.03

(1) 19.9 ± 1.4
(2) 72.31 ± 0.91
(3) 88.56 ± 0.28

(CLIP: 65.45 ± 2.18)

(3) -, -, -, 0.823 ± 0.002, -, 2.87
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Table 4. Cont.

Evaluation Metrics

Quality Semantics

Datasets:
(1) Oxford
(2) CUB
(3) MS-COCO; COCO-stuff
(4) CoDraw/Abstract-Scenes
(5) Conceptual captions

(6) FFHQ; CelebTD-HQ; CelebA-HQ; CelebA; MM-Celeb-HQ
(7) ImageNet
(8) CIFAR-10
(9) Visual-genome
(10) Fashion-data (Zap-seq; DeepFashion-seq; Fashion-synthesis)

(11) Pororo
(12) 3D-houses
(13) LN-data (COCO; OpenImages)
(14) VQA 2.0
(15) CLEVR

(16) Editing-data (GIER; MA5k-Req; MIT-Adobe5k)
(17) CUHK-PEDES
(18) Video-generation (KTH; MSVD; MSR-VTT; Kinetics, MUG; UCF-101; A2D)

[148] (3) 52.73 ± 0.61 (3) 55.82 (3) 77.02, 84.55 (3) 93.59

[150]
(AttnGAN, DM-GAN)

(2) 4.42 ± 0.05, 4.77 ± 0.05
(3) 25.70 ± 0.62, 33.34 ± 0.51

(2) 16.34, 14.38
(3) 23.93, 20.79

(2) 69.64 ± 0.63, 78.99 ± 0.66
(3) 86.55 ± 0.51, 93.40 ± 0.39

[151] (3) 30.45
(13) 28.37; 24.90

(3) 9.33
(13) 14.12; 26.91

(3) 50.94, 71.33
(13) 36.76, 48.14

(3) 71.00
(13) 66.92; 57.55

[152] (2) 4.74 ± 0.04
(3) 16.40 ± 0.30 (2) 0.298 ± 0.146

[153] (1) 3.71 ± 0.06
(2) 4.23 ± 0.05

(1) 16.47
(2) 11.17

[155] (2) 4.78 ± 0.03
(3) 33.0 ± 0.31 (6) -; 5.08 ± 0.07 (2) 79.56

(3) 88.23
[158] (3) -; 34.7 ± 0.3 (3) -; 30.63

[159] (3) 32.88 ± 0.93 (3) 25.24 (3) 63.80 ± 1.12
(CLIP: 98.44 ± 0.15)

[160]

(2) 5.97
(3) 32.34

(6) -; -; 2.93
(13) 26.32

(2) 10.48
(3) 8.12

(6) -; -; 12.54
(13) 11.78

(3) 61.09, 74.78

[162] (1) 3.52 ± 0.15
(2) 4.07 ± 0.13

[165] (1) 4.53 ± 0.05
(2) 5.23 ± 0.09

(1) 26.7 ± 1.6
(2) 23.8 ± 1.5

[167] (1) 4.09 ± 0.08
(2) 4.76 ± 0.05

(1) 41.85
(2) 21.66

[168] (3) 9.74 ± 0.02
[169] (16) 87.0128; 33.7366 (16) 0.7492; 0.7772

[171] (14) 21.92 ± 0.25 (14) 41.7
(15) 36.14

[172] (10) 9.58; 8.41 (10) 50.31; 53.18 (10) 0.651; 0.498

[173] (3) 26.64 (3) 25.38 (3) 84.79
[43] (2) 3.62 ± 0.07 (2) 67.22 (2) 0.237 (2) 0.114 ± 0.151
[175]

(StackGAN, AttnGAN) (3) 12.12 ± 0.31, 24.76 ± 0.43
(3) 55.30 ± 1.78,

33.35 ± 1.15

[177] (3) 27.88 ± 0.12 (3) 24.70 ± 0.09 (3) 35.85, 50.47 (3) 89.01 ± 0.26 (3) -, -, -, 0.819 ± 0.004

[178] (3) -; 17.0 ± 0.1
(9) 14.4 ± 0.6

(3) -; 45.96, 16.76
(9) 39.07, 9.63

[180] (3) 11.46 ± 0.09; 11.46 ± 0.09 (3) -; 0.122, 0.154, -, 0.367

[184] (3) 32.79 ± 0.21
(13) 16.5

(3) 21.21
(13) 66.5 (3) 27.14, 41.24 (3) 93.39 ± 2.08 (3) -, -, -, 0.783 ± 0.002

[186] (1) 3.92 ± 0.02
(2) 4.62 ± 0.06

(1) 85.81
(2) 85.28

[187] (3) -; 32.31
(9) 20.83

[189]
(1) 4.72 ± 0.1
(2) 4.97 ± 0.21

(3) 29.87 ± 0.09

(1) 74.32
(2) 63.78
(3) 79.57

[191] (2) 5.06 ± 0.21
(3) 29.03 ± 0.15

(2) 16.87
(3) 20.06

(2) 99.8
(3) 95.0

[192] (3) -; 7.3 ± 0.1
(9) 6.3 ± 0.2

(3) -; 67.96
(9) 74.61

(3) -; 0.29 ± 0.10
(9) 0.31 ± 0.08 (3) 0.107, 0.141, -, 0.238

[194] (3) -; 4.14

[198] (3) -; 14.5 ± 0.7 (3) -; 81.0 (3) -; 0.67 ± 0.05

[199] (3) -; 10.2 ± 0.2
(9) 8.2 ± 0.2

(3) -; 38.29
(9) 35.25

(3) -; 0.32 ± 0.09
(9) 0.29 ± 0.08

[200] (3) -; 14.78 ± 0.65
(9) 12.03 ± 0.37

(3) -; 26.32
(9) 27.33

(3) -; 0.52 ± 0.09
(9) 0.56 ± 0.06 (3) 0.139, 0.157, -, 0.325

[201]
(StackGAN, AttnGAN, DM-GAN)

(3) 10.38 ± 0.2, 28.18 ± 0.51,
32.37 ± 0.31 (3) -, 29.26, 32.37 (3) -, 86.39 ± 0.0039,

90.37 ± 0.0063

[203] (13) 21.30; 14.7 (13) 48.70; 61.9 (13) 37.88

[207] (16) 49.2049; 6.7571 (16) 0.8160; 0.8459

[208]

(1) 5.03 ± 0.62
(2) 1.92 ± 0.05

(10) -; -; 8.65 ± 1.33
(17) 3.790 ± 0.182

(10) 22.86
(16) 140.1495; 30.9877

(16) 0.7300; 0.7938
(17) 0.239 ± 0.106

(2) 0.045
(3) 0.077

[210]
(2) 4.451

(6) -; -; -; 1.178
(10) 9.83; 8.26

(2) 50.51
(6) -; -; -; 421.84
(10) 47.25; 56.49

(16) 112.4168; 43.9463

(10) 0.512; 0.428
(16) 0.5777; 0.5429

(2) 0.060 ± 0.024
(6) -; -; -; 0.024 ± 0.012

(2) 0.048
(3) 0.089

[211]
(1) 4.83 ± 0.48
(2) 2.59 ± 0.11

(10) -; -; 8.78 ± 1.43
(10) -; -; 10.72

[213]

[214]
(1) 6.26 ± 0.44
(2) 2.76 ± 0.08

(10) -; -; 11.63 ± 2.15
(16) 214.7331; 102.1330 (16) 0.4395; 0.4988

[215] (2) 8.47
(3) 14.96

(2) 11.74
(3) 25.08

(6) 143.39; -; -; -; 117.89
(2) 0.001 ± 0.000 (2) 10.1

(3) 8.7

[216] (2) 4.599
(6) -; -; -; 3.069

(2) 2.96
(6) -; -; -; 32.14

(2) 0.081 ± 0.001
(6) -; -; -; 0.152 ± 0.003

[219] (17) 4.218 ± 0.195 (17) 0.364 ± 0.123

[221] (2) 8.02
(3) 12.39

[222] (2) 0.0547
(3) 0.0709

[226] (16) 74.7761; 14.5538 (16) 0.7293; 0.7938

[229]
(generation, manipulation)

(6) (-, 135.47); -; -; -;
(106.37, 107.25) (6) -; -; -; -; 0.456

However, another way of evaluating the models is known as ablation study, which
differs in terms of methods but is used to validate the performance of the given method.
Furthermore, the use of subjective results of the visual output is another human-based
comparison method commonly applied in the T2Vo tasks, as shown in Figures 9–11.
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Table 5. Similar to image model evaluation metric table, but represents story and video tasks.

Model

Evaluation metrics

Quality

Datasets:
(1) Pororo
(2) CLEVR
(3) Flintstones
(4) KTH
(5) MSVD
(6) MSR-VTT
(7) Kinetics
(8) MUG

(9) UCF-101
(10) A2D
(11) IScene
(12) MNIST (1-digit; 2-digit)
(13) Text-Video-data
(14) Robotic-dataset
(15) Video-manipulation (E-MNIST; E-CLEVR; E-JESTER)

IS
(Frame, Video)
(higher-better)

FID
(low-better)

FSD
(low-better)

FVD
(low-better)

SSIM
(higher-better)

VAD
(Low-better)

GAM
(low-diverse)

Accuracy
(Object, Gesture, Frame)

(High-better)

Char. F1
(High-better)

CA
(High-better)

NLL
(Low-better)

R-precision %
(High-better)

RM
(High-better)

CLIP-sim
(High-better)

BLEU
(High-better)

[230] (1) 50.24 (1) 30.40 (1) -, -, 28.06 (1) 58.11 58.11 (1) 5.30/2.34

[231] (1) 49.27 (91) 111.09 (1) 274.59 (1) 0.481
(2) 0.672 (1) 27.0 (1) 1.51 ± 0.15 (1) 3.24/1.22

[31] (1) 0.509 (1) 25.7

[233] (1) 0.521 (1) 38.0

[235] (1) 40.56 (1) 71.51 (1) 190.59 (1) 1.76 ± 0.04 (1) 3.25/1.22

[237] (1) 34.53 (1) 171.36 (1) -, -, 13.97 (1) 38.01 (1) 3.56 ± 0.04 (1) 3.68/1.34

[239] (1) 18.09 (1) -, -, 17.36 (1) 43.02 (1) 3.28 ± 0.00 (1) 3.80/1.44

[243] (3) 7.636

[244] (4) 2.077 ± 0.299, 1.280 ± 0.024
(5) 2.580 ± 0.125, 1.141 ± 0.013

[247]
(static, animated) (11) 0.812, 0.849

[250] (12) 340.39; 639.71

[252] (4) 70.95

[253] (7) 82.13, 14.65 (7) 42.6
(13) 42.6

[254] (6) 98.34 (6) 24.02

[255]

(4) 1.937 ± 0.134, 1.005 ± 0.002
(5) 1.749 ± 0.031, 1.003 ± 0.001

(7) -, 4.87
(8) -, 4.65

(9) -, 3.95 ± 0.19
(10) -, 3.84 ± 0.12
(14) -, 2.97 ± 0.21

(4) 69.92
(9) 51.64
(10) 31.56
(14) 6.59

(5) 0.96 (14) 70.4 (9) 0.19
(10) 0.31

[256] (4) 0.667
(12) 0.673; 0.687

[257] (7) 31.76, 7.19 (7) 76.2

[258]
(9) -, 7.01 ± 0.36
(10) -, 4.85 ± 0.16
(14) -, 3.36 ± 0.15

(9) 51.64
(10) 25.91
(14) 3.79

(14) 76.6 (9) 0.43
(10) 0.39

[259] (7) -, 5.55
(8) -, 5.34 (4) 47.34 (7) 77.8

[260] (15) 1.90; 1.96; 1.44 (15) 93.2; 84.5; -, 89.3

Figure 9. Examples reproduced from [177] using the COCO dataset.
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Figure 10. Example of Pororo-SV dataset, reproduced from [237].

Figure 11. Reproduced from [254] on MSR-VTT dataset.

9. Applications

Currently, various practical applications of T2Vo exist for industrial and commercial
use. From the T2I task, the current applications include generating compelling images
from the given text, which can be viewed as cross-modal information retrieval. Moreover,
from the literature [208,211,221], the T2I task has another application for interactive and
iterative image manipulation, especially useful for fashion and daily photography for a
non-technical person. Additionally, missing regions of an image can be filled with visually
realistic content while keeping coherence with image inpainting [222] guided by the text,
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a crucial task for image restoration. As identified in [122], we can also automate the
laborious 3D house modeling task. Furthermore, the application of modifying the human
appearances, including poses and attributes from the natural language [219] is useful for
surveillance systems.

The T2S task is more interesting than T2I as it is close to human imagination. Due
to the limited research in this field, the prospective applications include visualization of
educational materials, such as the water cycle in a science lesson, and assisting artists with
web-comic creation.

Over the internet, an extensive amount of data in images and videos accompanied
with text serves as communication among users. In particular, video search engines or
movie databases such as YouTube or IMDb have textual descriptions or comments about
the video that describe the theme of the video in a shorter way. When in the reverse
direction, T2V is formulated, which can be helpful for creating animated movies or visual
representations of some concept. Like T2S, T2V is an immature topic with lots of limitations
and gaps, so currently, practical applications are under development for this task.

Open-Source Tools

T2Vo tasks are performed by one of two methods: developing a model from scratch
or improving an existing model. Two essential tools are required to complete the task for
both methods. First, a deep learning environment is necessary for developing a model,
such as MATLAB (https://www.mathworks.com, accessed on 30 May 2022), C++ (https:
//isocpp.org, accessed on 30 May 2022), or Python (https://www.python.org, accessed
on 30 May 2022). However, MATLAB is proprietary closed-source software, and C++ is
typically complex compared to other programming languages, whereas Python is an open-
source, free software that is user-friendly and widely used by researchers for deep learning.
On top of that, many open-source libraries and frameworks optimized for Deep Learning
(DL) and Machine Learning (ML) are easily available for Python. Some of them are:

• Pytorch, TensorFlow, Keras, and Scikit-learn; for DL and ML;
• NumPy; for data analysis and high-performance scientific computing;
• OpenCV; for computer vision;
• NLTK, spaCy; for Natural Language Processing (NLP);
• SciPy; for advanced computing;
• Pandas; for general-purpose data analysis;
• Seaborn; for data visualization.

Second, open-source datasets are needed to train the models as these models are
data-driven. So, open dataset aggregators which help developers and researchers find the
suitable dataset for their task are briefly mentioned as:

• Kaggle (https://www.kaggle.com, accessed on 30 May 2022);
• Google Dataset Search (https://datasetsearch.research.google.com, accessed on 30

May 2022);
• UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/index.php, ac-

cessed on 30 May 2022);
• OpenML (https://www.openml.org, accessed on 30 May 2022);
• DataHub (https://datahubproject.io, accessed on 30 May 2022);
• Papers with Code (https://paperswithcode.com, accessed on 30 May 2022);
• VisualData (https://visualdata.io, accessed on 30 May 2022).

Another efficient way to advance T2Vo tasks is by improving the limitations of the pre-
vious models, which requires understanding their readily available source codes, datasets,
and standard evaluation criteria. Generally, an article written for a model is not enough
to thoroughly understand the detailed working of that model. So, papers published in
top-tier journals or conferences sometimes provide their source codes hosted on GitHub
(https://github.com, accessed on 30 May 2022), along with open-source datasets either
hosted on a local server or online hosting websites such as Google drive.

https://www.mathworks.com
https://isocpp.org
https://isocpp.org
https://www.python.org
https://www.kaggle.com
https://datasetsearch.research.google.com
https://archive.ics.uci.edu/ml/index.php
https://www.openml.org
https://datahubproject.io
https://paperswithcode.com
https://visualdata.io
https://github.com
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10. Existing Challenges

After examining the broad taxonomy employing different datasets over various evalu-
ations, we highlight the most commonly experienced problems when dealing with T2Vo.

10.1. Data Limitations

Limited Data: One of the most prominent assets of deep learning is a clean and accu-
rately annotated dataset. Since deep learning models are data-driven and, in contrast to
their counterparts, model-based, they require a massive amount of data for better under-
standing. In theory, these models can take an infinite amount of data, but unfortunately, we
are limited to only a short version of it. Among many reasons for the limited amount of data,
two of the most crucial ones include costly creation and error-prone annotation pipeline.

Costly creation: Primarily, data creation is a three-layered sequential task. Initially,
a perceptual goal is defined for which there is a demand for the dataset. Next, there is a
need for a reliable and unbiased setup to collect the data from millions of available random
and raw data. Lastly, after data collection, a reasonably accurate and dense amount of
annotations are required for this data to be used in training for deep learning models.
Following this approach, we can estimate the cost by determining the use of available
technology and resources such as high-speed internet connections, enormous storage,
intense processing power, and trustworthy human labor, therefore leading to an expensive
procedure for data creation.

Error-prone annotation: Apart from the costly setup, another significant problem
when dealing with enormous datasets is improper annotations. As human labor is more
expensive than an autonomous procedure, large datasets often employ automated ways
to annotate the data, which again is limited to the model capability. However, human
annotations show improved quality but are usually prone to human error, and for massive
datasets, it is cumbersome to identify such errors. Hence, the lack of proper data annotation
also causes a hindrance in learning the best model for T2Vo.

10.2. High-Dimensionality

Image to Video: As is prominent in Figure 8, an extensive amount of research is
devoted to generating images from text, mainly using GAN models. Consequently, a
considerable research gap exists for high-dimensional visual output such as stories and
videos, increasing complexity by adding a third dimension of consistency, focusing on
the correlation between previously generated output. For this reason, a few datasets and
evaluation metrics are proposed in the literature for these tasks. Another challenge to
these sophisticated tasks is the increase in model complexity resulting in the need for more
computing power.

2D to 3D: Not only is the current research limited to images mostly, but it also vastly
ignores the dimensionality in terms of object representation, 2D or 3D. Therefore, as is
evident from our proposed taxonomy, the existing research for text-to-3D output is mainly
retrieval-based, with scarce attention given to GAN-based 3D image generation. One
particular explanation for this limited study is the additional variables involved, increasing
complexity beyond the computational power of existing generative models. Since the
current generative models still struggle to generate a text-guided realistic 2D visual output
depicting a complex scene. So, adding further complexity by increasing the variables is yet
to be resolved.

10.3. Framework Limitations

Model limitations: Although present generative models, especially Auto-Regressive,
VAE, and GAN, produce compelling results when trained on a large dataset utilizing
advanced techniques, they individually suffer from diverse limitations. For energy-based
models, sampling from data distribution is not straightforward and implies a Markov chain,
where mixing is a time-consuming task. VAE, on the other hand, produces results that
tend to be unrealistic and blurry. Moreover, other issues with this kind of model utilizing
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posterior approximation include under-estimation [399] and amortization gap [400]. How-
ever, various techniques have been proposed in the literature to resolve such issues [401].
In continuation to VAE, a more appealing approach capable enough to produce realis-
tic and sharp results for generative modeling is GAN, eliminating the need for Markov
chains. Unfortunately, these models suffer from four main problems, namely unstable
training, sophisticated architecture, slow training speed, and mode collapse. In the case
of autoregressive models, based on the chain rule of probability, data sampling is inher-
ently sequential and causes the slow processing of high-dimensional data with the further
condition of ordered decomposition.

Limited exploration: Restricted by the limits of different models, the most explored
model over the last few years is GAN due to the edge of better results compared to others.
As a result, this indicates a void in the study of other models targeted at the generation of
text-to-visual output. Given the constraints of different models, the benefits offered can be
combined to overcome some limitations and produce better results, as explored by very few
studies. It also highlights the lack of interconnection between various generative models
for a specified task.

Hardware-capacity: Another issue related to the framework is hardware capacity.
When dealing with a complex generative model or a hybrid model of more than one type,
employing a large dataset of high complexity can lead to an overflow. The reason for this is
the complex gradient-based learning of the models, which has an upper bound represented
by the over-fitting and gradient vanishing problem.

10.4. Misleading Evaluation

Lack of standard: The most challenging task for T2Vo has been, until now, a fair and
reliable evaluation method. Many studies tried to propose one-for-all evaluation metrics
for such tasks but failed to identify a practical and authentic one. Various metrics highlight
different strengths of the model but lack stability and do not fulfil the criteria of being
selected as a standard. Therefore, from Tables 4 and 5, multiple quantitative evaluation
metrics are proposed to evaluate a single model. However, it is still not feasible to establish
these metrics as standard.

Unrealistic Scores: In terms of quantitative scores, many evaluation metrics, such as
R-precision, IS, and CIDEr, provide scores that have already achieved the upper bound of
their performance. However, in reality, the generated output is not even close to a natural
result, causing deception while indicating the flaws of these metrics. An R-precision for
models that is higher than the actual data is observed, possibly due to the use of the same
text encoders for training and evaluation [177]. Similarly, IS is likely to be saturated and
overfitted and might be resolved by a large batch size [184]. However, metrics such as FID,
FVD, FSD, Visual similarity, and SOA show a near approximation of the human judgment
by marking bad scores to the generated output compared to the real data.

Inconsistent scores: Because the current evaluation metrics are biased and unreliable,
many papers reported inconsistent scores of the same model. Although understandably,
the scores might change depending on the implementation, resolution, and amount of
samples, some of them are hard to explain. Most of the time, this is because the evaluation
method is not precisely clarified, has no code, and is susceptible to change on the cloud
storage compared to the ones reported in the paper.

Score variation due to Data: As the commonly used metric for evaluation, IS and FID
are trained using Inception-v3 on object-centric data, ImageNet, which causes problems
for evaluating complex scenes, highlighted by [177]. Consequently, ref. [178] proposed
SceneFID to apply FID on object crops.

11. Discussion and Future Directions

After the outlined taxonomy, indicating the state-of-the-art methods evaluated by
various inadequate techniques and current challenges, this section is devoted to summariz-
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ing the current progress in the field of T2Vo. Added to that, assessing the progress under
current challenges, we also discuss the future research directions.

11.1. Visual Tasks

The visual output in current technology varies from images to videos and from 2D
to 4D as animations. Similarly, natural language can be simple labels to captions or
question answers to dialogues based on complexity, whereas, from an attention viewpoint,
paragraphs, sentences, words, characters, and symbols are different forms. Due to the cross-
modality, where natural language is convenient for humans, a one-to-many problem exists
when dealing with visual data, since the text can represent diverse visual representations.
So, bridging this gap between the two modalities is not trivial, and many studies offer
multiple improvements to the first text-to-visual task.

Thus, in current research using deep learning models, images are the most-studied
topic as they offer less complexity than others, and the most-explored generative model is
GAN. However, some studies also paid attention to other related visual tasks of stories,
intermediate between image and video, and videos guided by the text, where they require
an understanding of previously generated results for maintaining consistency.

In particular, generation is not the only T2Vo task. Instead, some studies focus on
editing the contents of an already existing visual data and are termed manipulation. There-
fore, besides text and input visual data, they sometimes require additional supervision as
semantic masks or layouts.

Complex Visual Output One aspect of text-guided visual modeling is to obtain a joint
representation of the two modalities. Although interest in T2I started from [94,95] since
its exploration using GAN [4,7], researchers shifted their attention to it and overlooked
the broader picture. They tried to improve the T2I generation mainly using GAN and
adapted two variations, GAN exploration and data exploration. However, recently, studies
such as [231,250,253] following the T2I task have been interested in exploring a more
challenging domain, T2S and T2V. Unfortunately, these tasks are recent and lack enough
research to produce compelling results, as in T2I.

More importantly, research in [120,247] showed that T2Vo for 2D can be extended to
3D, which is far more challenging due to the perception of an additional variable. Among
many practical applications of this research, field analysis such as car accidents [306],
military tactical planning [402], house design [122], and movie creation [259] are possible.

Generation and Manipulation Modifying the existing data on purpose is crucial to
many real-world scenarios. The work on editing images [204,208] share similarities with T2I
generation but differ by the input to the model. Research on GAN for image manipulation
is natural, following the synthesis task. In practice, manipulation is either local [204,205] or
global [226], depending on the user requirements. Unlike image manipulation, story and
video manipulation are rarely studied, where only one attempt at video manipulation [260]
is found in the literature, and no work on stories. Because of this pioneering work, fully
supervised training without zero-shot learning is not a limitation for this task, compared
to others.

11.2. Generative Models

Progress in AI from retrieval to deep learning models experienced an increased per-
formance for various applications. Initial cross-modal deep learning models [92,93,95]
originated with variants of the Boltzmann machine that were impractical for a large-scale
model because of the overwhelming dependency on the Markov Chain [250].

The text-to-image task adequately started with a simple GAN model having one gener-
ator and one discriminator with additional conditioning on text using basic adversarial loss.
Then, a multi-stage pipeline with several losses deliberately removed the low-resolution
and low-quality issues in the simple model. Next, attention was paid to more meaningful
terms covered in the semantics between the text and image. Still, the lack of multi-object
generation of the previous models leads to the investigation of new architectures for further
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improvements, including Siamese, cycle consistency, and knowledge distillation. Instead of
specially designed architectures, latent space exploitation of the best text and image models
to adopt for unconditional T2I modeling is also examined. One significant drawback
of GAN is unstable training, for which researchers turned to other models such as VAE
and autoregressive models. In the case of VAE, the main limitation is the blurry result,
which is often attributed to the limited expressiveness of the inference models, the injected
noise, and imperfect element-wise criteria such as the squared error [403]. Although au-
toregressive models are more stable, they suffer from global consistency problems [105],
high-computational cost [103], and slow sequential inference [96], especially in images be-
cause of the locality bias and convolutional networks that focus more on local correlations.
Thus, various solutions have been proposed to resolve such issues, including pretrained
models and compressing images with VQ-VAE tokens. Interestingly, some other models
are also explored for T2I, such as Knowledge distillation [106,107,139,140] and show a great
deal of improvement to restrictions offered by other generative models.

Leading from T2I, generating visual stories from sequential text is a relatively new
domain of research [231], despite its initial conception in [303]. T2S is similar to T2I
except for maintaining a global consistency among the generated images. So, to main-
tain the consistency, recurrent models are employed with GAN having variations in
discriminators [31,231,233] or utilizing additional data, such as segmentation mask [235].
Others consider the semantic alignment between the story and images through a cyclic
network of text–image–text as an auxiliary task [230,237,239].

Similar to T2S, another significant area is the text-guided video generation with
principal contributions using GAN [253,258] and some variations in VAE [250,252] and
retrieval-based models [243]. However, the main difference of this method compared to
the first two is the dependency and temporal consistency between consistent frames of the
video, hence the named dynamic.

First attempts in this domain used retrieval models [306,307] that are primarily limited
to a fixed set of rules. However, recent progress in the retrieval task using deep learning
models of transformer [247] and CNN [243,244] improved this to free-form text for video
creation. Although the retrieval task with deep learning models is fascinating, the restriction
of specified visual output restrains its practical use for real-world applications. Moreover,
the need for a large amount of data to search is another drawback. So, recurrent VAE-based
models [250,252] show an improvement over retrieval-based models by depicting a more
diverse range of outputs. However, the output blurriness is one particular flaw [250],
which to some extent is suppressed [252], causing an averaging effect when filling the
background. Then, the separation of background and foreground generated compelling
results at low resolution [253] using a hybrid model, where the difference between frames
is not significant. Thus, a pretrained model [254] using VQ-VAE resolves the previous
issues. Contrastively, GAN networks generate sharp results utilizing 2D [256,257] or 3D
convolutions [253,255], where the latter generates poor frames of fixed lengths. Further
changes such as modifying discriminators [255,257], exploring latent paths [258], and
harnessing T2I [259] show advancements in the field. Given the pioneering steps in the
T2V task, these methods are supervision-based and cannot perform well for out-domain
scenes and instructions.

Quality of text features An essential aspect of T2Vo is text. As seen from Table 2, it is
evident that most studies use LSTM or GRU trained with CNN for the joint embedding
between the text and visual domain. Some recent works, however, employ more powerful
transformer-based models such as BERT [45], CLIP [224], and Roberta [261]. So, one future
direction could be the use of the latent space of these transformer-based models for text
embeddings. Another interpretation in text embeddings is the level of attention, ranging
from sentences [7] to words [34], and aspects [136], where further extensions such as
sensitivity to grammar, positional, and numerical information are neglected. Therefore, the
new level of attention to the models is seemingly interesting.
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Power of visual models Currently, CNN is the most-investigated model for learning
visual features. Studies that relate text embedding with visual data are trained on these
models. However, CNN has some significant drawbacks, including the difficulty of un-
derstanding variance in data, adversarial challenges, lack of coordinate frame, and other
minor ones. To deal with these challenges, other promising networks such as [77,79,404]
are presented. So, instead of CNN-based models for T2Vo, one could experiment with such
models to expand the horizon of this task. Additionally, the study of knowledge distillation
concept [76] for T2Vo is another promising direction, where, using the large teacher model,
we can learn a better student model.

Equality among generativity Among various T2Vo tasks and generative models,
GAN has received the most attention, whereas other undermined generative models
such as autoregressive [96,263,405], VAE [89,406], flow-based [282,283], and transformer-
based [39,79] models equally possess the capability for a promising future. Over the years,
researchers have resolved many GAN-related issues, such as unstable training, inaccurate
density estimation, lack of intrinsic metric evaluation [407], and difficulty in inversion for
better understanding. However, due to the limited examination of other models, sequential
learning [96], blurry results [408], fixed-length data [409], and high computational cost [410]
are currently the main focus of research. By resolving these difficulties, we believe we can
improve current T2Vo tasks. Notably, the evaluation metrics of IS and FID cannot be used
with other models as they penalize them [411], requiring the need for a model-agnostic
comparison method.

Difficulty in perception Among T2Vo tasks, only T2I achieves exceptional work,
where the best results are for object-centric and fixed domain datasets. Consequently,
this highlights the gap in the current research: there is still a struggle to understand
the textual data for semantically generating complex visual output. Some studies make
use of intermediate tasks, such as layout generation [43], segmentation masks [180], and
the distinction between background–foreground [187], to resolve such problems. In our
opinion, the use of such side information is helpful but requires additional annotation,
which in the real world is very costly and limits the use of large datasets. Hence, we think
that instead of densely annotating data, utilizing models that predict the added information,
such as [180,184], as an intermediate task can lead to better results.

11.3. Cross-Modal Datasets

In dealing with deep learning models, which are data-driven, the inclusion of cross-
modal datasets is necessary for deciding the future. So, in summary, we discuss the datasets
with the flaws and possible solutions.

Importance of uni-modal datasets Studies that employ the power of pre-trained CNN
models, such as VGG19 [70] trained on ImageNet [353], for visual feature extraction, are
of significant use, especially for tasks that require the understanding of the visual content
for either manipulation or recurrent generation such as stories and videos. Therefore, the
need for massive unimodal datasets for better learning is required. Moreover, a challenging
aspect of cross-modal datasets is the costly collection, where separate data are is readily
available without quality annotation. So, instead of utilizing high-quality data, we can
leverage the massive raw internet data of text and visual domains to train models. Af-
terward, these pre-trained models are easy to finetune through transfer learning for the
specific task.

Simple vs. Complex datasets Among the variety of datasets, the use of object-centric
datasets such as CUB and Oxford [322,323] proved to be valuable in evaluating different
models, mostly T2I, under the less-complex scenario. Prominently, the experiments on the
CUB dataset are more common than those on Oxford-102 due to the lower amount of data
in Oxford, where both pose the same meaning. As a deviation from the commonly used
datasets, some studies also used other similar datasets of high quality, such as Celeb-HQ
and its variants, where textual annotations are currently not open-sourced. In the case of
stories and videos, simple datasets such as CLEVR [337] and MNIST [412] serve as the
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base to evaluate the concepts, which is far from a real-world application. Comparatively,
complex datasets such as MS-COCO [354], Pororo [372], and Howto100M [310] offer more
challenges to current models. Practically, the limitation of low resolution, high storage
requirements, and limited annotations are critical for better visual quality.

Synthetic and real data When dealing with T2Vo tasks, the moderately mature T2I task
can handle real-world data, whereas the emerging T2S and T2V techniques are generally
limited to synthetic datasets. However, some recent studies [253] utilize the massive
Youtube data for T2V, where T2S still is limited to the synthetic dataset of Pororo and CLEVR.
So, by collecting realistic images as a sequence of stories, T2S can be explored further.

Dense annotations One attribute of high-quality data is the accurate dense annotation
used for supervised learning of T2Vo models. This poses two issues, the first being a quality
check of the data, as [413] analyzed that human captions miss the obvious visual content,
and the second is the lack of dense annotations for better learning of models, where the use
of multiple captions, locally related text [171], and other costly annotations of segmentation
masks, etc., are missing or not easily possible. Moreover, in the case of the joint text–visual
embeddings, generally, the datasets are created by describing the contents of the visual
data, which targets visual-to-text tasks and ignores the creativity and importance of the
text-to-visual task. Following all this, we suggest the use of raw internet data to annotate
with a deep learning model verified by human annotations from a sample of data and
employ it in T2Vo tasks.

Multiple modalities Following humans, the need for additional modalities such as
audio can allow further improvement at the cost of greater complexity. Moreover, currently,
textual data are in English only, whereas the need for a multilingual model to analyze the
generalizability can be one factor to consider for future research.

11.4. Evaluation Techniques

One of the biggest challenges in T2Vo tasks is the lack of reliable standard automated
metrics for properly evaluating different tasks. At present, because of the diverse aspects
of the generative models, one could optimize a metric to a specific generative model, but
generalizability to all is hard. The evaluation metrics for T2Vo should serve as a guide to
effectively compare the results among different models in terms of quality and semantic
alignment between text and visual data.

Quality vs. Semantics For visual quality, ref. [414] provides a list of attributes that a
metric should pose, including diversity, disentangled representation, invariance to small
perturbations, closeness to human evaluation, and low complexity. In contrast to visual
quality, semantic alignment between text–visual data is ambiguous due to the one-to-many
mapping problems. Since the visual form is high-dimensional while natural language is
in a low-dimensional convenient form, it is impossible to understand the exact meaning.
Various evaluation metrics found in the literature now offer a solution to some of the listed
problems, but for future preferences, these should be well defined as:

• Evaluate the correctness between the image and caption;
• Evaluate the presence of defined objects in the image;
• Clarify the difference between the foreground and background;
• Evaluate the overall consistency between previous output and successive caption;
• Evaluate the consistency between the frames considering the spatio-temporal dynam-

ics inherent in videos [415].

Improvements to current evaluations The evaluation metrics of T2Vo are mostly IS
and FID, whereas some use FSD for stories and FVD for videos. Additionally, the work
on text–visual semantics utilizes the metrics of R-precision, SSIM, SOA, and captioning
models. As our suggestion, we imply the use of other metrics such as LPIPS, SceneFID, and
precision-recall metrics as used in some of the studies. Moreover, large pretrained models
with high accuracy can be used for evaluation [416]. Separate from the automatic evaluation
metrics, user studies are also frequent in analyzing the quality of the generated output
but are not standardized. Thus, we suggest standardizing such techniques as in [417] for
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better comparison. Finally, the lack of open-source coding or clearly stating the evaluation
methods puts a barrier in the way of gaining a complete understanding that could possibly
explain the question of inconsistencies between different studies.

12. Conclusions

In this review article, we presented a broad taxonomy of text-to-visual output de-
scribing the state-of-the-art T2I, T2S, and T2V methods with follow-up modifications. We
highlight the different datasets used for these methods with inefficient proposed evaluation
metrics and discuss the current challenges with future directions. Our taxonomy generalizes
the text-to-image synthesis task to a more comprehensive study that includes text-to-image,
-story, and -video for 2D and 3D, emphasizing the research gap. Further categorization
of these tasks is based on four types of emerging deep learning models—energy-based,
autoregressive, GAN, and VAE—which are capable of generating novel outputs rather than
retrieving an existing one, like in retrieval-based tasks. As mentioned in the paper, T2I has
experienced extensive research, especially with GAN. Thus, for T2I with GAN, we build
upon the previous works and complement them with the latest and more diverse studies.
In short, for T2I with GAN, leveraging additional information achieves the best quality.
However, other recent models such as VQ-VAE and autoregressive transformers show a
promising future for T2I, addressing the limitations of GAN, including the unstable and
expensive training. The other visual domains, such as story, video, or higher-dimensional
output, suffer from limited research, with a more narrow focus on GAN because of the
natural development of GAN from T2I. Moreover, text-guided visual manipulation is also
limited to the GAN models, leaving a research gap for the future.

Lastly, we accentuate the common challenges when dealing with the T2Vo task. Follow-
ing this, we brief with an in-depth discussion and future directions for the open challenges
across multiple dimensions. For models, we expect the use of more diverse models other
than GAN that can enhance the quality with better scene understanding. In terms of the
existing datasets, our intuition is that visually grounded captions with dense crossmodal
associations can improve the joint representation learning. Furthermore, we believe that
through a standard and reliable evaluation metric for this domain, we can accurately define
continual progress.

Significant research in the text-guided visual domain has progressed to practical im-
plementation in various applications. Despite the progress, there is a lot of potential for
improvement in terms of quality, resolution, semantics, consistency, diversity, user control,
reliable automatic evaluations, standard human evaluations, and user-friendly interfaces.
From this review, we aim to help researchers gain an insight into the emerging technolo-
gies for the text-guided visual domain by understanding the current SOTA methods that
highlight the open challenges for future advances in the field.
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