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Abstract: The remote sensing imaging environment is complex, in which many factors cause image
blur. Thus, without prior knowledge, the restoration model established to obtain clear images can
only rely on the observed blurry images. We still build the prior with extreme pixels but no longer
traverse all pixels, such as the extreme channels. The features are extracted in units of patches, which
are segmented from an image and partially overlap with each other. In this paper, we design a new
prior, i.e., overlapped patches’ non-linear (OPNL) prior, derived from the ratio of extreme pixels
affected by blurring in patches. The analysis of more than 5000 remote sensing images confirms that
OPNL prior prefers clear images rather than blurry images in the restoration process. The complexity
of the optimization problem is increased due to the introduction of OPNL prior, which makes it
impossible to solve it directly. A related solving algorithm is established based on the projected
alternating minimization (PAM) algorithm combined with the half-quadratic splitting method, the
fast iterative shrinkage-thresholding algorithm (FISTA), fast Fourier transform (FFT), etc. Numerous
experiments prove that this algorithm has excellent stability and effectiveness and has obtained
competitive processing results in restoring remote sensing images.

Keywords: OPNL prior; remote sensing images; overlapped patches; blind image deblurring

1. Introduction

In actual imaging processes, the acquired images always face blurring problems
caused by the imaging equipment and environment. In order to remove the blurs, image
restoration technology has gradually attracted the attention of researchers and developed
into a significant branch of image processing. The ideal image degradation process can be
simply described as:

Y = K ∗ X + N, (1)

where Y, K, X, and N represent the observed blurry image, blur kernel, original clear
image, and noise, respectively, and ∗ represents the convolution operator. In fact, the cause
of blurring is unknown, i.e., lack of prior information, which makes it an ill-conditioned
problem with infinite solutions when simultaneously solving the blur kernel and the clear
image. A traditional blind image deblurring algorithm is dedicated to finding the optimal
global solution, i.e., the blur kernel, by using image information to optimize the equation,
then utilizing the non-blind image deblurring algorithm to obtain a clear image.

Due to the complexity and diversity of actual situations, parametric models [1,2]
obviously cannot accurately describe the blur kernel, so they are not competent for the
work of image restoration. With the research results by Rudin et al. [3] in 1992, the theory of
partial differential has gradually become an essential part of image restoration. Traditional
image restoration models can be roughly divided into two frameworks: Maximum A
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Posterior (MAP) [4–7] and Variable Bayesian (VB) [8–12], which are based on probability
theory and statistics. Considering the computation and complexity of the algorithm,
although the VB framework is more stable, most methods still choose the MAP framework.
At this time, the introduction of appropriate conditions can make the MAP framework
avoid the problem that the naive MAP approaches with a sparse derivative prior tend to
the trivial solutions, which were proven by Levin et al. [13]. The MAP framework considers
that solving the blur kernel and the clear image at the same time can be regarded as solving
the standard maximum posterior probability, which is expressed as:

(X, K) = arg max P(X, K|Y) ∝ arg max P(Y|X, K)P(X)P(K) (2)

where P(Y|X, K) is the noise distribution, and P(X) and P(K) are the prior distributions of
the clear image and blur kernel, respectively. We take the negative logarithm of each item
in Equation (2) to construct the following regularized model:

(X, K) = arg min Ψ(Y− K ∗ X) + αϕ(X) + βψ(K) (3)

where Ψ(:) is the fidelity term, ϕ(X) and ψ(K) are the regularization functions on X and K,
and α and β are the corresponding parameters.

As one of the most prominent features in images, edge information has always played
an important role in image restoration algorithms. However, if there is an image that lacks
sharp edges, it is necessary to take prior knowledge as the core, which can distinguish clear
images from blurry images, and use image edge information as an auxiliary to achieve the
desired deblurring. Channels are independent planes that store the color information of
an image. The channel prior has gradually entered researchers’ vision since Pan et al. [14]
verified that the distribution of dark channel pixels is significantly different for clear and
blurry images. The dark channel prior performs well when dealing with natural, text,
facial, and low-light images. Yan et al. [15] designed a restoration algorithm based on
extreme channel prior, including dark and bright channels, to deal with insufficient dark
channel pixels in the image. Ge et al. [16] proposed a non-linear channel prior with
extreme channels, which has been proven by experiments to effectively solve the problem
of algorithm performance degradation due to the lack of extreme pixels. At the same
time, the local feature of images as the prior knowledge also shines in the field of image
deblurring, e.g., local maximum gradient prior [17], local maximum difference prior [18],
patch-wise minimal pixels prior [19], etc.

In this paper, inspired by the non-linear channel prior and the patch-wise minimal
pixels prior, we design a new non-linear prior and develop the corresponding algorithm
to deal with the task of remote sensing image restoration. To further improve operational
efficiency and reduce running time, our method does not traverse all of an image’s pixels
but the patches divided by the image when extracting features. Each patch will have a
partial overlap to record more detailed feature information. After that, similar to how the
extreme channels extract image features, the extreme pixels of each patch are found and
made into two sets, i.e., the local minimum intensity set and the local maximum intensity
set. We use a convex L1-norm constraint on the ratio of corresponding elements in the two
local intensity sets as a non-linear prior. It is clear that OPNL prior prefers clear images
rather than blurry images through the analysis of more than 5000 remote sensing images.
It is difficult to solve the image restoration model based on OPNL prior directly, so we
use the half-quadratic splitting method to decompose the whole model into several sub-
problems that are easier to solve. The non-linear term can be converted into a linear term
by constructing a linear operator using the result of the previous iteration in the algorithm.
The contributions of this research are as follows:

(1) In this paper, we propose a new prior based on extreme pixels in patches, i.e., OPNL
prior. The analysis and tests of more than 5000 remote sensing images show that
OPNL prior is more conducive to clear images.
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(2) A new image restoration algorithm is designed based on OPNL prior for remote
sensing images, which can effectively deblur while maintaining good convergence
and stability.

(3) The experimental results show that the proposed method outperforms the comparative
methods in dealing with blurry remote sensing images. Even in the face of remote
sensing images with complex textures and many details, the method can still obtain
very competitive deblurring results.

The paper’s outline is as follows: Section 2 organizes the achievements made in the
field of blind image deblurring over the years. In Section 3, we will elaborate on the OPNL
prior. Section 4 establishes an image restoration model and designs the corresponding opti-
mization algorithm. Section 5 presents the experimental results of our algorithms. Section 6
quantitatively analyzes the performance of our method. Section 7 is the conclusion.

2. Related Work

This section classifies existing blind image deblurring methods into three categories
and briefly reviews recent achievements.

2.1. Edge Detection-Based Algorithms

Edges are favored by researchers and exist in many blind image restoration methods
because they can clearly describe image features and are easy to extract. Joshi et al. [20]
proposed using sharp edges to estimate blur kernel with sub-pixel accuracy to restore a
clear image. Cho and Lee [21] believe that the prominent edges in an image play a dominant
role in estimating blur kernel and designed algorithms, including bilateral filtering, shock
filtering, and gradient magnitude thresholding to extract strong edges. Xu and Jia [22]
proposed a new edge selection method to deal with strong edges that are not conducive to
image restoration. By analyzing natural images and synthetic structures, Sun et al. [23] can
obtain appropriate patch priors for image edges and corners and build a new patch-based
image deblurring model. It is worth noting that edge detection-based algorithms fail when
blurry images do not have enough suitable strong edges. However, even image prior-based
algorithms still need edge information to build models, e.g., enhanced low-rank prior [24],
L0-regularized intensity and gradient prior [25], and local maximum gradient prior [17].

2.2. Image Priors-Based Algorithms

Such algorithms typically use prior knowledge composed of image features to optimize
results in favor of clear images rather than blurry images. Shan et al. [26] incorporated noise
distribution and new local smoothness prior into the probability model of image deblurring
to reduce artifacts. Krishnan et al. [27] concluded that L1/L2 regularization prior is more
conducive to clear images after analyzing the images with Gaussian blur. Levin et al. [10]
improved the conventional MAP algorithm by deriving a simple approximate MAP model
without increasing the algorithm’s complexity. Kotera et al. [28] showed that the MAP
model combined with heavy-tailed prior could obtain good processing results. Michaeli and
Irani [29] used the deviation between the actual patches and the ideal patches in different
image scales as a prior for image deblurring. Ren et al. [24] used a new enhanced low-rank
prior to improve the effectiveness of deblurring, which combines low-rank priors on similar
patches of blurry images and their gradient images. Zhong et al. [30] designed a high-order
variational model based on the statistical characteristics of impulse noise, which can deblur
and preserve image details under the interference of impulse noise. As Pan et al. [14]
applied dark channels to the field of blind image deblurring with great success, sparse
channels became the source of much prior knowledge. Yan et al. [15] proposed a bright
channel as opposed to the dark channel and combined them into the extreme channel
prior. Some improved priors based on extreme channels have also been successful, e.g.,
the priors of the image restoration model constructed by Yang et al. [31] and Ge et al. [16].
Zhou et al. [32] analyzed the effect of blur on different channels in the color space and
established an image restoration model based on a single luminance channel prior, which
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is referred to as the dark channel prior. In recent years, blind image restoration algorithms
that take local image features as the priors have also developed rapidly, e.g., local maximum
gradient prior [17], local maximum difference prior [18], and patch-wise minimal pixels
prior [19]. Our algorithm can also be viewed as such. For nighttime images, Chen et al. [33]
developed a new image deblurring model by introducing the latent mapping relationship
based on the saturated and unsaturated pixels of the images.

2.3. Deep Learning-Based Algorithms

The rapid development of deep learning technology makes it shine in various fields,
and the field of image restoration is no exception. Early learning network-based algorithms
still need to be designed with reference to traditional algorithms, e.g., methods proposed by
Sun et al. [34] and Schuler et al. [35]. Li et al. [36] combined deep learning with traditional
algorithms and used deep convolutional neural networks to realize image discrimination
and feature extraction. However, this method is not suitable for dealing with highly non-
uniform blurs, such as motion blur and defocus blur. Unlike algorithms relying on blur
kernels to restore images, the end-to-end learning network can directly obtain clear images
from blurry images through training. Nah et al. [37] creatively proposed a multi-scale
convolutional neural network and used a multi-scale loss function to remove complex
motion blur. Cai et al. [38] introduced channel priors into neural networks and developed
the Dark and Bright Channel Prior embedded Network (DBCPeNet), which effectively
handles blurring in dynamic scenes. To further improve the algorithm’s computational
efficiency and deblurring quality, Zhang et al. [39] and Suin et al. [40] both developed a
patch-based hierarchical network. Pan et al. [41] expected the algorithm to have more
functions and restore images from more aspects. Based on physical models, they trained
end-to-end using a generative adversarial network framework that finally solves problems
such as image deblurring, dehazing, and deraining. Many algorithms focus on dealing
with a certain kind of image or blur, e.g., ID-Net [42], DCTResNet [43], and LSFNet [44].
However, due to many parameters, deep learning-based algorithms require long-term and
large-scale training to obtain excellent processing results.

3. Overlapped Patches’ Non-Linear Prior

This section introduces the OPNL prior and demonstrates that it is beneficial for clear
images rather than blurry images.

3.1. The Overlapped Patches’ Extreme Intensity Pixels

OPNL prior is based on sets of extreme pixels with overlapping patches. The extreme
pixels in an overlapping patch i are defined as:

Mi(X)(i) = min
(x,y)∈Ω1(i)

(
min

c∈{r,g,b}
X(x, y, c)

)
(4)

Ma(X)(i) = max
(x,y)∈Ω2(i)

(
max

c∈{r,g,b}
X(x, y, c)

)
(5)

where (x, y) are pixel coordinates, Ω1 and Ω2 are the domain of patch pixels, and c repre-
sents a color channel. Since conventional remote sensing images only have one channel,
Equations (4) and (5) can be described as:

Mi(X)(i) = min
(x,y)∈Ω1(i)

X(x, y) (6)

Ma(X)(i) = max
(x,y)∈Ω2(i)

X(x, y) (7)

Due to the presence of blur in an image, as demonstrated by Pan et al. and Yan et al.,
extreme pixels in a patch are averaged with surrounding pixels, which results in Mi increasing
and Ma decreasing for each patch. The inferences are as follows:
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1. Let Mi(B) and Mi(C) represent the local minimum intensity pixel sets of a clear
image and the corresponding blurry image, respectively, then:

Mi(B)(i) ≥ Mi(C)(i) (8)

2. Let Ma(B) and Ma(C) represent the local maximum intensity pixel sets of a clear
image and the corresponding blurry image, respectively, then:

Ma(B)(i) ≤ Ma(C)(i) (9)

3.2. The Overlapped Patches’ Non-Linear Prior

Inspired by Ge et al. [16], in order to enhance the discrimination of image features for
clear images and blurry images, we use the extreme intensity pixels of overlapping patches
to form a non-linear term OPNL:

N(X)(i) =
min

(x,y)∈Ω1(i)
X(x, y)

max
(x,y)∈Ω2(i)

X(x, y)
=

Mi(X)(i)
Ma(X)(i)

(10)

The dimensions of Ω1 and Ω2 in the prior are the same. Furthermore, if there is a
patch such that Ma(X)(l) = 0 and Mi(X)(l) = 0 hold, then N(X)(l) = 0.

For the case where N(X)(i) of other patches is not 0, it can be deduced that:

1 ≤ Mi(B)(i)
Mi(C)(i)

≤ Mi(B)(i)Ma(C)(i)
Mi(C)(i)Ma(B)(i)

=
N(B)(i)
N(C)(i)

(11)

Accordingly, we can design a new prior, i.e., ψ(X) = ‖N(X)‖1, accumulated by
the convex L1-norm. It can be seen from the above formula: N(B)(i) ≥ N(C)(i), i.e.,
‖N(B)‖1 > ‖N(C)‖1 , in which one case is excluded that ‖N(B)‖1 = ‖N(C)‖1, which
requires all elements in image X to be equal. In experiments to test the effectiveness of
OPNL prior, we selected 5200 images from the AID dataset [45] and added one of the eight
blur kernels from the Levin dataset [13] to each image. As shown in Figure 1a, the large
pixel values of OPNL for blurry images are significantly more than those for clear images.
Figure 1b shows that minimizing the OPNL prior is more conducive to obtaining a clear
image in the image deblurring model.

(a) (b)

Figure 1. (a) The average pixel value distribution of OPNL for 5200 images. (b) The average value of
OPNL prior for 5200 images.
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4. Solving Process of Image Deblurring Algorithm

Under the MAP framework, we introduce a new prior, i.e., OPNL prior, into the image
deblurring model and develop a corresponding solution algorithm. The objective function
of our algorithm is:

min
K,X
‖K⊗ X−Y‖2

2 + α‖N(X)‖1 + β‖∇X‖0 + γ‖K‖2
2 (12)

where α, β, and γ are the weights of the corresponding regularization terms. The first term
is the fidelity term, which aims to mitigate the influence of noise on the restoration result
by minimizing it. The other items are the correlation term of OPNL prior, the regularization
term of the image gradient, and the constraint term of the blur kernel constrained by the
L2-norm to smooth the blur kernel. It is not practical to directly solve the objective function.
Thus, we can use the projected alternating minimization (PAM) method to decompose the
model to obtain the clear image and blur kernel, respectively. We replace Ma(X) of the
OPNL prior term with Ma(XP), where XP is the image result of the previous iteration:

min
X
‖K⊗ X−Y‖2

2 + α

∥∥∥∥ Mi(X)

Ma(Xp)

∥∥∥∥
1
+ β‖∇X‖0 (13)

min
K
‖K⊗ X−Y‖2

2 + γ‖K‖2
2 (14)

Based on the multi-scale image pyramid, the estimated blur kernel can be obtained
after the loop iteration. Then, with the blur kernel and the blurry image as initial conditions,
an image non-blind deblurring algorithm is used to restore the clear image.

4.1. Estimating the Latent Image

To further reduce the difficulty of solving, we apply the half-quadratic splitting method
to separate the prior term and the regularization term of the gradient by introducing
auxiliary variables. Equation (13) can be rewritten as:

min
X,t,r
‖K⊗ X−Y‖2

2 + α
∥∥∥ t

Ma(Xp)

∥∥∥
1
+ β‖r‖0

+λ1‖Mi(X)− t‖2
2 + λ2‖∇X− r‖2

2

(15)

where λ1 and λ2 are the penalty parameters, and t and r are auxiliary variables. When λ1
and λ2 grow to infinity, Equations (13) and (15) are equivalent. After that, other variables
are fixed, and each variable can be solved alternately. Based on the blurry image, the
auxiliary variable t is solved by:

min
t

α

∥∥∥∥ t
Ma(Xp)

∥∥∥∥
1
+ λ1‖Mi(X)− t‖2

2 (16)

The relationship between the non-linear operators (Mi(X) and Ma(X)) and the pixels
of the original image is expressed by constructing the mapping matrices (I and A), that is:

I(i, j∗) =
{

1,
0,

j∗ = arg minj∈Ω1(i) X(j)
otherwise

(17)

A(i, j∗) =
{

1,
0,

j∗ = arg maxj∈Ω2(i) X(j)
otherwise

(18)

The same as in Ge et al. [16], the sparse matrix I by explicit calculation, Equation (16)
is rewritten as follows:

min
t

α

∥∥∥∥ t
Ma(Xp)

∥∥∥∥
1
+ λ1‖IX − t‖2

2 (19)
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where t, X, and Ma(x) are vector forms of t, X, and Ma(x), respectively. Further, we rewrite
Equation (19):

min
e

α‖e‖1 ++λ1‖IX − diag(Ma(X))e‖2
2 (20)

We can handle the classic convex L1-regularized problem by applying the fast iterative
shrinkage-thresholding algorithm (FISTA) [46], whose contraction operator is:

Dc(x)i = sgn(xi)max(|xi − c|, 0) (21)

The solution process of t is shown in Algorithm 1.

Algorithm 1 Solving auxiliary variables t in (20).

Input: A = diag(Ma(Xp)), B = IX, α, λ1,
g = max(eig(AT A)), m = 1, q1 = 1.
Maximum iteration M, initial value y1 = s0.
While m ≤ M

sm = Tα/λ1(ym − gAT(Aym − B))

qm+1 =
1 +

√
1 + 4q2

m
2

ym+1 = sm +
qm − 1
qm+1

(sm − sm−1)

m = m + 1
End while
t = AsM

Then solve the auxiliary variable r:

min
r

β‖r‖0 + λ2‖∇X− r‖2
2 (22)

The result of Equation (22) is:

r =
{

0,
∇X,

|∇X|2 < β/λ2
otherwise

(23)

After completing the solution of the auxiliary variables, we solve clear image X by:

min
X
‖K⊗ X−Y‖2

2 + λ1‖Mi(X)− t‖2
2 + λ2‖∇X− r‖2

2 (24)

We replace all items with matrix vector form:

min
X
‖KX − Y‖2

2 + λ1‖IX − t‖2
2 + λ2‖∇X − r‖2

2 (25)

K represents the blur kernel Toeplitz form. Equation (25) appears to be a simple least
squares problem, but it cannot be solved directly using Fast Fourier Transform (FFT).
Therefore, we continue to introduce an auxiliary variable u:

min
X
‖KX − Y‖2

2 + λ1‖Iu− t‖2
2 + λ2‖∇X − r‖2

2 + λ3‖X − u‖2
2 (26)

where λ3 is a penalty parameter. We decompose Equation (26) into two sub-problems to
solve the clear image X and the auxiliary variable u, respectively:

min
X

λ1‖Iu− t‖2
2 + λ3‖X − u‖2

2 (27)
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min
X
‖KX − Y‖2

2 + λ2‖∇X − r‖2
2 + λ3‖X − u‖2

2 (28)

Both sub-problems have closed solutions. The solution of Equation (27) is:

u =
λ1 ITt + λ3X
λ1 IT I + λ3

(29)

Equation (28) is solved by FFT:

X = F−1

(
F(K)F(Y) + λ2F(∇)F(r) + λ3F(u)

F(K)F(K) + F(∇)F(∇) + λ3

)
(30)

where F, F−1(·), and F(·) represent FFT, the inverse FFT, and the complex conjugate
operators of FFT, respectively. The above solution process is shown in Algorithm 2.

Algorithm 2 Solving the Latent Image X.

Input: Blurry image Y and blur kernel K.
Initialize λ1, X ← Y.
For i← 1 to 5, do

Solve t using Algorithm 1.
Initialize λ3.

For j← 1 to 4 do
Solve u using Equation (27).
Initialize λ2.
While λ2 < λmax

2 .
Solve r using Equation (22).
Solve X using Equation (28).
λ2 ← 2λ2.

End while
λ3 ← 4λ3.

End for
λ1 ← 4λ1.

End for
Output: latent image X.

4.2. Estimating the Blur Kernel

As proposed in the literature [14–19,25,31,32], a more accurate blur kernel can be
estimated by replacing the image gray term in Equation (14) with the image gradient term.
Equation (14) can be modified as follows:

min
K
‖K⊗∇X−∇Y‖2

2 + γ‖K‖2
2 (31)

FFT can estimate the blur kernel:

K = F−1

(
F(∇X)F(∇Y)

F(∇X)F(∇X) + γ

)
(32)

Note that the blur kernel K requires non-negative and normalization processing. The
solution process is shown in Algorithm 3.
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Algorithm 3 Estimating the blur kernel K.

Input: Blurry image Y.
Initialize K with results from the coarser level.
While i ≤ max _iter, do

Solve for X using Algorithm 2.
Solve for K using Equation (31).

End while
Output: Blur kernel K and intermediate latent image X.

4.3. Details about the Algorithm

This section describes the settings for the parameters in our algorithm. The algorithm
uses a coarse-to-fine image pyramid with a down-sampling factor of

√
2/2, and the number

of loops for each layer is 5. In the loop of each layer, the algorithm will complete the image
estimation, blur kernel estimation, and normalization, in turn. Then, the blur kernel
estimated in the loop of this layer is expanded by up-sampling and passed to the next
layer. The algorithm solution process is shown in Figure 2. Through a large number of
experiments, we usually set the relevant parameters as α = 0.002− 0.01, β = 0.002− 0.004,
and γ = 2, the patch_size is 20× 20, and the patch overlap rate is f = 25%. The maximum
number of loops in Algorithm 1 is set to 500. All parameters are not unique and can
be adjusted according to needs. Finally, using the blurry image and the estimated blur
kernel as the initial conditions, a clear image will be obtained by the non-blind image
deblurring algorithm.

Figure 2. A brief flow chart of our algorithm.

5. Experiment Results

Remote sensing interpretation experts selected a total of 30 scenarios, including
10,000 remote sensing images, from Google Maps. These images constitute a large-scale
aerial image dataset, i.e., the AID dataset [45]. All experimental tests are conducted on
the AID dataset. This section shows the processing ability of our algorithm for remote
sensing images by comparing it with four different prior algorithms, i.e., dark channel
(Dark) prior [14], L0 regular intensity and gradient (L0) prior [25], patch-wise minimal
pixels (PMP) prior [19], and non-linear channel (NLC) prior [16].
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5.1. Simulated Remote Sensing Image Experiment

First, the ability of our algorithm to remove the blur is tested, which is often en-
countered in the process of remote sensing imaging. We selected four images of high
quality from the AID dataset, as shown in Figure 3, in which motion blur, Gaussian blur,
and defocus blur were added for testing. Three representative and full-reference evalua-
tion indicators are selected, i.e., Peak-Signal-to-Noise Ratio (PSNR), Structural-Similarity
(SSIM) [47], and Root Mean Square Error (RMSE).

(a) (b) (c) (d)

Figure 3. Selected remote sensing image. (Simulate). (a) School, (b) Mountain, (c) River, (d) Park.

5.1.1. Motion Blur

We set the relevant parameters of the motion blur, i.e., the angle is 0◦, and the dis-
placement is 10 pixels. Table 1 shows the evaluation results of the images with motion blur
processed by all algorithms. For motion blur, the L0 method performs poorly. It can be seen
that using the L0-norm to constrain the pixels and gradients in the image will cause severe
over-sharpening. The dark channel prior is very effective for image processing with few
texture details, but there will still be slight residual over-sharpening when processing other
images. Although PMP, NLC, and our method have better visual effects in most processing
results, our method has achieved higher objective evaluation indicators. For Figure 3b,
with very complex texture, other methods fail to smooth the tiny details that result in the
restored image with irregular edges and poor evaluation of objective indicators. Figure 4
shows the restoration results of some images.

Table 1. Objective Evaluation Results of Remote Sensing Images with Motion Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 24.9247 0.8343 2.08× 10−4 8.7337 0.1263 5.94 × 10−5

L0 [25] 17.389 0.6035 2.81× 10−4 9.6171 0.2032 7.51× 10−5

PMP [19] 25.5164 0.8466 1.07× 10−4 10.4565 0.3279 1.78× 10−4

NLC [16] 26.0395 0.8514 1.55× 10−4 10.8196 0.3499 2.67× 10−4

Ours 27.0279 0.8594 9.21 × 10−5 17.0709 0.5676 6.28× 10−5

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 29.9602 0.8143 2.14× 10−4 17.9493 0.6659 2.19× 10−4

L0 [25] 25.1494 0.7386 2.43× 10−4 14.139 0.534 2.52× 10−4

PMP [19] 29.9402 0.8139 2.31× 10−4 22.5968 0.7977 2.64× 10−4

NLC [16] 28.9047 0.7755 2.45× 10−4 23.4888 0.8028 1.91× 10−4

Ours 31.0716 0.8327 1.90 × 10−4 24.4108 0.83 1.82 × 10−4
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(a) (b) (c)

(d) (e) (f)

Figure 4. The restoration results of different methods for Figure 3a,d with motion blur. (a) Blurry
Image, (b) Dark [14], (c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.

5.1.2. Gaussian Blur

We set the relevant parameters of the Gaussian blur, i.e., the size is 20 × 20, and the
standard deviation is 0.5. Table 2 shows the evaluation results of images with Gaussian
blur processed by all algorithms. When faced with the interference of Gaussian blur, the
images processed by Dark, L0, and PMP all have over-sharpening that becomes more and
more serious as the complexity of the textures increases, i.e., Figure 3b cannot be restored.
The NLC algorithm generally performs well, i.e., most of the processing results have good
visual effects. However, it retains too many tiny details when dealing with Figure 3b,
which leads to a deterioration in image quality. By comparison, the images restored by
our algorithm have advantages in both visual effects and objective evaluation indicators.
Figure 5 shows the restoration results of some images.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The restoration results of different methods for Figure 3b,c with Gaussian blur. (a) Blurry
Image, (b) Dark [14], (c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.
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Table 2. Objective Evaluation Results of Remote Sensing Images with Gaussian Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 12.0795 0.4805 3.46× 10−4 1.2252 0.0336 4.41× 10−4

L0 [25] 10.3751 0.4253 4.18× 10−4 1.1397 0.0072 4.24× 10−4

PMP [19] 13.9406 0.5948 3.19× 10−4 4.3068 0.065 3.41× 10−5

NLC [16] 21.32 0.8159 3.88× 10−4 11.8677 0.4549 4.76× 10−4

Ours 22.741 0.8074 2.17 × 10−4 17.7199 0.5875 1.16 × 10−4

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 24.927 0.6602 1.55× 10−4 11.4001 0.4046 1.18× 10−4

L0 [25] 14.5766 0.2655 2.11× 10−4 7.5502 0.3127 4.96× 10−5

PMP [19] 26.9558 0.7792 1.61× 10−4 14.1703 0.5774 1.08× 10−4

NLC [16] 27.4396 0.7738 1.45× 10−4 20.1692 0.7744 3.40× 10−5

Ours 31.132 0.8943 1.43 × 10−4 23.8839 0.8481 4.37 × 10−6

5.1.3. Defocus Blur

We set the relevant parameters of the defocus blur, i.e., the radius is 2. Table 3 shows
the evaluation results of images with defocus blur processed by all algorithms. For defocus
blur, Dark and L0 cannot recover more image details, and the processing results of these
two also have different degrees of over-sharpening. The performance of the other three
methods is basically good. Still, for Figure 3b with a complex texture, only NLC and our
method can achieve satisfactory results for visual effect, but our algorithm is also slightly
better in objective evaluation indicators. Comparing the results processed by these methods,
it can be seen that our algorithm can competently deal with the effect of defocus blur on
image quality. Figure 6 shows the restoration results of some images.

Table 3. Objective Evaluation Results of Remote Sensing Images with Defocus Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 25.7106 0.868 9.54× 10−5 6.528 0.0915 1.55× 10−4

L0 [25] 20.6962 0.759 6.79× 10−5 10.413 0.3589 2.42× 10−4

PMP [19] 26.0404 0.8709 6.82× 10−5 18.9793 0.7026 1.78× 10−4

NLC [16] 27.2596 0.892 2.45× 10−5 21.3035 0.7968 1.29× 10−4

Ours 28.7608 0.909 1.87 × 10−5 24.8868 0.8684 3.96 × 10−5

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

Dark [14] 31.7588 0.8616 1.60× 10−4 21.7453 0.781 8.82× 10−5

L0 [25] 30.6986 0.8476 1.82× 10−4 16.2103 0.6318 6.96× 10−5

PMP [19] 32.1846 0.8671 1.83× 10−4 27.5899 0.8956 4.23× 10−5

NLC [16] 30.2685 0.8337 1.39× 10−4 27.5728 0.8918 9.69× 10−5

Ours 32.478 0.869 1.35 × 10−4 28.2989 0.8983 3.00 × 10−5
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(a) (b) (c)

(d) (e) (f)

Figure 6. The restoration results of different methods for Figure 3b,d with defocus blur. (a) Blurry
Image, (b) Dark [14],(c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.

5.2. Real Remote Sensing Image Experiment

Finally, we observe the ability of our algorithm to solve real problems. A total of
five images were used for testing, which consisted of four blurry images selected from the
AID dataset and a target image obtained in the experiment, as shown in Figure 7. Due to the
lack of original reference images, the full-reference evaluation indicators will be replaced by
no-reference evaluation indicators, i.e., Entropy (E) [48], Average Gradient (AG), and Point
sharpness (P) [49]. Table 4 shows the evaluation results of real remote sensing. Although
Dark and L0 have obtained higher objective evaluation indicators, the processing results
of the two methods have serious over-sharpening, which causes the image edges to be
unsmooth and the details to look very messy. The performance of PMP is excellent for
remote sensing images with less detail. However, when more tiny details are in the image,
the restoration results will leave artifacts and generate false information. Compared with
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NLC, our algorithm achieves the same competitive subjective visual effect and slightly
outperforms the objective evaluation indicators. The comprehensive evaluation shows
that our algorithm has a good ability to solve practical problems. Figures 8–12 show the
restoration results.

(a) (b) (c) (d) (e)

Figure 7. Selected remote sensing image. (Real). (a) Port, (b) School*, (c) Airport, (d) Square,
(e) Target Image.

Table 4. Objective Evaluation Results on Real Remote Sensing Images.

Method
Figure 7a Figure 7b Figure 7c Figure 7d Figure 7e

E AG P E AG P E AG P E AG P E AG P

Dark [14] 6.4757 0.0181 0.1263 6.9836 0.0968 0.6781 7.2132 0.0925 0.6286 6.9755 0.0267 0.1833 7.1581 0.0976 0.6845

L0 [25] 6.5899 0.0316 0.2196 6.9261 0.1269 0.8879 7.2365 0.1072 0.7283 6.9977 0.0328 0.2266 7.1004 0.1023 0.7172

PMP [19] 6.4734 0.0182 0.1252 6.9269 0.0752 0.5251 7.2233 0.0852 0.5765 6.9745 0.0268 0.1843 7.1725 0.0845 0.5918

NLC [16] 6.4623 0.0168 0.1156 6.8072 0.0459 0.3182 7.2153 0.0587 0.3963 6.9682 0.0249 0.1715 7.2145 0.0408 0.2828

Ours 6.4826 0.0189 0.1301 6.8313 0.0509 0.3528 7.2225 0.0681 0.4592 6.9798 0.029 0.199 7.2279 0.0434 0.3008

(a) (b) (c)

(d) (e) (f)

Figure 8. The restoration results of different methods for Figure 7a. (a) Blurry Image, (b) Dark [14],
(c) L0 citeref25, (d) PMP [19], (e) NLC [16], (f) Ours.
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(a) (b) (c)

(d) (e) (f)

Figure 9. The restoration results of different methods for Figure 7b. (a) Blurry Image, (b) Dark [14],
(c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.

(a) (b) (c)

(d) (e) (f)

Figure 10. The restoration results of different methods for Figure 7c. (a) Blurry Image, (b) Dark [14],
(c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.
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(a) (b) (c)

(d) (e) (f)

Figure 11. The restoration results of different methods for Figure 7d. (a) Blurry Image, (b) Dark [14],
(c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.

(a) (b) (c)

(d) (e) (f)

Figure 12. The restoration results of different methods for Figure 7e. (a) Blurry Image, (b) Dark [14],
(c) L0 [25], (d) PMP [19], (e) NLC [16], (f) Ours.

6. Analysis and Discussion

This section presents the performance analysis of our proposed algorithm, including
the effectiveness of OPNL prior, the influence of hyper-parameters, algorithm convergence,
computational speed, and algorithm limitations. All the tests are based on the Levin
dataset [13], consisting of four images and eight blur kernels. To maintain test accuracy,
we uniformly specify the number of iterations and estimated blur kernel size and use the
same non-blind restoration method for all algorithms. Quantitative evaluation parameters
are chosen as Error-Ratio [13], Peak-Signal-to-Noise Ratio (PSNR), Structural-Similarity
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(SSIM) [47], and Kernel Similarity [50]. All experiments are run on a computer with an
Intel Core i5-1035G1 CPU and 8 GB RAM.

6.1. Effectiveness of the OPNL Prior

Theoretically, the OPNL prior tends to clear images in the minimization problem, i.e.,
the restoration model based on OPNL prior can complete the task of image deblurring.
However, the performance of OPNL prior in practice still needs to be quantitatively evalu-
ated. Figure 13 shows the results of comparing our algorithm with other algorithms, Dark,
L0, PMP, and NLC. It can be seen that the cumulative Error-Ratio of the other methods,
except L0, all have little difference, but our algorithm has higher PSNR and SSIM. In
summary, OPNL prior has proven to be effective in restoring degraded images in theory
and practice.

(a) (b) (c)

Figure 13. Quantitative evaluation on the benchmark dataset [13]. (a) Comparisons in terms of
cumulative Error-Ratio. (b) Comparisons in terms of average PSNR. (c) Comparisons in terms of
average SSIM.

6.2. Effect of Hyper-Parameters

The proposed restoration model mainly includes five super parameters, i.e., α, β, γ,
patch_size, and overlap rate ( f ). To explore the impact of changes in hyper-parameters on
the processing results, we adopt a single-variable method, i.e., change only one parameter
at a time, and calculate the kernel similarity between the estimated blur kernel and the
ground truth kernel. The experimental results are shown in Figure 14. A large number of
experiments show that the algorithm is stable, whose processing results will not be affected
by significant changes in the hyper-parameters.

6.3. Algorithm Convergence and Running Time

The projected alternating minimization (PAM) algorithm aims to find the optimal solu-
tion for the image restoration model. Reference [6] considers that the delay normalization
of the blur kernel in the iterative process of the PAM algorithm makes the algorithms, which
are based on the total variation, converge. Compared with reference [6], OPNL prior and
L0-norm of the image gradient in our algorithm undoubtedly increase the complexity of
the model. Using the PAM algorithm and the half-quadratic splitting method can simplify
the restoration model into several sub-problems, all of which have convergent solutions.
However, the convergence of the restoration model still needs to be further verified. Based
on the Levin dataset, the convergence can be quantitatively tested by calculating the mean
value of the objective function with Equation (12) and the mean value of kernel similarity
on the premise of several iterations at the optimal scale of the image pyramid. From the
results in Figure 15, it can be seen that our algorithm converges after 20 iterations, and the
kernel similarity tends to be stable after 25 iterations, both of which prove the effectiveness
of our method.
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(a) (b) (c)

(d) (e)

Figure 14. Sensitivity analysis of the hyper-parameters in our method. (a) Effect of α on kernel
similarity. (b) Effect of β on kernel similarity. (c) Effect of γ on kernel similarity. (d) Effect of
patch_size on kernel similarity. (e) Effect of f on kernel similarity.

(a) (b)

Figure 15. Convergence analysis of the proposed method. (a) The average value of the objective
function (12) under the optimal scale of the image pyramid. (b) Kernel Similarity.

In addition, we also test the running time of each algorithm, which is shown in Table 5.
Our algorithm can obtain more competitive results in less time by comprehensive comparison.

Table 5. Running Time (in seconds) Comparison.

Method 125 × 125 255 × 255 600 × 600

Dark [14] 53.3 166.83 790.27

L0 [25] 12.92 31.61 146.96

PMP [19] 18.59 19.79 48.19

NLC [16] 25.33 74.47 475.18

Ours 20.08 51.07 371.61
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6.4. Algorithm Limitations

Although our algorithm has excellent performance, it still has limitations. First, our
algorithm cannot take into account the effects of blur and noise simultaneously. The
deblurring ability of our algorithm will decrease when the image is seriously polluted by
noise, such as stripe noise caused by the non-uniform response of the detector. It means
that image restoration requires additional steps to denoise. In addition, the proposed
algorithm builds an image pyramid, which uses the PAM algorithm, the half-quadratic
splitting method, and others in the loop of each layer. This structure will undoubtedly
increase the algorithm’s computational complexity and running time, which is a common
problem with traditional algorithms. Therefore, future research will focus on designing
algorithms with broader applications and faster operation based on OPNL prior to create
conditions for practical engineering applications.

7. Conclusions

We reduce the algorithm’s computational complexity and running time by changing
the way of extracting image features from traversing all pixels to patches segmented from
the image that partially overlap each other. According to the extreme pixels extracted from
each patch, these are designed with overlapped patches’ non-linear prior, which has been
proven to favor clear images in the energy minimization problem, and the corresponding
image deblurring algorithm. A large number of comparative experiments have confirmed
that the restoration results of remote sensing images obtained by this algorithm are better
than other algorithms. Even in the face of remote sensing images with complex texture
details, our algorithm can still restore satisfactory images. It is believed that the proposed
algorithm can further promote the research of remote sensing image restoration technology.
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The following abbreviations are used in this manuscript:

OPNL Overlapped Patches’ Non-Linear
PAM Projected Alternating Minimization
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
MAP Maximum A Posteriori
VB Variational Bayes
DBCPeNet Dark and Bright Channel Prior embedded Network
ID-Net Identity Document Network
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DCTResNet Discrete Cosine Transform Residual Network
LSFNet Long-short-exposure Fusion Network
AID Aerial Image Dataset
PSNR Peak-Signal-to-Noise Ratio
SSIM Structural-Similarity
RMSE Root Mean Squard Error
Dark Dark Channel
L0 L0 regular intensity and gradient
PMP Patch-wise Minimal Pixels
NLC Non-Linear Channel
E Entropy
AG Average Gradient
P Point sharpness
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