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Abstract: A novel piezoelectric fiber sensor based on polyvinylidene fluoride piezoelectric (PVDF)
doped with graphene is presented. The near-field electrospinning technology was used for developing
the sensor. The uniform experimental design method was introduced to determine the ranges of
experimental parameters, including the applied voltage, the drum speed range, the graphene doping
ratios from 0% to 11 wt% in PVDF solution, and the electrode gap. By experimental results, the
conductivities of PVDF solutions with different doping ratios of graphene increased from 19.6 µS/cm
to 115.8 µS/cm. Tapping tests were performed to measure the voltages and currents produced
by the piezoelectric fibers. The maximum output voltage was 4.56 V at 5 wt% graphene doping
ratio in PVDF fibers, which was 11.54 times that of the pure PVDF sensors. Moreover, mechanical
properties of the proposed sensor were measured. Motion intention and swallowing test, such as
saliva-swallowing and eating, were carried out. When the subject spoke normally, the output voltage
of the sensor was between 0.2 and 0.4 V, approximately. Furthermore, when the subject drank water
and ate food, the output voltage of the sensor was between 0.5 and 1 V, approximately. The proposed
sensor could be used to detect signals of the human body and serve as a wearable device, allowing
for more diagnosis and medical treatment.

Keywords: piezoelectric; near-field electrospinning; PVDF; graphene; swallowing

1. Introduction

In the past years, sensor systems have become important parts of our daily life.
Sensors can be wearable devices and used for many applications, such as motion intention
detection, real-time signal measurement, and a medical aid system. With peripherals,
sensor systems can measure, detect, record and even analyze further health conditions
of humans, which can also help more accurate diagnoses. Several types of sensors
have been developed, including capacitive sensors [1–4], piezoresistive sensors [5,6], and
piezoelectric sensors [7,8]. The linearity between the input and output, the hysteresis effect
of signal feedback, and temperature sensitivity are important specifications regarding
the performance of sensors. Furthermore, the size of the sensing area and the sensing
range of pressure have been improved by previous studies [9]. The piezoelectric materials
can be categorized into the main items: thin films, single crystals, ceramic, compound,
and polymer.

Among the piezoelectric materials, Polyvinylidene fluoride (PVDF), zinc oxide, lead
zirconate titanate (PZT) and aluminum nitride have high mutual conversion efficiency
between electrical energy and mechanical energy. These piezoelectric materials are very
sensitive to any small amount of strain, giving them excellent applicability in sensors.
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Although zinc oxide and aluminum nitride are easy to make into micro-nano-scale thin-
film, the poor ductility and low piezoelectric coefficient of the materials will cause deflection
and long-term deformation, making their application in the energy-harvesting sector very
limited. PZT material has the advantages of good piezoelectric properties, but the material
is brittle and cannot be used for long-term deformation. Furthermore, PZT material
contains heavy-metal toxicity (lead), which is harmful to the human body. PVDF is a
potential piezoelectric material in polymers. PVDF has the following advantages: light
weight, low price, flexibility, decent piezoelectric coefficient, high response frequency and
no elements of pollution by heavy metals, making it be selected as one of the main materials
in this study.

Graphene, achieved by delamination of layered graphene, was developed at the
University of Manchester in 2004. It was exfoliated from high-regularity, high-temperature
pyrolysis graphite [10], and it was found in subsequent experiments that the single-layer
graphene has excellent electrical conductivity. Single-layer graphene is a six-ring plane
graphite structure and carbon atoms are composed of sp2 chains. In appearance, the
side length of single-layer graphene is about 2 to 5 µm and the thickness is 1 nm. It
can be found that carbon nanocapsule (CNC), carbon nanotube (CNT) and monolayer
graphene are all composed of carbon atoms linked by sp2, in a 0–2 dimensional structure.
However, the aspect ratios, surface-to-volume ratios, and the shapes among them are very
different. Owing to the excellent electrical conductivity of graphene, it can be mixed with
polymer materials to form composite materials and applied to electronic components such
as supercapacitors [11,12], electromagnetic interference shielding (EMI) [13], dye-sensitized
solar cells [14] and flexible optoelectronic films [15].

Electrospinning technology is an unsophisticated way to transform polymer materials
into nano-scale fibers [16]. When the strength of the electric field increases, the electrostatic
forces on the original surface overcome the surface tension, and the stretched polymer
solution is ejected from the conical tip to form micron- to nanometer-slender fibers on the
collector [17,18]. However, for PVDF fibers produced by traditional far-field electrospin-
ning, the distance between the needle and the collecting plate is usually more than 10 cm.
The polymer solution, which is easily affected by the electric field, will randomly spray the
fibers, which will be deposited on the collection plate without order. This phenomenon
weakens the piezoelectricity of the fiber. In addition, to spin out the fibers, a high voltage
(hundreds of thousands of volts) is required [19,20].

Baumgarten et al. [21] presented the electrospinning process with methyl methacrylate
(PMMA). The 1 µm width fiber was fabricated successfully. Reneker et al. [22] produced
polymer fibers with diameters ranging from 40–2000 nm by electrospinning. These small
fibers can support arrays of nanomachines and connect integrated arrays of nanomachines
to larger-scale systems. Sun et al. [23] proposed the near-field electrospinning technology. It
used 600 volts, and the distance between the needle and the collecting plate is only 500 µm
during the electrospinning process. This technology successfully produces piezoelectric
fibers in good order of 50–500 um in diameter and reduces the energy wasted.

Previous research presented the non-invasive measurement of the swallowing
function with developed sensors or sensor-based monitoring during the swallowing
events [24–29]. In this study, the proposed sensor was developed by the near-field elec-
trospinning technique. The piezoelectric fiber sensor was produced by adding graphene
nanoparticles to the PVDF solution by the near-field electrospinning process with a cylin-
der collection to make the piezoelectric fibers orderly. The electrospinning process was
performed by different weight percentages of additives and related experimental parame-
ters by the uniform experimental design method. The finished sensor was packaged by
the interdigitated electrode (IDT), PET substrate, and polydimethylsiloxane (PDMS).
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2. Materials and Method
2.1. Preparation of PVDF/Graphene Solution

Different amounts of graphene added and different proportions of solutions during
the preparation process will affect the piezoelectric properties of the piezoelectric fibers
after the near-field electrospinning process. Moreover, they affect conductivity, material
stress and other properties of the sensor. The materials required for the preparation of
PVDF solution and PVDF/graphene composite solution are shown in Table 1. The main
material of the PVDF solution is polyvinylidene fluoride powder (Mw = 534,000).

Table 1. Materials of the PVDF solution and PVDF/graphene mixed solution.

Ingredient Chemical Formula Appearance

PVDF (C12H13NO3) n White powder

DMSO C2H6OS Transparent liquid

Acetone C3H6O Transparent liquid

Graphene C sp2 Black powder

Surfactant N/A Brown paste

The preparation of PVDF/graphene mixed solution was mainly divided into two
parts: solution A and solution B. The proportion of the preparation is shown in Table 2.
For solution A, a medicine spoon was used to weigh 0.9 g of PVDF powder and pour the
powder into a scintillation vial to confirm that it was evenly distributed at the bottom
of the scintillation vial. Then, 2.5 g of acetone was added by a syringe. Solution A was
prepared after being stirred fully and evenly by a magnetic stirrer at a rotational speed of
400 rpm for 30 min at 25 ◦C. Solution B was prepared by mixing 0.2 g of surfactant and
0.5 g of dimethyl sulfoxide (DMSO). Exactly as with solution A, solution B was stirred by
a magnetic stirrer at a rotational speed of 400 rpm for 30 min at 25 ◦C. Then, solution A
was poured into solution B and stirred at a rotational speed of 400 rpm for 30 min at 25 ◦C.
Finally, the mixed solution was left to stand for 30 min at room temperature to reduce the
air bubbles. At this stage, the pure PVDF solution was completed.

Table 2. PVDF/graphene mixed solution.

Solution A Solution B

PVDF (g) Acetone (g) DMSO (g) Graphene (g) Surfactant (g)

0.9 2.5 0.2 Uniform design 2.5

For the PVDF/graphene mixed solution, the procedure was similar to the preparation
of the pure PVDF solution, but the required amount of graphene needed to be added
into prepared solution B. Since the specific weight of solution A was heavier than that
of solution B, solution A was poured into solution B. It was better to mix the solution
fully and evenly. Like the pure PVDF preparation of solution, the PVDF/graphene mixed
solution was left to stand for 30 min at room temperature to reduce the air bubbles. The
experimental procedure for the fabrication of the proposed sensor is shown in Figure 1.

2.2. Uniform Experimental Design

The uniform experimental design can reduce experiment time while maintaining
high quality and valid experiment results. The Kriging model depends on mathematical
and statistical methods, satisfying an interpolation condition at every data point used to
construct them. The Kriging model has more accurate function values throughout the trust
region than the linear fit method.
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Figure 1. Schematic diagram of the procedure for the fabrication of PVDF/graphene sensor.

As shown in Figure 2, U is the symbol representing the uniform experimental design
method, n represents the number of experiments to be performed, q represents the number
of factor levels, and s represents the number of factors. There is an additional D value in
each uniform experimental design table, which indicates the uniformity deviation value
of the table. The D value represents the pros and cons of the uniformity of the table. The
smaller value of D indicates the better uniformity.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 26 
 

 

 

Figure 1. Schematic diagram of the procedure for the fabrication of PVDF/graphene sensor. 

2.2. Uniform Experimental Design 

The uniform experimental design can reduce experiment time while maintaining 

high quality and valid experiment results. The Kriging model depends on mathematical 

and statistical methods, satisfying an interpolation condition at every data point used to 

construct them. The Kriging model has more accurate function values throughout the 

trust region than the linear fit method. 

As shown in Figure 2, U is the symbol representing the uniform experimental design 

method, n represents the number of experiments to be performed, q represents the num-

ber of factor levels, and s represents the number of factors. There is an additional D value 

in each uniform experimental design table, which indicates the uniformity deviation value 

of the table. The D value represents the pros and cons of the uniformity of the table. The 

smaller value of D indicates the better uniformity. 

 

Figure 2. Parameters in the uniform experimental design method. 

With a specification of 𝑈12 (1210), the four factors are the voltage of the near-field 

electrospinning, rotational speed of the drum collector, the weight percentage of graphene 

in the PVDF solution, and the gap between the sensor electrodes. The selected factors and 

their maximum and minimum values are shown in Table 3. To determine the ranges of 

experimental parameters, the voltage range was from 11 kV to 16.5 kV, the drum speed 

𝑈𝑛(𝑞
𝑠) 

Level  

Factor 

Uniform design 

Number of 

experiments 

Figure 2. Parameters in the uniform experimental design method.

With a specification of U12
(
1210), the four factors are the voltage of the near-field

electrospinning, rotational speed of the drum collector, the weight percentage of graphene
in the PVDF solution, and the gap between the sensor electrodes. The selected factors and
their maximum and minimum values are shown in Table 3. To determine the ranges of
experimental parameters, the voltage range was from 11 kV to 16.5 kV, the drum speed
range was from 400 rpm to 950 rpm, and the graphene doping ratios from 0% to 11 wt% in
PVDF solution, to find the optimized parameters by experiments. The output voltage of the
sensor usually rises as the voltage of the near-field electrospinning is tuned larger and the
gap between the sensor electrodes becomes smaller, but an appropriate parameter could be
found. The uniform experimental design table used in this experiment is shown in Table 4.
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Table 3. Upper and lower boundaries of factors.

Factor Applied Voltage (kV)
Rotational Speed of
the Drum Collector

(rpm)

Weight Percentage of
Graphene (wt%) Sensor Electrode Gap (mm)

Minimum 11 kV 400 rpm 0 wt% 1 mm

Maximum 16.5 kV 950 rpm 11 wt% 12 mm

Table 4. Uniform experimental design table U12
(
1210).

Applied Voltage (kV) Drum Collector Roll
Rate (rpm)

Weight Percentage of
Graphene (wt%)

Sensor Electrode Gap
(mm)

1st test 11 650 7 10

2nd test 11.5 950 2 7

3rd test 12 600 10 4

4th test 12.5 900 5 1

5th test 13 550 0 11

6th test 13.5 850 8 8

7th test 14 500 3 5

8th test 14.5 800 11 2

9th test 15 450 6 12

10th test 15.5 750 1 9

11th test 16 400 9 6

12th test 16.5 700 4 3

2.3. Near-Field Electrostatic Spinning Process

Owing to the disordered and irregularly arranged fiber structures, the further appli-
cation of the fibers obtained by the traditional electrospinning is limited. Compared with
the fibers from the traditional electrospinning, the advantages of the fibers obtained by
the near-field electrospinning include the large surface-to-volume ratio, smaller diameter,
and aligned dipoles. Furthermore, the near-field electrospinning fabricates fibers at room
temperature. Experiments can be conducted conveniently and flexibly. The main experi-
mental equipment of the near-field electrospinning, as shown in Figure 3a,b, includes an
XY dual-axis precision control stage, infusion pump, speed-adjustable drum collector, and
high-voltage power supply. Supplemented with a copper-foil glass tube for fiber collecting
and a replaceable industrial dispensing tip needle, the near-field electrospinning process
performs and fibers can be collected.

First, the mixed solution was poured into the syringe and put on the infusion pump.
The industrial dispensing needle was connected on the other end of the syringe. The
positive high-voltage power supply generated a high-voltage electric field as a nozzle for
ejecting the electrospinning fibers. The negative pole of the electric field was connected
to the adjustable speed drum collector, copper-foil glass tube (the tube wall thickness was
0.5 mm, the outer diameter of the glass tube was 20 mm, and the copper-foil thickness
was about 0.10 mm), and a negative high-voltage power supply. When the positive high-
voltage power supply was applied to the needle of an industrial dispensing needle and the
negative high-voltage power supply was applied to the drum collector simultaneously, a
strong electric field was formed between the needle and the copper foil glass tube, causing
the solution at the top of the needle to be affected by the additional electric field. When
the strength of the electric field reached a value at which the repulsive force between
the charges of the polymer solutions overcame the surface tension, the polymer solution
in the original hemispherical shape elongated to form a cone, called a Taylor cone [30].
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Meanwhile, the industrial dispensing head needle was controlled to move back and forth
by the dual-axis precision control stage. The tachometer was used to measure and adjust
the speed-adjustable drum collector. Ordered piezoelectric fibers with large area could
be collected, and the dipole moments in the fibers showed regular arrangements parallel
to the electric field along with the polarization direction. Finally, the packaged sensor, as
shown in Figure 4a,b, was prepared with electrodes, polyethylene terephthalate (PET) film,
and polyimide PI tapes.
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2.4. Electrical Measurements

As shown in Figure 5, the sensor was tapped by a rotary beater and connected to
the CHI-611D (CH Instruments, Inc., Austin, TX, USA) measuring instrument and the
oscilloscope to measure the electrical signals. Since the piezoelectric fibers were deformed
when they were beaten by the rotary beater, the piezoelectric response was generated. The
CHI-611D measuring instrument was responsible for the measurement of the micro-current
generated by the sensor due to tapping.
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2.5. Mechanical Properties Measurements

When the piezoelectric material is subjected to a stress, the material deforms and its
polarization density changes, as does its piezoelectric performance. The instrument used in
this experiment is the AGS-50KNXD (Shimadzu, Japan) tensile testing machine. The length
of the sample to be measured is 50 mm. By measuring the load and displacement of the
sample, the stress-strain diagram and the Young’s coefficient are obtained.

3. Results and Discussion
3.1. Near-Field Electrospinning Fiber-Making Results

Based on the uniform experimental design method, the experimental parameters
were determined. The voltage ranges of the electric field were from 11 kV to 16.5 kV, and
the rotational speed of the drum collector was from 400 rpm to 950 rpm. The weight
percentage of graphene in the PVDF mixed solution was from 0% to 11%. The type of
industrial dispensing needle used in the experiment was 25 G (aperture: 0.261 mm). The
distance between the needle and the drum collector was 1 mm, and the movement speed
of the dual-axis precision control stage was 2 mm/s. The infusion pump was used to
control the propulsion flow rate of the solution at 20 mL/h so that the fibers could be
produced smoothly. The fibers of 1 wt% graphene in the PVDF mixed solution were shown
in Figure 6a,b for the preliminary test. The results of pure PVDF piezoelectric fibers were
obtained as shown in Figure 7a,b, and the PVDF piezoelectric fibers doped with graphene
were shown in Figure 8a,b. The electrospinning process continued for 30 min.

3.2. Conductivity Analysis of PVDF/Graphene Solution

In the electrospinning process, the solution of electrospinning will make the droplets
of the solution break through the surface tension to form a Taylor cone. When the concen-
tration of the solution is too high, the droplets will be discontinuous. However, the solution
resulted in insufficient viscosity and it was easy to form excessively large droplets.
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By mixing the graphene powders in the solution, the conductivity of the solution rose.
The conductivities of 0 wt%, 3 wt%, 5 wt%, 8 wt% and 11 wt% of PVDF/graphene mixed so-
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lution were measured. The results showed that the conductivity of 11 wt% PVDF/graphene
mixed solution is 115.3 Ms/cm, which is the highest conductivity among sample solutions.
The higher conductivity meant that it was easier to accumulate charges on the droplets,
so the droplets broke through the surface tension and formed electrospinning fibers much
more easily. Moreover, as shown in Figure 9, the conductivity of PVDF/graphene mixed
solution was increased from 19.6 Ms/cm to 115.3 Ms/cm by adding graphene powder. The
conductivity of the 11 wt% PVDF/graphene mixed solution increased about five times over
that of the pure PVDF solution.
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3.3. Piezoelectric Properties of Piezoelectric Fibers Using Uniform Experimental Design Method

The piezoelectric properties between pure PVDF sensor and PVDF/graphene piezo-
electric sensor were discussed. Sensors were tested by tapping tests with a rotary beater. As
shown in Figure 10a–d, the maximum output voltage of the pure PVDF piezoelectric sensor
was 0.395 V. The 7 wt% PVDF/graphene piezoelectric sensor had the maximum output
voltage of all sensors; the output voltage was 3.672 V, which is about 9.3 times that of the
pure PVDF sensor. The piezoelectric property of the fibers was improved by increases of
the conductivity of the material.

3.4. Uniform Experimental Design Method Results

To interpret the relationship of each control factor in the uniform experimental design
method in this study, the response surface of the Kriging model was used to depict four
factors influencing the fiber. One of the codes is shown in Table 5. The normalization
factor (between 0 and 1) established by these factors was used as the inputs of the model.
The Dace function in MATLAB software was used to establish the response surface of
the Kriging model. The flow chart of the reaction surface is shown in Figure 11. The
relationship between the four factors in Table 5 could be expressed as Figure 12a–f, where
each graph represented the interactions of each factor. The highest point of the curved
surface was the parameter to reach the best performance of the piezoelectric fiber.
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Table 5. Experimental factors represented by each code of the Kriging model.

Factor Applied Voltage (kV)
Rotational Speed of
the Drum Collector

(rpm)

Weight Percentage of
Graphene (wt%)

Sensor Electrode Gap
(mm)

Code Name A1 A2 A3 A4
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From the results of the Kriging model, the optimal parameters of the electrospinning,
as shown in Table 6, could be obtained. After the fiber fabrication and tapping test, the
5 wt% doping ratio of graphene in PVDF solution had the maximum output voltage of
4.56 V and output current of 0.456 µA. As shown in Figure 13a,b, the output voltage of 5 wt%
PVDF/graphene fibers was about 11.54 times that of the pure PVDF piezoelectric fibers.
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Figure 12. Simulation results of the Kriging model. (a) The relationship between the output voltage
of the fiber, applied voltage in electrospinning, and the rotational speed of the drum collector. (b) The
relationship between the output voltage of the fiber, applied voltage in electrospinning, and weight
percentage of graphene. (c) The relationship between the output voltage of the fiber, applied voltage
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in electrospinning, and sensor electrode gap. (d) The relationship between the output voltage of the
fiber, rotational speed of the drum collector, and weight percentage of graphene. (e) The relationship
between the output voltage of the fiber, rotational speed of the drum collector, and sensor electrode
gap. (f) The relationship between the output voltage of the fiber, weight percentage of graphene, and
sensor electrode gap.

Table 6. Optimal parameters obtained by using Kriging reaction surface.

Applied Voltage (kV)
Rotational Speed of
the Drum Collector

(rpm)

Weight Percentage of
Graphene (wt%)

Sensor Electrode Gap
(mm)

Optimal parameters 12.5 900 5 1
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Figure 13. Experimental results of the 5 wt% doping ratio of graphene in PVDF solution. (a) Output
voltage. (b) Output current.

3.5. Mechanical Property Analysis of the Proposed Sensor

The experimental results of the tensile test (stress-strength curve), Young’s modulus,
tensile strength, and toughness test between the pure PVDF fiber, 7 wt%, and 8% wt%
PVDF/graphene fibers, are shown in Figure 14a–d. The PVDF/graphene fiber showed
better performance in mechanical property tests. It also reflected that the PVDF/graphene
fiber had good piezoelectric effect. It could be observed that the tensile strength of pure
PVDF fiber was 2.6 MPa, and the tensile strengths of 7 wt% and 8 wt% PVDF/graphene
fibers were 5.1 MPa and 3.6 MPa, respectively.
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3.6. Applications of the Proposed Sensor

The proposed sensor has potential for motion measurement of the human body and
for developing a wearable sensing device. Therefore, preliminary tests of motion intention
were performed. For the motion intention test, the sensor was attached to the chair and
stand–sit movement cycles continued as shown in Figure 15a,b. Figure 16 shows the output
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voltages of the sensor. As shown in Figure 17a,b, the sensor was attached to the inner wrist
(carpal joint) and wrapped on both sides with tapes. The wrist flexed and extended, and
the output voltages were measured as shown in Figure 18.
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Figure 18. Experimental results of the wrist test.

From the experimental results, the maximum output voltage was 1.6 V when measur-
ing the stand–sit movement of the human body. When measuring the extension and flexion
of the wrist joint, the maximum voltage was 0.84 V. The experimental results showed that
the proposed sensor has advantages of fit, flexibility, and elasticity, making it useful for
more complex applications.

In the study, the proposed sensors were enhanced by the addition of graphene. Beside
the motion measurement of the human body, the sensor was used to test and detect swal-
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lowing, allowing for a more accurate diagnosis and treatment. As shown in Figure 19a,b,
the proposed sensor was attached to the skin surface of the laryngeal prominence and fixed
by tapes. In the study, different swallowing and speaking were tested. Situations were
considered as below:

1. Normal speaking: the subject spoke at about 150 words per minute.
2. Swallowing (saliva): the subject swallowed saliva deliberately.
3. Drinking: 30 mL water was drunk by the subject in each sip.
4. Eating food: the subject ate bread by an appropriate amount per bite.
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Figure 19. Swallowing test. (a) Schematic diagram. (b) Actual picture. Figure 19. Swallowing test. (a) Schematic diagram. (b) Actual picture.

When the subject spoke normally (at about 150 words per minute), the output voltage
of the sensor was between 0.2 and 0.4 V approximately. Furthermore, when the subject
drank water (50 mL each sip) and ate food (bread), the output voltage of the sensor was
between 0.5 and 1 V, approximately. It could be observed that different swallowing behavior
resulted in variant muscle contractions of the throat. Swallowing disorder (dysphagia) and
swallowing dysfunction associated with muscle weakness due to natural aging could be
detected by the proposed tactile sensor. The relationship between the muscle tremor of
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the throat and the output voltage of the proposed sensor was observed. The experimental
results are shown in Figure 20a–d.
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Figure 20. Experimental results of swallowing tests. (a) Normal speaking. (b) Swallowing.
(c) Drinking. (d) Eating food.

The relationship between the output voltage of the proposed sensor and force was
obtained by a force gauge HF-100 (Algol Instrument Co., Ltd., Taoyuan City, Taiwan).
The range of the applied force was between 0.2–60 N. The range of corresponding output
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voltage was 0.03–5.62 V. The relationship between the applied force and the corresponding
output voltage is shown in Figure 21. As the applied force was higher, the higher output
voltage was achieved. As shown in Figure 22, the resolution of the proposed sensor was
0.1 N within 0.6 N. The range of corresponding output voltage was 0.03–0.12 V. Figure 23
shows the main ranges of linear regression. In the 0.1–1 N range, the sensitivity S = 0.05118
(V/N) and coefficient R2 = 0.14675. In the range 2–5 N, S = 0.07919 (V/N) and R2 = 0.79938.
Characteristics of the proposed sensor are listed in Table 7.
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Table 7. Characteristics of the proposed sensor.

Resolution Upper Force Linear Range
0.1–1 N 2–5 N

Sensitivity R2 Sensitivity R2

0.1 (N) 60 (N) 0.1–1 (N)/2–5 (N) 0.05118 (V/N) 0.14675 0.07919 (V/N) 0.79938

4. Conclusions

In this study, a novel PVDF/graphene piezoelectric fiber sensor was developed us-
ing the near-field electrospinning technology. The applied voltage in electrospinning,
rotational speed of the drum collector, weight percentage of graphene, and sensor elec-
trode gap were process parameters. When the weight percentage of the graphene doping
ratio was 11 wt%, the conductivity reached 115.3 µS/cm, which was 5.9 times that of
the pure PVDF solution. From tapping tests, the output voltage of the 7 wt% doping
ratio PVDF/graphene sensor was 3.672 V, which was 9.37 times that of the pure PVDF
sensor, indicating that adding graphene to PVDF could improve the piezoelectric effect.
Optimized by the uniform experimental design method and Kriging model, the optimal
parameters were determined. The maximum output voltage was 4.56 V at 5 wt% graphene
doping ratio in PVDF fibers, which was 11.54 times that of the pure PVDF sensors, indi-
cating that the PVDF/graphene sensors were expected to provide a better piezoelectric
effect. Through the mechanical property tests, it was observed that the tensile strengths of
PVDF/graphene fibers at 7 wt% and 8 wt% doping ratio were 5.1 MPa and 3.6 MPa, which
were larger than those of the pure PVDF fibers. Preliminary applications of the proposed
sensor, such as the detections of the wrist extension/flexion and stand–sit movement in-
tentions, were carried out. Furthermore, swallowing, such as saliva-swallowing, drinking
and eating, were detected by the proposed sensor. The experimental results showed that
the proposed sensor had the potential to be used to detect dysphagia and swallowing
dysfunction. The PVDF/graphene piezoelectric fiber sensor made by the near-field elec-
trospinning had the characteristics of ductility of PVDF polymer and piezoelectricity of
graphene, which increases the possibility of practical applications.
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