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Abstract: In order to solve the tracking accuracy problem of the redundant manipulator, a PI control
method with Henry gas solubility optimization parameter regulator (PI-HGSO) is proposed in this
paper. This method consists of the controller and the parameter regulator. The characteristic is that
the position deviation of a manipulator is equivalent to a specific function; namely, the proportional-
integral (PI) controller is used to adjust the deviation input. The error can be better corrected by the
processing of the PI controller so that the inverse kinematics solution of the minimum error can be
realized. At the same time, the parameter selection of PI controllers has always been a difficulty in
controller design. To address the problem, Henry gas solubility optimization (HGSO) is selected as a
parameter regulator to optimize the parameters and obtain the optimal controller, thereby achieving
high-precision trajectory tracking. Experiments on 9-DOF redundant manipulator show that our
method achieves competitive tracking accuracy in contrast with others. Meanwhile, the efficiency
and accuracy of the PI controller are greatly guaranteed by using HGSO to automatically optimize
controller parameters instead of making approximate adjustments through infinite manual trial and
error. Therefore, the feasibility and competitive superiority of PI-HGSO is fully proved in trajectory
planning of redundant manipulators.

Keywords: 9-DOF redundant manipulator; trajectory planning; HGSO; PI control; parameter adjustment

1. Introduction

With the development of technology and industry, redundant manipulator that can
achieve high flexibility and high precision is gradually developed to meet the needs of modern
intelligent industry. Although the redundant manipulator can complete more complex tasks,
it is more difficult to solve the problems of related kinematics planning and control. Trajectory
planning of redundant manipulators includes planning a set of end trajectories and completing
the movement of the end trajectory under the manipulator’s limited conditions of the tracking
accuracy, joint velocity, and joint angle during the movement.

Trajectory planning methods of the redundant manipulator are mainly divided into
the geometric method, iterative method, and numerical method [1–9]. The geometric
method is to analyze each joint angle according to the geometric relationship between
the end posture and the specific angles in sequence. However, it is only applicable to
manipulators with simple or special structures. The iterative method is to solve the inverse
kinematics solution iteratively by an intelligent algorithm. Nevertheless, the iterative
method is used to solve the joint angles corresponding to each pose, the computation
is heavy, and the real-time performance is affected. At the same time, the traditional
intelligent optimization algorithms, including a genetic algorithm (GA) [10–12], ant colony
optimization (ACO) [13,14], particle swarm optimization (PSO) [15,16], grey wolf optimizer
(GWO) [17–20], etc., have certain shortcomings, such as consistent initial value setting, slow
initial optimization speed, complex algorithm structure, slow convergence speed, and easy
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to fall into the local optimal. The algebraic numerical method is to calculate joint angles by
the Jacobian matrix, such as the least squares method, gradient projection method [21–23],
etc. The algebraic method is a universal method, but the parameter value has a great impact
on the accuracy. Usually, it is not easy to find the appropriate parameter value.

In this paper, a PI control method with an HGSO parameter regulator (PI-HGSO) is
proposed to perform trajectory planning f a 9-DOF redundant manipulator. Proportional-
integral (PI) controller is designed to set the optimum joint angles from the current to
the desired end pose. Meanwhile, Henry gas solubility optimization (HGSO) is used
to solve the appropriate controller parameters to achieve the trajectory planning of the
redundant manipulator. PI controller [5,24–26] has strong model identification ability
and can more accurately equivalent various functions. In addition, the PI controller is
simple in structure and easy to use to give a value close to the deviation that needs to
be assigned to the end-effector. Therefore, the PI controller is selected to deal with the
deviation of the end to the expected pose to achieve motion control. Traditional parameter
tuning relies on empirical trial and error with low efficiency and accuracy. At the same
time, the introduction of intelligent algorithms for parameter adjustment can automatically
achieve efficient and accurate parameter selection. HGSO is based on the principle of gas
solubility function to design the optimization algorithm [27–31]. The algorithm has not only
a strong optimization ability but also groups the swarm particles to achieve multi-group
parallel optimization. This characteristic improves the speed of optimization and effectively
overcomes the problem of local optimum. Hence, HGSO is selected to optimize the PI
controller parameters to further improve the accuracy of the motion planning.

The specific contributions of the PI control method with HGSO parameter regulator (PI-
HGSO) for trajectory planning of 9-DOF redundant manipulator can be summarized as follows:

• The proposed PI-HGSO method enables the designed PI controller to obtain accurate
gains during the trajectory planning process for redundant manipulators, achieving a
highly precise position tracking of the end-effector.

• The design can obtain PI controller parameters more quickly and efficiently by using
the HGSO parameter regulator instead of the traditional empirical trial and error,
improving the controller parameter tuning cycle.

• The PI controller is used to replace the traditional gain compensation system to achieve
the end-effector position compensation of the deviation part efficiently. The design
structure is simple, and the error is effectively suppressed. Besides, the feasibility
of the design has been guaranteed since this paper has proved that PI-HGSO is
asymptotically stable in the Cartesian deviation trajectory of the endpoint.

The structure of the rest is organized as follows: the second part describes the PI
controller with joint limits for trajectory planning; the third part describes the design of
parameter regulator by HGSO; the fourth part completes the simulation and results of
analysis under the 9-DOF redundant manipulator; the fifth part is conclusion and summary.

2. PI Controller with Joint Limits for Trajectory Planning of Redundant Manipulator

In order to solve the inverse kinematics of the redundant manipulator, the algebraic
method needs to calculate the joint angles through the pose deviation. The deviation
calculation of the end-effector needs to satisfy a certain functional relationship, and this
characteristic has a strong fit with the PI characteristic. Therefore, in this paper, the expected
path planning of the end-effector is equivalent to a PI controller [5,24,26]. The schematic
diagram is shown in Figure 1, and the equivalent formula is described as:

δ = kp(xd − xt) + ki

∫ t

0
(xd − xt)dt (1)

where δ is defined to be the PI controller as the deviation expected to be given at the end-
effector; (xd − xt) is the difference between the expected position and the current position;
kp and ki are the PI controller parameters.
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Theorem 1. The stability of the equivalent PI controller method can be proved by the Lyapunov
stability theorem [5,25,32].

We denote the end-Cartesian space deviation by e(t) = xd − xt, where
.
e(t) represents

its time derivative. The speed of position deviation can be compensated by designing a PI
linear system. Thus, it is written as

.
e(t) = −δ, we have:

.
e(t) = −δ = −kpe(t)− ki

∫ t

0
e(t)dt (2)

We define the Lyapunov function as:

v(t) = e2(t) + ki

(∫ t

0
e(t)dt

)2
(3)

Which is obtain v(t) ≥ 0, and the positive definiteness of v(t) is guaranteed. For the
defined Lyapunov function v(t), we can obtain the time derivative

.
v(t), which is derived as:

.
v(t) = 2e(t)

.
e(t) + 2kie(t)

∫ t
0 e(t)dt

= 2e(t)
(
−kpe(t)− ki

∫ t
0 e(t)dt

)
+ 2kie(t)

∫ t
0 e(t)d

= −2kpe2(t) ≤ 0

(4)

where
.
v(t) ≤ 0, it can be guaranteed the negative definiteness of

.
v(t). According to the

Lyapunov theory, the trajectory of the end-Cartesian space deviation e(t) is asymptotically
stable in the equivalent PI controller method.

In the inverse kinematics solution process of the redundant robot, the value that needs
to be acted on the end-effector is mapped to the joint space through the Jacobian matrix.
Whereupon, the velocity of joint space is obtained, which is expressed as:

.
θ = J−1δ (5)

Minimum norm method with weighting coefficient [9,33–35] was proposed to solve
the redundant system problem. Its basic idea is to use the minimum weighted norm by
adding the weighted matrix to realize the task limitation. In order to satisfy the joint angle
constraint and reduce the joint angular velocity, the Jacobian matrix optimized by minimum
norm with weighting coefficient is usually used. When the joint angular velocity is too
large, the weighted coefficient is increased as a penalty factor to reduce the joint velocity
and achieve the restriction of joint velocity.

The Jacobian matrix with weighting coefficient is expressed as:

Jw = JW (6)

W = diag(w1, w2, · · · , wi, · · ·w9) (7)

wi =

1 +
∣∣∣ ∂H(θ)

∂θi

∣∣∣ i f ∆
∣∣∣ ∂H(θ)

∂θi

∣∣∣ ≥ 0

1 i f ∆
∣∣∣ ∂H(θ)

∂θi

∣∣∣ < 0
(8)
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where J is the Jacobian matrix, Jw is the weighted Jacobian, W is the weighted matrix, and
H(θ) is the constructed objective function.

To avoid approaching the joint limit, the objective optimization function H(θ) is
defined as:

H(θ) =
1
9

9

∑
i=1

(θi,max − θi,min)
2

(θi,max − θi)(θi − θi,min)
(9)

∂H(θ)

∂θi
=

1
9

9

∑
i=1

(θi,max − θi,min)
2(2θi − θi,max − θi,min)

(θi,max − θi)
2(θi − θi,min)

2 (10)

Figure 2 is the graph of the objective function. It can be seen from Figure 2 that when
the joint angle approaches the joint limit, the designed objective optimization function H(θ)

approaches infinity, and the value of ∂H(θ)
∂θi

also approaches infinity. Moreover, H(θ) and
∂H(θ)

∂θi
are almost 0 within the joint limit range. Therefore, in order to avoid the joint angle

exceeding the limit, the smaller the value of the optimization function the better. When the
joint angle changes to the limit value, the joint velocity will be reduced by increasing the
weight coefficient. Therefore, the restriction on the joint angle will be implemented.
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For the redundant manipulator, its Jacobian matrix is a long square matrix, and the
inverse cannot be calculated. So, the pseudo-inverse can be used. However, the pseudo-
inverse of the Jacobian matrix [9,36,37] will lead to the problem of matrix singularity. In
order to avoid the singularity, the Jacobian inverse with singularity robustness is introduced,
and its formula is described as:

J∗ = JT
(

J JT + λI
)−1

(11)

The Jacobian inverse with singularity robustness and weighting coefficient is expressed as:

J∗w = W−1 JT
(

JW−1 JT + λI
)−1

(12)

Thus, the inverse kinematics solution of using the weighted minimum norm method
is expressed as:

.
θ = J∗wδ = W−1 JT

(
JW−1 JT + λI

)−1
δ (13)

By combining the weighted Jacobian minimum norm and singularity robustness
inverse, the joint velocity norm can be reduced by J∗w. Therefore, this will play a role in
planning the joint velocity to some extent. And I am going to give λ a small enough value
to avoid the singularities.

3. A PI Control Method with HGSO Parameter Regulator

For the joint angle constraint problem and joint angle singularity problem, the Jacobian
pseudoinverse with weight coefficient is applied to complete the transformation of joint
angular velocity and joint angle. At the same time, in order to solve the problem of
manual selection of PI controller parameters by experience, HGSO is selected to optimize
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PI parameters, ensuring the requirement of a small error value in the process of redundant
manipulator trajectory planning. Thereupon, A PI control method with an HGSO parameter
regulator is designed to perform trajectory planning of the 9-DOF redundant manipulator,
and the specific scheme is presented in Figure 3.
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3.1. Introduction and Description of HGSO

A novel physics-based algorithm named Henry gas solubility optimization (HGSO)
was proposed by Fatma et al. in 2019 [27]. Furthermore, the optimization performance is
better than other algorithms and successfully applied to the related optimization problems.
HGSO was inspired by Henry’s Gas Law, formulated by William Henry in 1803 [38]. The
basic idea of Henry’s law of gas solubility is described as [27–29]: at a constant temperature
and pressure, the solubility of a gas in a given volume of liquid is proportional to the partial
pressure of the gas in equilibrium. So, temperature and pressure are going to affect the gas
solubility. The schematic diagram is shown in Figure 4. The gas law is expressed by the
following equation:

Sg = H × Pg (14)

where Sg is the gas solubility, H is Henry’s constant, Pg is the gas partial pressure.
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The Henry’s constant H is expressed as:

H(T) = Hθ × exp
(
−∇solE

R

(
1/T − 1/Tθ

))
(15)

where, T and Tθ are, respectively, the current temperature and reference temperature, Hθ

is the reference Henry constant, R is the gas constant, and the enthalpy of dissolution is
denoted by ∇solE.

∇sol E
R is the van’t Hoff formula, and is defined as a constant C. Therefore, the Henry’s

constant H is reformulated as:
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H(T) = Hθ × exp
(
−C×

(
1/T − 1/Tθ

))
(16)

The HGSO is established on the basis of Henry’s law of gas solubility, and related
mathematical modeling formulas and steps are presented as follows:

Step 1: Initialization

At the beginning of the HGSO algorithm, N gas particles are randomly initialized to
their gas positions, the initialization is based on the formula:

Xi(t + 1) = Xmin + r× (Xmax − Xmin) (17)

where Xi is described as the position of the ith gas in population N, Xmax and Xmin are,
respectively, the upper and lower limits of position, r is a random constant that can generate
randomly the number between 0 and 1, t is the iteration time.

Furthermore, gas i is segmented into type cluster j and the other initial parameter
values related to Henry’s law are expressed as:

Hj(t) = l1 × rand(0, 1)
Pi,j = l2 × rand(0, 1)
Cj = l3 × rand(0, 1)

(18)

where Hj(t) is the Henry’s constant of cluster j, Pi,j is the particle pressure of gas i in cluster
j, Cj is the van’t Hoff formula value of cluster j. Among them, l1 = 5× 10−2, l2 = 100,
l3 = 1× 10−2.

Step 2: Clustering

There are M type clusters in population N, gas population needs to be divided into
different clusters. So, the different Henry’s constants H1, · · · , Hj, · · ·HM of M clusters
are obtained.

Step 3: Fitness evaluation

According to the evaluation index function, the gas particles in each cluster j are
evaluated, and the best gas particles are identified. At the same time, the best gas particles
in all kinds of clusters are compared to select as the best gas particle in the whole population.

Step 4: Update Henry’s coefficient

The updating formula of Henry’s constant can be described as:

Hj(t + 1) = Hj(t)× exp
(
−Cj ×

(
1/T(t)− 1/Tθ

))
T(t) = exp(−t/titer), Tθ = 298.15

(19)

where titer is whole iterations, T(t) is the temperature of iteration t.

Step 5: Update gas solubility.

The gas solubility Si,j(t) needed to be updated and the formula is as:

Si,j(t) = K× Hj(t + 1)× Pi,j(t) (20)

where Si,j(t) is the current solubility of gas i in cluster j, Pi,j(t) is the current pressure of gas
i in cluster j, K is the constant and usually defined as 1.

Step 6: Update position

The relevant formula of gas position update strategy is as follows:

Xi,j(t + 1) = Xi,j(t) + F× r× γ×
(

Xj,best(t)− Xi,j(t)
)
+ F× r× α×

(
Si,j(t)× Xbest(t)− Xi,j(t)

)
γ = β× exp

(
− Fbest(t)+ε

Fi,j(t)+ε

)
, ε = 0.05

(21)

where Xi,j is the position of gas i in cluster j, Xj,best is the best gas in cluster j, Xbest is the
current best gas in the whole population, F is the function that can change the searching
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direction to achieve diversity and it is denoted by 1 or −1, r is a random generator that can
obtain a random number between 0 and 1, α represents the influencing factor of the other
gases to gas i in cluster j and defined as 1, γ is the interaction ability between gas i and
other gases in cluster j, β is a constant, Fi,j is the fitness of gas i in cluster j, and Fbest(t) is
the fitness of the best gas in the whole population.

Step 7: Escape from local optimum and reset the position of the worst agents

In order to avoid the algorithm falling into the local optimum, the total particles are
sorted according to the fitness value and the number of the worst particles is defined. Then
these worst particles are selected, and their positions are reset. The position reset strategy is
shown in Formula (21), and the relevant formula of the worst particle number is denoted as:

Nw = N × (rand(c2 − c1) + c1), c1 = 0.1 and c2 = 0.2 (22)

where c1 and c2 are constants about rough worst particle proportions, Nw is the number of
the worst particles in the whole population.

3.2. HGSO Parameter Regulator for PI Controller

Traditionally, the parameter selection of the PI controller is mainly based on the
experience and the trend of the result to adjust and choose the approximate value [24–26].
The method not only fails to find the appropriate value but also wastes a lot of time in
adjusting parameters. Due to the optimization ability of HGSO being better than other
intelligent algorithms, HGSO is chosen as a parameter adjuster to optimize the parameters
of the PI controller to achieve high-precision trajectory tracking and planning [24,27–31].
The specific method flow is shown in Figure 5.
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The main principles of PI control method based on HGSO parameter adjuster for
trajectory planning are as follows: Firstly, PI parameter K was set and optimized by HGSO.
Next, the calculation of the joint angle and position is completed, and the fitness Ff itness
is obtained by the evaluation function. Therefore, a better K is selected according to the
evaluation index. Then, the new K is obtained through the updating mechanism of HGSO,
and the parameter regulator will continue to evaluate and select the better K by HGSO.
Finally, when the iteration ends, the optimized K is obtained to solve the trajectory tracking.
The specific steps are as follows:

Step 1: Initialization

Initialize population particle size N, the number of type clusters M, the particle
position information Xi that is the variable K of PI controller to be optimized, and other
parameters, Hj, Pi,j, Cj, etc. (i = 1, · · · , N; j = 1, · · ·M).

Step 2: The setting of PI controller parameters:

The position information Xi obtained by HGSO, namely PI parameter K, is assigned
to the PI controller for solving joint angles in trajectory planning.

Step 3: Evaluation and update:

Complete the evaluation of the current position Xi of variable K by the fitness function
Equation (23). Afterward, according to Equation (20), the position information Xi of the
variable K is updated through HGSO’s update mechanism.

Step 4: Update the worst particles:

Select the poor particles according to Equation (21) by fitness Ff itness, meanwhile, reset
the position information of the worst particles to avoid local optimality.

Step 5: Repetition and iteration:

Return to Step 2 and continue to complete the next loop until the iteration termination
condition is met. The optimized parameters K are obtained, and the trajectory planning of
the redundant manipulator is carried out by the PI control method.

The Algorithm 1 implementation pseudocode of the PI control method with HGSO
parameter regulator for trajectory planning is as follows:

Algorithm 1 PI control method with HGSO parameter regulator

Import: trajectory points
Output: PI parameters and tracking trajectory
Initialization: Initialize HGSO parameters, N, M, Xi (about PI controller parameters 4K), Hj, Pi,j,
Cj, etc. using Equation (17) and Equation (18) (i = 1, · · · , N; j = 1, · · ·M)
while t < the maximum number of iterations do

Set the Xi obtained by HGSO to PI parameters K for solving joint angles according to the part
of PI controller.

Complete the evaluation of the current Xi by Equation (24).
for each search gas particles do
Update the position information Xi using Equation (21).
for end
Update Henry’s coefficient of each gas type clusters using Equation (19).
Update solubility of each gas using Equation (20)
Select the poor particles according to Equation (22) by Ff itness.
Reset the position of these worst particles by Equation (19) to Equation (21).
t = t + 1

while end
return Xbest (The final optimized parameters K)
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4. Simulation and Results
4.1. The Introduction of 9-DOF Hyper-Redundant Manipulator

In this paper, based on the model of the 9-DOF hyper-redundant manipulator, the
feasibility and advantages of the proposed PI-HGSO are verified. The structure of the
9-DOF hyper-redundant manipulator is shown in Figure 6a, and its rotation axis is
assembled alternately at 90 degrees. At the same time, the screw method is adopted
for kinematic modeling, and the centroid of each joint is established as the origin of the
coordinates. The establishment of a coordinate system is shown in Figure 6b, and the
related parameters are shown in Table 1.
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(b) Establishment of coordinate system.

Table 1. The parameter table of screw modeling.

Joint i Rotating Vector
w

Translation Vector
v (Unit: mm)

1 [0 0 1] [0 0 0]
2 [1 0 0] [−136.80 −0.10 5.33]
3 [0 0 1] [13.66 −0.10 −286.11]
4 [1 0 0] [−483.75 −0.10 4.85]
5 [0 0 1] [16.26 −0.53 −621.91]
6 [1 0 0] [−815.07 0.23 7.38]
7 [0 0 1] [14.17 −0.50 −940.63]
8 [1 0 0] [−1114.45 −0.31 6.24]
9 [0 0 1] [10.92 −0.57 −1241.08]

4.2. The Introduction of 9-DOF Hyper-Redundant Manipulator

In the experimental part, the linear trajectory and the curve trajectory are taken as
examples to prove the effectiveness of PI-HGSO by simulation. The related parameters of
algorithms are listed in Table 2.
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Table 2. The Parameter settings of algorithms.

Algorithm Parameters

GA

Population size N = 50
Crossover probability α = 0.8
Mutation probability β = 0.5
Iterations Nc = 50

PSO

Population size N = 50
Inertia weight decreases linearly from 0.9 to 0.4
Individual-best acceleration factor C1 = 2
Global-best acceleration factor C2 = 2
Iterations Nc = 50

ACO

Population size N = 50
Pheromone trail factor α = 1
Heuristic information factor β = 5
Evaporation rate ρ = 0.5
Iterations Nc = 50

GWO
Population size N = 50
Variable a decreases linearly from 2 to 0
Iterations Nc = 50

HGSO

Population size N = 50
Cluster number M = 5
Influencing factor α = 1
Component parameter of interaction ability β = 1
Iterations Nc = 50

The gain results of parameter optimization obtained by PI-HGSO are as follows:
linear trajectory gain is kp =

[
0.2784× 10−4 30.6587

]
, ki = [0.3399]; curve trajectory

gain is kp =
[
174.7392 143.3465

]
, ki =

[
2.9170× 103]. Figure 7 shows the trajectory

planning results of the 9-DOF hyper-redundant manipulator through the linear trajectory
and curve trajectory planning under PI-HGSO. At the same time, in order to further prove
the advantageous performance superiorities of the designed PI-HGSO than others, the PI
algorithm without parameter regulator is compared with the PI-HGSO. Furthermore, the
PI-PSO, PI-GA, PI-ACO, and PI-GWO use particle swarm optimization algorithm, genetic
algorithm, ant colony algorithm, and grey wolf optimizer to adjust the PI controller, are
separately compared with the PI-HGSO. The simulation results are shown in Table 3.
The effectiveness and superiority of PI-HGSO can be illustrated in Figure 7 and Table 3.

The trajectory planning results of the 9-DOF manipulator through the linear tra-
jectory and curve trajectory planning are presented by PI-HGSO in Figure 7. What is
more, Table 3 shows the comparison of PI-HGSO and other algorithms. It can be seen
from Figure 7(a1,a2) that joint angles are all within joint limits, regardless of lines or
curves. Meanwhile, the joint velocities are less than 2.5× 10−2 rad/s and 3× 10−2 rad/s,
respectively, in Figure 7(b1,b2), it fully meets the joint velocity constraint of 0.1 rad/s.
Figure 7(c1,c2) show the errors of the end effector on the x, y, and z axes, which are
within 3× 10−4 m and 2.5× 10−4 m, respectively. At the same time, the vector two norm
of the whole end effector errors serve as the overall end effector errors. It can be known
that the error values are all under 4× 10−4 m from Figure 7(d1,d2), and the errors are
much smaller than the PI method, which adjusts parameters by experience in Table 3.
Figure 7(e1,e2) are the motion trajectory simulation diagrams of the 9-DOF manipulator.
In summary, it can be concluded that the trajectory planning errors are small, and the
joint angles and joint velocities are within the limits by using PI-HGSO.
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Table 3. The comparative results of PI-HGSO and other algorithms.

Type Algorithm

The Value and Percent of Deviation Wilcoxon
Rank

Sum TestMax Ave Std

Value Variation Value Percent Value Value

Line

No PI 1.42 × 10−3 / 1.11 × 10−3 / 1.56 × 10−4 /
PI 1.23 × 10−3 / 1.07 × 10−3 / 1.80 × 10−4 /
PI-PSO 8.42 × 10−3 −7.19 × 10−3 2.75 × 10−3 61.09%↘ 7.32 × 10−4 +
PI-GA 1.44 × 10−3 −0.21 × 10−3 4.67 × 10−4 56.35%↗ 5.83 × 10−4 +
PI-ACO 5.60 × 10−3 −4.37 × 10−3 1.00 × 10−3 6.54%↗ 3.67 × 10−4 -
PI-GWO 4.06 × 10−4 0.82 × 10−3 2.44 × 10−4 77.19%↗ 8.30 × 10−5 +
PI-HGSO 3.38× 10−4 0.89× 10−3 2.15× 10−4 79.91%↗ 8.47× 10−5 +

Curve

No PI 1.61 × 10−3 / 1.12 × 10−3 / 1.87 × 10−4 /
PI 1.60 × 10−3 / 1.16 × 10−3 / 2.11 × 10−4 /
PI-PSO 4.86 × 10−3 −3.26 × 10−3 1.27 × 10−4 89.05%↗ 7.07 × 10−4 +
PI-GA 5.53 × 10−3 −3.93 × 10−3 4.76 × 10−4 58.96%↗ 9.32 × 10−4 +
PI-ACO 5.33 × 10−3 −3.73 × 10−3 1.40 × 10−4 87.93%↗ 7.72 × 10−4 +
PI-GWO 1.55 × 10−3 0.05 × 10−3 8.99 × 10−5 92.22%↗ 1.61 × 10−4 +
PI-HGSO 3.55× 10−4 1.25× 10−3 8.32× 10−5 92.83%↗ 3.35× 10−5 +

Furthermore, for each algorithm, 30 iterations of experiments were carried out, and
corresponding data analysis values were obtained. As shown in Table 3 and Figure 8,
the PI controller parameters optimized by the algorithms will be better than the result of
manually adjusting the PI controller in average trajectory errors. The results of Wilson’s
rank-sum test also show that the designed PI-HGSO has different average error values and
is much better than PI. The experimental results are depicted in Table 3, the average errors
of PI-HGSO are improved by 79.91% and 92.83%, respectively, under the test of line and
curve trajectory than PI. This suggests that the errors are far less than that of manually
adjusting PI and the trajectory planning effect is very good.

Meanwhile, it is obtained that the average errors of PI-HGSO are 2.15× 10−4 m and
8.32× 10−5 m, which are better than other comparison algorithms in Table 3 and Figure 8.
The maximum errors of all trajectory points are 3.38× 10−4 m and 3.55× 10−4 m, which
are the minimum in the comparison algorithms. In addition, the standard deviations are
8.47× 10−5 m and 3.35× 10−5 m, and the error changes of tracking points are small and
stable in the whole trajectory tracking process. In the case of Table 3 and Figure 8, to sum
up, PI-HGSO has a smaller average trajectory error, maximum error, and standard deviation
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of tracking points than PI, PI-PSO, PI-GA, PI-ACO, and PI-GWO. That is, the trajectory
planning error and error fluctuation, which are obtained by PI-HGSO, are small, and the best
trajectory planning of redundant manipulator can be achieved by PI-HGSO than others.
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5. Experiment

In order to complete the practical test of the proposed algorithm in this paper, the
experimental verification of the PI-HGSO was carried out with the 9-DOF hyper-redundant
manipulator entity of our laboratory. The above simulation data of the elliptic curve
was used for the experiment, and the experimental trajectory result is shown in Figure 9.
According to the experimental process and result, the joint angles are within the constraint
range. Simultaneously, the joint velocities and the position tracking deviations are close to
the simulation results. The results of each index meet the expected requirements, and the
feasibility and superiority of the designed PI-HGSO are fully verified.
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6. Conclusions

In this paper, a PI control method with HGSO parameter regulator for trajectory
planning of 9-DOF redundant manipulator is proposed. In this method, the PI controller
was selected to optimize the motion deviation of the manipulator end-effector. Then,
the Jacobian matrix with weight coefficient is used to limit the joint angles. Meanwhile,
HGSO was used to adjust PI controller parameters, and appropriate parameters were
obtained to minimize the trajectory planning error. Experimental results demonstrate
that the proposed method can not only obtain a small error value but also, the fluctuation
of the error of each point is smaller than other algorithms. Besides, PI-HGSO can greatly
improve the adjustment time and parameter accuracy compared with the original manual
trial with experience.

However, there are some areas where this approach needs to be improved. For
example, the iteration time of superior intelligent algorithms is limited, and the real-time
performance after different trajectory changes cannot be realized. That could be the future
research direction to realize the fast response of parameter adjustment.
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