
Citation: Hussain, M.; Al-Aqrabi, H.;

Munawar, M.; Hill, R.; Alsboui, T.

Domain Feature Mapping with

YOLOv7 for Automated Edge-Based

Pallet Racking Inspections. Sensors

2022, 22, 6927. https://doi.org/

10.3390/s22186927

Academic Editor: Steve Vanlanduit

Received: 25 August 2022

Accepted: 12 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Domain Feature Mapping with YOLOv7 for Automated
Edge-Based Pallet Racking Inspections
Muhammad Hussain 1 , Hussain Al-Aqrabi 1,* , Muhammad Munawar 2 , Richard Hill 1 and Tariq Alsboui 1

1 Department of Computer Science, School of Computing and Engineering, University of Huddersfield,
Huddersfield HD1 3DH, UK

2 Department of Computer Science, COMSATS University of Islamabad, Islamabad 45550, Pakistan
* Correspondence: h.al-aqrabi@hud.ac.uk

Abstract: Pallet racking is an essential element within warehouses, distribution centers, and manu-
facturing facilities. To guarantee its safe operation as well as stock protection and personnel safety,
pallet racking requires continuous inspections and timely maintenance in the case of damage being
discovered. Conventionally, a rack inspection is a manual quality inspection process completed by
certified inspectors. The manual process results in operational down-time as well as inspection and
certification costs and undiscovered damage due to human error. Inspired by the trend toward smart
industrial operations, we present a computer vision-based autonomous rack inspection framework
centered around YOLOv7 architecture. Additionally, we propose a domain variance modeling mech-
anism for addressing the issue of data scarcity through the generation of representative data samples.
Our proposed framework achieved a mean average precision of 91.1%.
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1. Introduction

Smart manufacturing, also known as Industry 4.0, refers to manufacturing functions
that are integrated and collaborative, and process the ability to act on data in a timely
manner. Focusing on the operation level, the computerization of certain tasks leads to data
generation via communication protocols. The data are procured, processed, and utilized to
improve the decision-making power. The acquisition of data and the ability to facilitate
interconnectedness between various distributed operations within a manufacturing facility
are succinctly seen as smart manufacturing.

Pallet racking is one of the most ubiquitous infrastructures found within logistic/
distribution centers, warehouses, and many other types of manufacturing facilities. Its
purpose is to hold stock in a safe manner ready to be shipped when required. Depending
on the nature and scale of operations, pallet racking can be densely populated, containing
thousands of pallets of considerable monetary value.

The structural safety of racking is of paramount importance in order to avoid
damage accumulation resulting in collapsed racking, which costs the business financially
and also puts human lives at risk. Collapsed racking can be a result of two factors.
The first is incorrect installation and the second is the careless operation of forklifts
near the racking whilst loading/off-loading. This research presents a framework for
the automated detection and localization of racking defects via YOLOv7 architecture
coupled with AprilTag-based localization.

1.1. Literature Review

The current literature concerning the inspection of pallet racking suggests a shortage
of active research for this area; there are only a couple of publications concerning pallet
racking. Hence, we broadened our literature review to focus on structural defect detection.
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Farahnakian et al. [1] proposed an image segmentation framework for the detection of
damage to pallet racking. As part of their research, the authors mentioned the unavailability
of any open-source racking data, leading them to manually collect a custom dataset. In their
proposed methodology, we observed that the authors subscribed to the implementation
of a Mask RCNN network based on ResNet-101 architecture as an approach for feature
extraction. They reported achieving a mean average precision (MAP) of 93.45% with respect
to an Intersection over Union (IoU) of 50%. However, the computational implications as a
result of the Mask RCNN were not presented. Due to the internal architectural composition
of the Mask RCNN, the computational demand would be very high; hence, the model—
regardless of high performance—would not be suitable for deployment directly onto an
edge computing device with a limited computational capacity.

Dong et al. [2] presented an evaluation of computer vision (CV) techniques for
structural-based health monitoring (SHM). The authors categorized SHM into two factions:
local and global. The local class referred to the identification of defects such as delamination,
cracks, and loose bolt detection. The latter class consisted of a structural behavior analysis,
vibration-based serviceability, modal identification, and damage detection. The authors
presented their findings by highlighting the fact that CV-SHM necessitates high-quality
representative data to provide profitable results. In many applications, the requirement of
a large data acquisition for model training is not feasible due to the lack of an infrastructure
and other factors such as the resultant down-time. The paucity of data acquisition, espe-
cially when it comes to image data and more so from within a manufacturing facility, can
be designated as a major obstacle, resulting in a slow growth of automated CV applications
within the manufacturing industry.

Similarly, Zhu et al. [3] examined image processing techniques manipulated by de-
velopers and researchers for CV-SHM applications. Their review presented a list of the
‘inherent distinctive’ benefits of CV-SHM such as non-contact, a long distance, multiple
object detection, and electromagnetic inference. Reviewing the constraints of the present
CV-SHM technology, the authors cited that the majority of CV-SHM applications are con-
strained within the walls of academic laboratories. As a result of this approach, models
developed for addressing quality inspection issues have a high risk of failing when put into
production due to a lack of representative training/testing and risks of false generalization
from inadequate models.

We have observed an increase in the implementation of CV-based applications across
various sectors. This is a result of recent and continuous improvements in CV-based
architectures along with the wide adoption of transfer learning.

Around a decade ago in 2012, AlexNet [4] was introduced by Hinton et al., presenting
a graphics processing unit (GPU) for accelerated calculations. The research also introduced
the ReLu activation function for reducing the model convergence time. Since then, the CV
community has observed a flurry of new architecture introductions, including the popular
GoogleNet [5], VGGNet [6], RCNN [7], Fast RCNN [8], and Faster RCNN [9]. The driving
factors behind these developments were an iterative improvement in the detection accuracy,
the utilization of lightweight architectures, and the optimization of the inference speed.

The architectures mentioned above are widely applied in industries such as
medicine [10,11], renewable energy [12], and autonomous vehicles [13–17]. However,
the majority of the development and use cases are limited to R&D in many businesses,
including manufacturing [18]. One of the reasons for this is due to the computational load
of the architectures that require specific GPU hardware for carrying out production-based
inferencing [19]. Although cloud-based inference mitigates the issue of commissioning
on-site GPU hardware, due to the cyber risks attached to IoT devices [20,21] as well as
GDPR [22] compliance requirements, businesses are more vigilant toward cloud-based data
transfer and processing. This has garnered an incremental interest in edge device model
deployment, where internet connectivity is not always a necessity.

Based on the above premise, CV researchers are actively developing new lightweight
architectures suitable for edge device deployment utilizing limited computational resources.
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The two most popular architectures in this regard are Single Shot Detector (SSD) Mo-
bileNet [23] and You Only Look Once (YOLO), focusing on edge device speed and accuracy.

Adibhatla et al. [24] implemented YOLOv2 architecture for the inspection and classifi-
cation of defects found within printed circuit boards (PCBs). The architecture was trained
with a large dataset containing 11,000 images that had been expertly annotated, outputting
a detection accuracy of 98.79%. As an additional step, the authors could have implemented
certain augmentation techniques for scaling the data in a representative manner and captur-
ing the variance that may be found within other manufacturing facilities due to variations
in production line configurations, for example.

In our previous work [25], we proposed the implementation of MobileNet-SSDV2
for the detection of vertical damage to pallet racking based on a custom dataset that was
manually collected and annotated. The proposed solution was successful in providing an
edge device-compatible network (deployed on Raspberry PI) that achieved a MAP of 92.7%
@ and an IOU of 50%. This work is an extension of our previous research, as we expand on
the defect categories from a single class (vertical damage) to multiple classes along with
representative data scaling and defect localization.

Summarizing the literature, we have learnt that there is a dearth of research that
focuses on architectural quantization for addressing deployment issues. For example, the
subscription to the segmentation domain of the CV as opposed to object detection in [1]
means that the trained architecture (Mask RCNN), regardless of the fact that it may achieve
a high accuracy, would have to be hosted on a cloud or specific GPU hardware when being
put into production. Furthermore, there is a lack of representative data scaling and variance
introduction—a fundamental mechanism for countering data scarcity—as is the case for
pallet racking, where no open-source data are available.

1.2. Paper Contribution

Our first contribution to automated pallet racking came in the form of a classifier
detecting five different classes: horizontal, vertical, support, vertical damage, and support
damage. We addressed the issue of data scarcity through selected image processing tech-
niques appropriate for modelling the variance induced within various distribution centers,
warehouses, and manufacturing facilities as a result of internal and external factors. The
scaled dataset was used to train the recent YOLOv7 architecture with a focus on producing
a highly generalized model that was able to differentiate between various racking states.

Secondly, we benchmarked the trained architecture performance not only on archi-
tectural and computational performance but also on post-deployment metrics such as
frame-per-second (FPS), demonstrating the realistic inference speed of the trained archi-
tecture. Additionally, we proposed a complete deployment framework and deployed the
developed architecture onto a jetson device. We resolved the issue of determining the
location of the damaged racking leg through the use of AprilTags and a positive-inference
window (PiW) mechanism.

2. Methodology
2.1. Data Procurement

To the best of our understanding, there is no open-source pallet racking dataset
consisting of representative samples that can be used for developing automated defect
detection classifiers for addressing damage detection in pallet racking. This potentially
justifies the reason for the lack of active research in this field as data are the fundamental
components for initiating any development work in AI-related applications. Extending our
research from [25], we presented the first multiclass pallet racking dataset collated from a
pool of local manufacturing firms hosting various types of pallet racking.

Figure 1 presents our operational mechanism for the raw data acquisition, accumu-
lation, and filtration. The process of data collection was carried out at three different
warehouses. Smartphones were utilized for recording videos of pallet racking at each
warehouse. The videos from each warehouse were collated into a single access point via
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Dropbox. A video splitter was then implemented for procuring static images of the racking
with a split rate of 1 FPS. The resultant images formed the original raw dataset.
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2.2. Data Pre-Processing

After deriving the original dataset based on the data procurement strategy, the next
step involved the annotating of the data. This was a fundamental step; its efficiency would
have an impact on the performance of the model. If the bounding boxes around the classes
of interest were too loosely defined, this could force the models to generalize on a false
assumption. Conversely, very stringent bounding boxes could result in missing a section of
the relevant class, again leading to the risk of false generalization during training. In order
to balance the two risks, we decided to annotate based on close proximity. At the same
time, due to stock being placed on the racking, certain images contained occlusions with
respect to the class of interest. To address this, images containing an occlusion of a quarter
of the class of interest were fully annotated, including the occlusion part (Figure 2A); with
occlusions greater than a quarter of the class of interest (Figure 2B), only the apparent
region of the class was annotated, as shown in Figure 2.

2.3. Data Augmentation

It was noticed during the frame splitting that many frames did not contain any pallet
racking due to the movement of the smartphone around the warehouse. These images
were filtered out of the dataset. The next phase within the data transformation involved the
scaling of the dataset thorough representative augmentations in order to provide enough
training data for the selected architecture to generalize on. Figure 3 presents the proposed
augmentation strategy.
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2.4. Device-Induced Variance Modelling

The first type of variance modelling was based on capturing the variance that could
be caused by the Jetson Nano used for capturing and inferencing the racking images. The
Jetson Nano was located on the adjustable bracket of the forklift, as shown in Figure 4.
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Figure 4. Strategy of device placement.

Although the device was initially installed (with a magnetic mount) onto the adjustable
bracket in a certain orientation, the orientation could be adjusted due to external factors
such as stock off-setting the device position whilst loading/off-loading. Hence, to cater
for this variance and enable the model to accurately inference regardless of the orientation,
shift and rotation augmentations were applied. For this, a shift component was introduced
denoting the shift factor in the form of (Sx, Sy):

M =

[
1 0 Sx
0 1 Sy

]
. (1)

The matrix M was translated into an array before applying an affine transform, where
inp was the input image, otp was output image, and M equaled the transformation matrix:

otp(x, y) = inp(M11x + M12x + M13, M21x + M22y + M23). (2)

As result of pixel shifting, the variance caused by the off-setting of the hardware
device was captured. However, this type of processing eliminated the damaged regions of
the racking in a few cases (when rack damage was located at the edge of the image). To
facilitate the preservation of damaged racking in the images, center-based rotations were
introduced. Habitually, the rotation of an image with respect to an angle (θ) would be
reached via the matrix:

Mb =

[
cosθ −sinθ
sinθ cosθ

]
. (3)

However, the aim here was to reference the center of the image for the rotation:

Mb =

[
αβ(1− α)·centre.x− β·centre.y
−βα·centre.x + (1− α)·centre.y

]
(4)

where centre is the rotation center (input image), θ is the rotation angle (degrees), and scale
is the isotropic scale factor:

α = scale·cosθ, β = scale·sinθ. (5)

Additionally, the placement of the device on the adjustable brackets of the forklift
enabled the strategic coverage of the particular racking on which the forklift was operating.
However, this also resulted in a continuous dynamic state for the device to operate in;
i.e., inferencing on the state of the racking. Depending on the speed of the forklift, the
image data captured by the device could be blurry. To cater for this type of variance,
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Gaussian Blur was introduced. The pixel-wise blurring of certain images was aimed at
introducing a representative variance; i.e., due to varying lighting conditions and the
hardware specifications of camera device, the model was provided with a richer training
dataset to assist with generalization. Figure 5A presents a shifted racking image whilst
Figure 5B presents a blurred image.
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2.5. Environmental Variance Modelling

This architecture was aimed at pallet racking detection across a wide range of ware-
houses, distribution centers, and manufacturing facilities. It was plausible to expect that
different locations would present varying external factors that the model-trained archi-
tecture would need to adapt to. For example, warehouse M may have an increased lux
intensity (increased lighting) whereas warehouse B, located in another country, may have
significantly less lux intensity. It is also possible that warehouse M may have variations in
its lux intensity during the day–night shifts.

To model the lux variations into the training dataset, a random brightness adjustment
was implemented. This was achieved by varying the pixel intensity of a given image within
a globally predefined intensity mechanism varying between −11 and +11%. Figure 6A
presents a high intensity generated sample whilst Figure 6B presents a simulation of an
low intensity environment sample.

The scaled dataset consisted of 2094 samples. Table 1 presents the dataset post-splitting
into training, validation, and test sets for facilitating the training and evaluation process.

Table 1. Transformed dataset.

Data Samples

Training 1905
Validation 129

Test 60
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2.6. YOLOv7 Architecture

There are many architectures available for training custom defect detection classifiers.
We selected the most appropriate based on the following criteria. First, the research fo-
cused on defect detection without requiring pixel-level accuracy; hence, object detection
was selected as opposed to segmentation. Second, object detection has many promising
architectures; however, the benchmark here was real-time inference speed along with an
acceptable accuracy. Based on the above two filters, the architecture search was narrowed
down to MobileNet and the YOLO family of models. MobileNet was implemented in [25];
as an extension, YOLO was selected for this research. YOLO contains various variants with
continuous improvements. However, with the recent advent of YOLOv7 [26] in 2022, we
have provided the first racking detection application based on this architecture. Another
reason for the selection of YOLOv7 was based on the paper claiming that the architecture
was the fastest and most accurate real-time detector to date.

2.7. YOLOv7 Architectural Reforms

YOLOv7 presents several architectural reforms aimed at improving the detection
speed and accuracy. In general, all YOLO architectures consist of a backbone, head, and
neck. The backbone is responsible for the grounding work, extracting essential features
and feeding them through to the head via the neck component. YOLOv7 moves away from
its predecessors when it comes to the backbone; that is, rather than utilizing the darknet, an
extended efficient layer aggregation network (E-ELAN) is deployed as the computational
block for the backbone. Although the E-ELAN paper has not been published yet, the
concept is based on the use of expand, shuffle, and merge cardinality to continuously
enhance the learning ability of the network without losing the original gradient path.

Furthermore, to address the issue of model scaling for a specific device deployment,
researchers generally utilize a Network/Neural Architecture Search (NAS) tool [27]. NAS
enables a parameter iteration search to unearth optimal scaling factors based on the res-
olution, width, depth, and stage (the number of feature pyramids). For the YOLOv7
architecture model, the scaling is further enhanced through a compound model scaling
mechanism. This is achieved by the coherent scaling of the width and depth parameters for
concatenation-based models.

YOLOv7 also caters for re-parameterization planning (RP). RP is based on the concept
of averaging various models to produce a final model that is robust in performance. Module-
level re-parameterization has been an active area of research, where certain segments of the
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model have exclusive re-parameterization strategies. YOLOv7 utilizes the gradient flow
propagation paths for determining the segments (modules) within the overall model that
require re-parameterization. Finally, the head component of the architecture is based on the
multihead concept. That is, the lead head is responsible for the final classification whilst
the auxiliary heads assist with the training process in the middle layers. Figure 7 presents
the abstract training framework for the pallet racking application.

Sensors 2022, 22, 6927 9 of 14 
 

 

continuously enhance the learning ability of the network without losing the original gra-
dient path. 

Furthermore, to address the issue of model scaling for a specific device deployment, 
researchers generally utilize a Network/Neural Architecture Search (NAS) tool [27]. NAS 
enables a parameter iteration search to unearth optimal scaling factors based on the reso-
lution, width, depth, and stage (the number of feature pyramids). For the YOLOv7 archi-
tecture model, the scaling is further enhanced through a compound model scaling mech-
anism. This is achieved by the coherent scaling of the width and depth parameters for 
concatenation-based models. 

YOLOv7 also caters for re-parameterization planning (RP). RP is based on the con-
cept of averaging various models to produce a final model that is robust in performance. 
Module-level re-parameterization has been an active area of research, where certain seg-
ments of the model have exclusive re-parameterization strategies. YOLOv7 utilizes the 
gradient flow propagation paths for determining the segments (modules) within the over-
all model that require re-parameterization. Finally, the head component of the architec-
ture is based on the multihead concept. That is, the lead head is responsible for the final 
classification whilst the auxiliary heads assist with the training process in the middle lay-
ers. Figure 7 presents the abstract training framework for the pallet racking application. 

 
Figure 7. Proposed system architecture. 

3. Results 
3.1. Hyperparameters 

In order to initiate the training process, a set of hyperparameters had to be defined. 
Although the training could have been carried out via Google Colaboratory, the GPU al-
location for the free tier is limited and, hence, timeout issues could result incomplete train-
ing. Hence, a standalone system was utilized for the complete training of the architecture. 
The system specifications along with the defined hyperparameters for guiding the train-
ing process are presented in Table 2. 

Table 2. Hyperparameters. 

Batch Size 20 
Epochs 300 

Optimizer ADAM 
Learning Rate 0.01 
GPU Memory 5 GB 

GPU Quadro P2200 
  

Figure 7. Proposed system architecture.

3. Results
3.1. Hyperparameters

In order to initiate the training process, a set of hyperparameters had to be defined.
Although the training could have been carried out via Google Colaboratory, the GPU allo-
cation for the free tier is limited and, hence, timeout issues could result incomplete training.
Hence, a standalone system was utilized for the complete training of the architecture. The
system specifications along with the defined hyperparameters for guiding the training
process are presented in Table 2.

Table 2. Hyperparameters.

Batch Size 20
Epochs 300

Optimizer ADAM
Learning Rate 0.01
GPU Memory 5 GB

GPU Quadro P2200

3.2. Model Evaluation

Various metrics were utilized to comprehend the model performance from different
perspectives and granularities. Along with the generic metrics of evaluation precision,
recall, and F1 scores, the Intersection over Union (IoU) was specifically used because our
application was based within the object detection realm as opposed to image classification
or segmentation. The IoU, also referred to as the Jaccard Index, facilitated similarity
quantifications between the ground truth Mg and the predicted Mp bounding boxes, as
shown in (6):

IoU =
area

(
Mp ∩Mg

)
area

(
Mp ∪Mg

) . (6)

Mp and Mg were predefined as 0.5, interpreted as a 50% overlap between the ground
truth Mg and the model prediction Mp; these must be satisfied for the model prediction to
be classified as correct. Furthermore, MAP (mean average precision) was preferred due to
its comprehension of the sensitivity of the model. Firstly, the precision, recall, and F1 score
were computed for a predefined confidence threshold of 50%. The MAP was calculated (7),
where APi was the average precision for i-th class and C equated to the number of classes:
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MAP =
1
C ∑C

i=1 APi. (7)

Table 3 presents the overall performance of the YOLOv7 architecture. The trained
architecture was able to achieve an impressive MAP@0.5-IoU of 91.1% at 19 FPS. Comment-
ing on the convergence capacity of the architecture, it could be seen that this accuracy was
achieved in approximately 6 h of training time.

Table 3. Model evaluation.

MAP@50(IOU) 91.1%
FPS 19

Steps 300
Training Time ~6 h

The training time coupled with the resultant performance was a manifestation of the
effectiveness of our proposed data scaling mechanism. As presented in Table 1, the dataset
post-scaling was still small in conventional terms. However, due to the targeted modelling
of representative augmentations, there was a sufficient underlying feature representation
for the model to highly generalize.

Figure 8 provides a granular class-specific performance indicator in the form of a
precision recall curve. From the p-r curve we observed that the vertical racking provided
the highest performance (95.3%) followed by the vertical damaged racking (92.6%).
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The support racking and damaged support racking saw a decrease in performance of
88.1% and 88.6%, respectively. This was due to the fact that the support racking was not as
visually apparent as the vertical and horizontal racking as it was located on the sides of
the vertical racking providing support; hence, it was usually obscured when loaded with
stock. Thus, the limited class access to these support racking images could have resulted
in a decrease in the generalizability of the model for this particular class. However, the
overall performance of the architecture was still 91.1%.
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4. Discussion

In order to evaluate the overall success of our research it was essential to provide
a comparison against similar research conducted in present times. Table 4 presents a
comparison of this research with [1,25], as discussed earlier.

Table 4. Recent work comparison.

Our Research Research by [1] Research by [25]

Approach Object Detection Image Segmentation Object Detection
Dataset Size 2094 75 19,717

Classes 5 1 2
Detector YOLOv7 Two-Stage Single Shot

MAP@0.5(IoU) 91.1% 93.45% 92.7%

A prior work [25] focused on object detection whilst [1] opted for image segmentation.
Although the objective in all three cases was the same, we preferred the object detection
jurisdiction over segmentation for various reasons.

First, our research objective was to train a lightweight architecture that could be
deployed onto an edge device to provide a real-time inference. This could not be achieved
using the approach taken by [1] as a Mask RCNN architecture based on the ResNet-101
backbone contains 44.5 million learnable parameters, making it unsuitable for deployment
onto a constraint computational device. Additionally, revisiting the common goal of racking
defect detection meant that pixel-level segmentation was not required to achieve this; using
the IoU concept via object detection, we were able to set a threshold from the overlap
between the annotated and the predicted damage for a correct classification.

With respect to the data size, [1] only contained 75 images, but provided the highest
accuracy. However, when observing the dataset (as presented in Figure 9), it could be
seen that the data were not representative of the operational environment; rather, close-up
images of the racking were utilized. Conversely, our dataset was also considered small in
conventional terms, but was more representative as it was collected within the production
environment and then further scaled based on representative augmentations.
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Although our trained architecture had ostensibly the lowest performance (91.1%), the
difference was minimal compared with [1,25] and less than 3%. However, when looking at
the number classes, we observed that our architecture inferenced on five different classes. If
a comparison was undertaken with [25] based only on vertical damage, then the difference
in performance would have been 0.1%.
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Finally, we also presented the FPS for our trained architecture, achieving a satisfactory
performance of 19 FPS. The FPS coupled with the detection accuracy based on the five
different classes testified to the success of our proposed framework.

5. Conclusions

In conclusion, our research was successful in the development of the first multi-
class pallet racking detection framework. The performance manifestation through the
achieved MAP coupled with the real-time performance of the trained architecture (19 FPS)
demonstrated that the proposed framework could be utilized to deploy the system within
warehouses, distribution centers, and manufacturing facilities for the monitoring of pal-
let racking.

Our solution presented a non-invasive approach to defect detection that was distinct
from conventional racking monitoring products aimed at sensor-oriented solutions [28].
These require the installation of a hardware device—essentially, an accelerometer—on every
single racking leg, significantly increasing the costs for clients. Conversely, our solution
was strategically located on the adjustable brackets of the forklift, providing coverage of
the racking near where the forklift was operating. Hence, the number of devices required
for our application would be proportional to the number of forklifts within the warehouse
of the client as opposed to the number of racking legs, significantly reducing the upfront
and continuous maintenance costs.

Furthermore, the proposed framework could also be applied to various other domains
where the objective may be to reduce the reliance on hardware-oriented data collection and
inference such as PV fault detection and post-system deployment [29,30].
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