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Abstract: Structural health monitoring (SHM) is vital to ensuring the integrity of people and structures
during earthquakes, especially considering the catastrophic consequences that could be registered in
countries within the Pacific ring of fire, such as Ecuador. This work reviews the technologies, architec-
tures, data processing techniques, damage identification techniques, and challenges in state-of-the-art
results with SHM system applications. These studies use several data processing techniques such
as the wavelet transform, the fast Fourier transform, the Kalman filter, and different technologies
such as the Internet of Things (IoT) and machine learning. The results of this review highlight the
effectiveness of systems aiming to be cost-effective and wireless, where sensors based on microelec-
tromechanical systems (MEMS) are standard. However, despite the advancement of technology, these
face challenges such as optimization of energy resources, computational resources, and complying
with the characteristic of real-time processing.

Keywords: structural health monitoring; wireless network; signal processing methods; accelerome-
ters; earthquakes

1. Introduction

Ecuador is located in the “Pacific Ring of Fire,” where 85% of the total seismic energy
of the planet is released. Therefore, earthquakes with magnitudes greater than six on the
Richter scale frequently occur, causing multi-million dollar losses in infrastructure which
delays the social and economic development in the affected regions. As an example of a
recent event, on 16 April 2016, a 7.8 Mw earthquake struck Ecuador, severely shocking
its central coast. In addition to earthquakes, buildings and their structural elements are
generally affected by several changes such as deterioration, corrosion, fatigue, chemical
reactions, humidity, environmental variables, and dislocations [1]. For these reasons, and to
guarantee the operability of a building and the safety of its occupants, it becomes necessary
to evaluate the building’s structural behavior through periodic and real-time intelligent
monitoring to contrast the current situation with a healthy performance.

Because of the geographical location of Ecuador in the Pacific Ring of Fire, the Nazca
Oceanic Plate, and the presence of a complex of local active faults, this country has suffered
from severe seismic activity throughout its history [1] which has increased the seismic
vulnerability of several buildings. Furthermore, by not considering a correct monitoring
system, buildings present serious problems, visible only when the situation is excessively
critical, leading, in the worst-case scenario, to the structure demolition due to irreparable
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damages [2]. One solution to this problem is implementing a network of wireless sensors
that allows structural health monitoring (SHM) in buildings [3]. In the event of earth-
quakes, these SHM systems trigger a warning alert whose data analysis would help experts
determine the displacements of the structure and their associated damage limit states. In
addition, the system would allow for taking long-term care of the building and reduce the
costs associated with repairs and maintenance [4–7].

The useful life of structures such as buildings, bridges, or factories is directly related
to the site’s climatic conditions, structural analysis, and preventive and corrective mainte-
nance. Therefore, these three factors represent vital points when determining if a structure
represents a risk for people in the area. Due to the technology advancement, it has become
possible to implement monitoring systems at a low cost and extend the useful life of a
structure, preventing accidents and premature demolition.

Wireless sensor networks (WSNs) consist of small nodes. Their architecture comprises
sensors, controllers, and other devices, allowing communication to collect, process, and
transport information to the operator. In its early days, WSNs were created to facilitate
military operations. However, their applications have become common in health, traffic
analysis, and industrial areas. WSNs consist of one, hundreds, or thousands of sensor
nodes. The sensor node equipment usually consists of a radio transceiver with an antenna,
a microcontroller, an electronic interface circuit, and a power source, transforming it into a
low-power multifunctional device for storing information from environments to perform
specific applications [8].

There are certain disadvantages and limitations regarding the physical inspection of
structures. For instance, certain places cannot be inspected directly; the need to eliminate
materials to check the structure’s state, increased costs associated with the inspection,
and an investment of considerable time [9] are all considerable issues. However, seismic
structural monitoring systems can identify the damage present in a structure and its level
without verifying it visually.

Structural monitoring uses sensors, sensor signal conditioners, data acquisition de-
vices, and hardware and software to interpret the values acquired. The most commonly
used devices for measurement are accelerometers, resistance/temperature detectors, ther-
mocouples, strain gauges, corrosion detectors, and linear voltage/displacement transform-
ers. In general, these devices are installed in and attached to the structures. The data they
acquire are transmitted through microwaves, radio signals, or fiber optics to the center in
charge of interpreting the data where they are stored for later analysis [10].

A building’s dynamic response during an earthquake depends on the relationship
between the period of vibration of seismic waves and the structure’s vibration period.
When the two periods are equal, this relationship approaches unity, and, consequently, the
building enters resonance. If this happens, the acceleration and displacements are greatly
amplified, leading to possible structural damage and collapse [11,12].

The analysis of the vibration periods is a parameter of great importance in considering
the structural health of buildings since it is a dominant component in the vibrations induced
by winds and earthquakes. Analyzing the peak accelerations obtained from the buildings’
dynamic response is necessary to associate it with the damage that may occur at the level of
the building components such as equipment or non-structural systems (e.g., ceilings, panels,
windows, doors, sanitary installations). Moreover, the velocity analysis is vital to obtaining
the abrupt changes between the different times. Sudden changes are associated with
dangerous structure responses. Indeed, if a velocity earthquake or pulse earthquake occurs,
very high-velocity impulses are registered, which could cause excessive structure damage.
Finally, the displacement analysis allows for obtaining the floor drifts. These drifts are the
differential or relative shifts between successive levels, computed as the ratio between the
relative floor displacement (i.e., the difference between each floor displacement) and the
interstory height. Drifts are low or high depending on the structural system of a building.
These are valid values to compare the current structure’s performance, the threat it is
subjected to, the damage it suffered, and whether it is close to a partial or total collapse.
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SHM appeared at the end of the 19th century, at times when people detected faults
or cracks in buildings once they heard the acoustic emissions. However, the most used
recognition techniques were visual or auditory due to the lack of the necessary technological
advance to carry out an adequate study [13]. Fortunately, due to the computational
development of the last 30 years, several recognition techniques have been generated based
on physical principles and deeper analysis. For example, in recent years, some of the factors
monitored in the structure of a building are vibrations, quality of the concrete, inclination,
temperature, humidity, the appearance of cracks, fissures, and their alterations [14].

Moreover, SHM consists of using sensors and devices to monitor, analyze, and main-
tain buildings through techniques used to predict and detect damage early and ensure the
safety of structures. In addition, the structure’s velocity and displacement data are calcu-
lated, allowing an overall analysis through monitoring. Therefore, several studies focus
on designing and analyzing structural monitoring systems. Some study the monitoring of
bridges and other buildings [15].

On the one hand, some studies focus on the structural analysis of bridges [16,17]. For
instance, the study in [16] proposes an SHM device using three one-axis accelerometers, a
microprocessor, an analog-to-digital converter, and a data logger for a long-span bridge.
On the other hand, several works focus on analyzing and monitoring buildings [18–20].
For instance, the study in [18] proposes the design of a low-cost accelerometer-based
wireless sensor node for structural health monitoring applications. This work aims to
estimate the system’s performance for permanently monitoring buildings in seismic-prone
regions often affected by earthquakes. In addition, this system consists of two wireless
sensor nodes with the detection unit onboard and a wireless hub node that acts as the
network’s master. The single wireless sensor node prototype is mainly composed of a
development board that, through its interfaces, communicates with a radio module, a
storage unit, and an acceleration sensor. The results of this study allow the identification of
the first three vibration frequencies and the most relevant damping ratios of the structure.
Furthermore, the authors in [19] present a system design for measuring the infrastructure’s
dynamic acceleration remotely using radio frequency identification tags. This method uses
frequency displacement as a primary characteristic for identifying the structure’s state
change through piezoelectric accelerometers and data acquisition modules. The results
of this study provide information regarding the structure’s natural frequency and make
it possible to clearly distinguish and identify changes in the structure state through the
measurement of phase shifts in the natural frequency. In addition, the work detailed in [20]
analyzes the response of the integrated electronic piezoelectric accelerometer. The results
show that the accelerometer responds to small changes in the three axes. Consequently, the
system can detect micro-movements in a structure. However, this study does not include
experimental results.

Structural health monitoring systems have also significantly increased interest in
monitoring cultural heritage structures [21–26]. For instance, the studies done in [21]
show the application of a WSN for monitoring the structural health of a historic masonry
tower. Furthermore, the study presents the generation of mathematical models of the
structure based on the information collected by several sensors. The study also shows
a custom-made accelerometer with a high-sensitivity piezoelectric accelerometer as a
reference. The result of this study shows the way the system used was able to record
data with reliability and with no interruptions, providing prevention and risk awareness
for the cultural heritage structure. Moreover, [22] presents the application of continuous
structural health monitoring (CSHM) on two towers and one sculpture of the medieval era
in Italy. The study shows a mathematical algorithm used for an automated operational
modal analysis (A-OMA). This algorithm is a modal tracker of dynamic parameters such
as main frequencies, mode shapes, and modal damping. With this, the system successfully
provided more valuable information for a CSHM. This study also projects their ideas
toward the importance of usage and problems with big data in this field. In addition, the
study of [24] also shows an interesting application of an SHM on two emblematic historical
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constructions: a masonry church in Portugal and an adobe church in Perú. This study
proposes a methodology for the automatic identification of the structural modal parameters,
the process used contains four stages: data acquisition, system identification using the
SSI-data method, a cleaning stage of the signal with criteria, and finally, an automatic
detection using hierarchical clustering. The results showed an accurate estimation of the
modal parameters using just a few sensors and an important influence of the environment
over structure’s dynamic properties. Furthermore, the authors in [25] present a method to
address the earthquake-induced damage identification on historic towers. The approach
proposes the usage of an operational modal analysis (OMA) [27], finite element models
(FE) [28], surrogate modeling (SM) [29], and incremental dynamic analysis (IDA) [30]. This
study shows the importance of using digital twins created by mathematical modeling of
the structure. Furthermore, the results show that SM by itself cannot accurately predict
damage to the structure, and IDA analysis may also result in uncertainties if it is used
alone. In addition, the predictions can be affected by an error in calibration in most parts.
Still, the combined techniques showed successful damage identification, later confirmed
by visual inspection. Finally, the study presented in [26] reports a statistical interpretation
of structural response parameters performed over 30 years of activity on a steel platform
offshore. Although this study represented an essential factor in the management of the
platform’s maintenance, it stands out for the use of a correlation between the structure
and maritime data, showing consideration of environmental parameters. The structural
data collected are an acceleration record of the structure, and the navigational data are the
recording of meteorological parameters and behavior of the sea, which is measured by the
height of the waves. The results present a structural behavior just like the expected design
performed with the structure.

This work aims to collect valuable information that may be useful for future applica-
tions of SHM systems in Ecuador or more advanced research because no type of system
is currently installed in buildings in the country that allows analyzing its structural state.
Furthermore, this analysis identifies the most convenient approaches to contribute to the
standardization of SHM systems for post-earthquake structural assessment of strategic
and crucial buildings such as hospitals and schools in the country. This would constitute
the first step to establishing SHM-based technical procedures for future versions of the
Ecuadorian Construction Standard.

2. Structural Health Monitoring Systems
2.1. Principles

SHM systems comprise the following parts. The first is a network of sensors that
collects essential data to determine the structure’s response under seismic activity. Once
this data is obtained, it is passed to the next part, which includes a microcontroller or
device that receives the data from the sensors. The microcontroller transforms these data
into digital information. Then, it sends it to the next part: a data analysis algorithm that
processes the signal to acquire characteristics and value parameters. These parameters
are used in the last part, constituting the identification and evaluation of damages. This
identification is used for generating alarms, notifications, reports of structural health, or
even activating an action plan with a separate system. Everything explained is with a
general approach as an introduction to SHM systems. Therefore, these parts are deepened
in Sections 2.2–2.5, exposing their available tools and more characteristics.

The primary trend of these systems shows an approach to a reliable wireless network,
such as the systems studied in [31–35]. In addition, SHM systems should be autonomous,
efficient, and low-cost, as presented in [36–38]. On the other hand, technological progress
plays a fundamental role within these systems. For example, in [39–41], the Internet of
Things (IoT) is used for wireless communication of the system devices, the work presented
in [42] uses artificial intelligence for data processing, and the studies presented in [43–45]
show the use of digital modeling of structures to study their behavior.
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2.2. Systems Architecture

Over the years, various architectures have been proposed and implemented for SHM.
However, a general architecture that would be the most complete and could quickly and
systematically cover the main components embodied in the various analyzed architectures
has been identified. Figure 1 shows a general architecture used for SHM.
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The architecture presented in Figure 1 shows a network of sensors (mostly accelerom-
eters) positioned in the structure’s strategic places. They send their information to a
digital-analog converter which transmits data to a microcontroller responsible for wire-
lessly carrying information to a computer through a Wi-Fi module where communication
protocols based on the IEEE 802.15.4 standard are used [46]. Once the information reaches
the computer, software such as Matlab [47,48] or Python [49] is used to implement an
algorithm that aims to process and analyze the data. However, the processing software
is of open use when considering the characteristic of a low-cost system. Once the data is
processed and interpreted, it is presented either on the computer where the processing
is performed or can be sent as alerts and reports to a mobile device to update the user
regarding the structure’s status. This information is also sent to cloud storage for later
analysis in the field of damage detection or the use of records for simulations of future
proposals for new SHM systems. In addition, the advantage of saving the information in
the cloud makes it possible to access remote computers so that other users have an idea of
the state of the structure or perform an analysis of this data.

This architecture is not fixed because in some studies alarms are not sent to mobile
devices since the information is only sent wirelessly for processing. Similarly, in other
studies, advanced computer processing is avoided to construct a cost-effective system,
and simple processing is performed within the microcontroller. For instance, in [50], the
processing is carried out in the microcontroller. If the threshold values are exceeded, a
message is sent to a mobile device through a global system for mobile communication
(GSM) module to inform the user about the state of the structure.

2.2.1. Sensors, Microcontrollers, and Technologies Used

Within the sensors used in SHM systems, there are several categories where they have
microelectromechanical accelerometers (MEMS), piezoelectric accelerometers (PZ) [51],
weight sensors, “Fiber Bragg Granting” sensors (FBG) [52], geophones, displacement
sensors, humidity sensors, and variations. Specifically, sensors such as ADXL345, ADXL335,
ADXL322, Colibrys MS9002, piezoelectric 393B04 PCB, piezoelectric 301A11 PCB, and SDI
1521 have been used.

However, it is evident that in most studies, there is a tendency to use three-axis
MEMS accelerometers to acquire vibration data during a seismic movement to process this
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information and obtain the displacement of a structure [53]. Displacement sensors could
indeed be used directly. However, using accelerometers provides low cost, small size, and
higher signal quality. In addition, from the accelerometer signal, it is possible to determine
several standard value metrics in SHM. It is worth noting that in some interesting works,
such as [54], a signal reconstruction technique is used to perform compression of sensor
signals with the aim of energy saving and noise reduction. Furthermore, in [55], a three-axis
accelerometer is proposed using three one-axis accelerometers to reduce costs while the
system demonstrates efficient results.

On the other hand, the most common microcontrollers use Raspberry Pi, as in [56].
Other studies, such as the one presented in [57], use Arduino, whereas the authors in [58]
use an FPGA. Once again, the characteristic to be noted in the microcontroller selection is the
low cost and efficiency, along with the ability to already have or be able to integrate wireless
communication modules and analog–digital converters easily. Similarly, technologies are
found, such as using IoT through platforms such as ThingWorx [59], ThingSpeak [60], and
Global Positioning System (GPS) synchronization [61] to ensure data integrity.

2.2.2. Sensors Location

The sensor location is a fundamental part of SHM systems. Depending on their loca-
tion, it is possible to identify the main frequencies optimally. An analysis based on power
spectral density (PSD) is used to determine a good location for sensor positioning, as in [62],
where accelerometers are positioned in different structure locations. Through analysis with
PSD, it is possible to identify the appropriate points to monitor the primary frequencies
during an earthquake. The results of this analysis serve to avoid the symmetrical issues
of the buildings and demonstrate that the positioning of the sensors must be carried out
at critical points such as floor plate joints and plate joints with columns. In addition, it is
essential and necessary to place sensors to measure the highest floor of the building [62].

Other interesting findings regarding this topic show the usage of a finite element
model to determine the number and placement of sensors in a structure, such as the study
presented in [63], where a method to assess this problem is proposed. This method is based
on the relation between observed displacements and modal responses using the Fisher
information matrix, where a suitable sensor configuration results in the maximization of
the norm of this matrix. In addition, in [64], a numerical model is used to assess the optimal
sensor positioning and number to ensure the long-term monitoring of the structural health
of historic structures. This is accomplished by first obtaining a numerical model based on
experimental frequencies. Then, a simulation of ambient vibration is performed where
finally, once again, the maximization of the Fisher information matrix is analyzed to obtain
the optimal configuration for positioning the sensors and also the number of them. All of
these studies have in common the optimization of the number and positioning of sensors
which ends up in a low-cost and more dynamic system that obtains valuable information.
In addition, something to be noted is the usage of the Fisher information matrix.

2.3. Data Processing

In SHM systems, it is common to use the signal from the accelerometers, where the
double integration of the acceleration is performed, to obtain the displacement of the
structure and to be able to determine its state. Therefore, to begin with, it is essential to
filter the signal and then continue interpreting this information to finally execute an action
plan that involves alerts, notifications, or activation of some other system, all depending
on the obtained data. Therefore, this section focuses on investigating the prosecution and
obtaining valuable information.

Signal Filtering

Noise filtering in the accelerometer signal is vital since the noise is significantly
amplified when performing a double integration. Therefore, even if there is a slight initial
noise, there will be a significant noise that noticeably alters the structure displacement
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signal affecting its interpretation. In this regard, there is high-frequency noise called micro-
earthquakes (micro tremors) from 0.5 Hz onwards. There are also low-frequency noises
called microearthquakes (microseisms), which are less than 0.1 Hz [65]. Similarly, when
integrated twice, the same white noise becomes a phenomenon called “random walk”,
which is characteristic of increasing its amplitude over time [66].

Baseline or zero correction is vital to eliminating linear trends and low frequency
within the accelerometer signal [65]. If the signal is not filtered, it may present characteristics
such as those in Figure 2. This graph compares the displacement and time relationship of a
signal filtered through different filters and a raw signal without a filter. For instance, the
Butterworth filter maintains its shape for higher orders and increases the slope from the
cutoff frequency. It has a primarily flat amplitude response. The Butterworth filter has a
more linear phase response in the passband than the Chebyshev filters. The amplitude
response of the Chebyshev filter has equal amplitude ripples in the passband, and a steeper
attenuation slope than Butterworth near the cut. Conversely, the Bessel filter has a nearly
linear phase characteristic in the pass region, which provides a primarily flat group delay.
It is suitable for pulse circuits because it minimizes hum and overshoot but has a poor
attenuation slope. As shown in Figure 2, the Chebyshev filter presents a more pronounced
attenuation in the displacement signal. For this reason, the signal amplitude is smaller
than the amplitude attenuated by the Butterworth filter. On the other hand, the Bessel filter
presents a poor attenuation slope, so the disturbances in the resulting graph continue.

Note that the displacement results from the double integration of an accelerometer
signal. Within this example, the way noise can affect the displacement signal is notorious,
presenting inadequate values and leading to an erroneous interpretation of the data since
the filtered signals suffer from slight movements or almost no displacement while remain-
ing stable. However, when integrated twice, the raw signal increases the amplitude of its
noise since these are added as time passes, resulting in a disproportionate displacement
signal compared to the results obtained with the filtered signals. Filters such as Butterworth,
Chebyshev, Bessel, Ormsby, Bartlett, Hanning, and finite impulse response [67] are usually
used to eliminate this noise.
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Figure 2. Filtering of the displacement signal (a) without filter, (b) Butterworth filter, (c) Chebyshev
filter, and (d) Bessel filter.
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2.4. Data Processing Techniques

Several signal processing techniques in SHM solve noise and disturbance problems in
the signal. The most widely used methods are the wavelet transform (WT), Kalman filter
(KF), fast Fourier transform (FFT), time series statistical models (TS), and Hilbert–Huang
transform (HHT). The WT is mainly used to remove noise and detect damage to structures.
In addition, it is common to use the FFT and WT to obtain the frequency spectrum of the
accelerometers and help design filters. Table 1 presents an analysis of the advantages and
disadvantages of the different processing techniques commonly used in SHM systems:

Table 1. Common processing techniques in SHM systems [68–75].

Technique Description Advantages Drawbacks

Time series statistical models (TS)

They are used to develop an
approximate mathematical model
based on input and output
measurements.

•Easy to implement
•Different models to be used

•Noise sensitive
•Used to model linear systems

Wavelet transform (WT)
The WT provides a time-frequency
signal representation through the
scale and time window function.

•Good resolution in the
time-frequency domain
•Good signal-to-noise ratio
•It has a large selection of Wavelet
models

•Spectral fugue
•Requires various levels of
decomposition
•The selection of the mother wavelet
can affect the results

Wiener filter

It uses statistical methods to
approximate the signal to one without
noise. It is characteristic of being a
time-invariant filter.

•It considers the statistical noise
behavior •Linear behavior

Hilbert–Huang transform (HHT)
It is based on two steps: an empirical
mode decomposition followed by the
Hilbert spectral transform (HT).

•Adaptive method
•Easy to implement
•Good resolution in the time and
frequency domain

•Requires calibration

Fast Fourier transform (FFT)
The FFT converts discrete samples of a
continuous time series signal to a
frequency domain representation.

•Can model linear and nonlinear
systems
•Easy to implement
•Simplicity
•Computationally efficient

•It is inefficient in complex systems
•Requires calibration to find model
order
•Noise sensitive
•It only has frequency representation
•Its resolution depends on the
number of samples

Short-time Fourier transform (STFT)

It is an extension of the FFT capable of
analyzing non-stationary signals. The
STFT can represent the variation of the
signal’s frequency content as the
signal changes in time by dividing the
signal into small time windows where
each window is analyzed using the
FFT.

•Easy to implement
•Time-frequency representation
•Simplicity

•Limited time/frequency resolution
•Its resolution depends on the
number of samples.
•Nonlinear signals cannot be
adequately analyzed

Bilinear time-frequency distributions
(Cohen’s class)

It is a method to estimate the energy
of time-varying systems.

•Computationally efficient
•High resolution in the
time-frequency domain

•It is not adaptive
•Large computational processing time

Kalman filter (KF)
It is an optimal algorithm for recursive
data processing capable of estimating
the linear dynamic system.

•Good signal-to-noise ratio
•It presents a reasonable estimation of
the rate of change over time

•Requires calibration parameters
•Large computational processing time
•Limited tracking accuracy
•Nonlinear systems can use only one
version of the algorithm

S transform

It is a time-frequency distribution that
combines ideas from WT and a
scalable, moving Gaussian location
window to adapt the time resolution
depending on the signal’s frequency
content.

•Good resolution in the time and
frequency domain
•Spectrum components can be located
in the time domain

•Requires calibration
•Large computational processing time
•It is not adaptive

Blind source separation (BSS) The BSS is capable of revealing mixed
features in the measured data.

•Good signal-to-noise ratio
•Good precision in separating the
frequency components

•Requires calibration
• Nonlinear and transient signals
cannot be adequately analyzed

2.5. Damage Identification and Assessment Techniques

Mainly studies such as [76,77] present algorithms based on artificial intelligence to
identify and evaluate damages. The rapid increase in research with machine learning (ML)
applications suggests that due to the emergence of technologies such as the IoT and the
handling of large volumes of data, it is necessary to use techniques that guarantee an accu-
rate and rapid response regarding the damage identification and evaluation. In this regard,
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the most used methods in the literature are decision trees, ML, deep learning, Bayesian clas-
sifiers, fuzzy logic, Gaussian mixture, support vector machines, hidden Markov model and
neural networks, and their variations such as multilayer neural networks, probabilistic neu-
ral networks, a neural network with backpropagation, and convolutional neural network,
among others. In addition, other algorithms that involve statistical analysis and the use of
probabilities are also used, such as the one presented in [78], based on Bayesian probability.

The algorithms use information from records of previously occurred earthquakes
for their training. Similarly, they use digital and mathematical modeling of structures
with characteristic information from other sensors such as humidity, crack, ultrasonic,
and temperature. This way, the focus is managing valuable information for an adequate
diagnosis. Then, these algorithms are evaluated through artificially induced vibrations or
movements that simulate an earthquake [79].

As a result, the algorithms for identifying and assessing damages in SHM demonstrate
exceptional capacity and precision. However, the computational cost is also considered for
autonomous and low-cost systems. Therefore, some studies aim to optimize the computa-
tional burden [80].

2.6. Challenges for SHM Systems

As SHM systems advance, challenges must be addressed for more autonomous,
sophisticated, and cost-efficient systems. The SHM challenges to be overcome are the
following:

• Autonomy of the accelerometers with less power consumption is needed in the order
of mA at 3 V.

• Accelerometers must have high sensitivity, data transmission, and sampling speed.
• Within the information analysis, algorithms can reveal possible damages in the struc-

tures based on the recorded information.
• Wireless systems.
• Real-time data processing.
• An automated procedure for operational modal analysis (A-OMA) for large datasets

used in long-term monitoring systems [81].

In this regard, several studies have been developed in recent years. Table 2 summarizes
the main characteristics and results of different analyzed works.

Table 2. Summary of the main characteristics and results of the state-of-the-art SHM works.

Reference Data Processing Sensors Technologies Results

[7] •Tensor completion method •Vibration sensor -
•Cost-effective
•Fast and efficient damage
assessment

[9]
•Convolutional neural network
based on the structure’s 3D
generated model

- •Neural network •Fast and efficient security
assessment

[14] -

•ADXL345
•Piezoelectric accelerometer
•FBG sensors
•Ultrasonic
•Pressure sensors
•Crack sensor

•IoT

•The integration of several sensors
increases the accuracy of
structural monitoring
•Using IoT devices facilitates the
communication of information

[18] - •FBG sensors
•MEMS -

•Sending danger notifications to
users
•Low-cost system
•Good performance

[31] - •Load cell
•MEMS •Wireless (ZigBee) •A non-intrusive system without

efficient wiring
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Table 2. Cont.

Reference Data Processing Sensors Technologies Results

[32]

•Two algorithms are used: (i) The
first algorithm considers the
variation in the measurements of the
different sensor nodes; (ii) the
second algorithm focuses on fault
detection and sensor data collection
based on a historical calibration basis

•Accelerometer 393B04PCB
•Piezoelectric sensors •Wireless (ZigBee)

•A system that uses the
combination of two types of
algorithms to identify threshold
violations

[33] •Network flooding algorithm used
for efficient data communication - •OMNET++

•Good algorithm performance
compared to standard
communication protocols

[34] - - •Raspberry pi
•CC3200 Wi-Fi

•Efficient information
synchronization algorithm
•Real-time
•Cost-effective
•Low power consumption

[35]
•netSHM (Algorithm created for the
identification of damage in
structures)

- •Wireless

•Identifying significant changes in
the structure stiffness
•Induced damage identification
•A robust damage identification
algorithm

[36] - •FBG sensors -

•Sending alerts to users
•Highly efficient automated
system
•Use of cost-effective materials
that take up little space

[37] •Bayesian theory
•Piezoelectric accelerometer
•MEMS
•FBG

•Matlab
•OpenSees

•Low-cost system
•Real-time monitoring
•Efficient results using Bayesian
theory

[38] - •Fiber-optic sensor •Wireless
•Low-cost wireless sensors
•Approach to detect structures
affected by corrosion

[39] - •Accelerometers •IoT
•Efficient bridge’s SHM
•Good performance in IoT
communication

[40] - •MEMS ADXL 355
•IoT
•STATOTEST (sensor
developed)

•Recording minimal inclinations
with great precision
•Low-cost system

[41] -
•Triaxial MMA8452Q
accelerometer
•ADXL362 accelerometer

•ATMEGA 328
•CC3000 Wi-Fi
•Xnode board
•ESP 8266
•IoT

•Presenting a review of future
SHM systems
•Analyzes several sensors and
detection algorithms

[42]

Computes three metrics: cumulative
absolute velocity (CAV), relative
CAV, and total CAV deviation, used
for damage assessment

- •Machine learning
•The ORL machine learning
model shows an identification
accuracy of 93% to 97.5%

[43] - - •Building information model
(BIM)

•Developing the digital model of a
structure
•Efficient structure behavior
analysis

[44] •Fast Fourier transform
• Bayesian probability - •Generation of 3D models

•Increase in vibration
identification by using the 3D
model
•Accuracy in damage detection
based on Bayesian probability and
3D model

[45]

•Fuzzy neural network
•ANN-type multilayer feedforward
•Multi-Stage ANN
•Probabilistic ANN
•Bayesian decision tree

- •machine learning
•ANN

•It presents several methods for
identifying structural damage
using machine learning, artificial
intelligence, and deep learning
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Table 2. Cont.

Reference Data Processing Sensors Technologies Results

[46] - •MEMS Colibrys •MS9002

•IEEE 802.15.4
•GPS
•Kinetis KL15
•NEO6-M Xbee
module
•Wireless

•Perfect data synchronization at a
sample rate of 1000 Hz
•Possibility of having several
nodes with wireless
communication sensors

[47] •Runge–Kutta method
•Logical analysis of data (LAD) - •Matlab

•The LAD model provides an
efficient technique to learn,
simulate, and predict the structure
behavior dynamic response

[48] •Wavelet transform - •ASCE benchmark
•Matlab

•Efficiently detects sudden
changes in structure damage
•Provides increased damage
information compared to
traditional methods

[49] •Fast Fourier transform •ADXL322 accelerometer
•393B12 accelerometer

•MSP430F538a controller
• IEEE 802.15.4 standard
•Python

•Accurate fault detection in
buildings

[50] - •ADXL335 triaxial sensors •GSM

•Damage detection with an
unprecedented level of severity
•Non-intrusive system
•Sending alerts to users
•Low-cost system
•Low-energy consumption system

[51] •Enhanced frequency domain
decomposition method

•Biaxial MEMS
•PCB/393B12 and
PCB/393B31 piezoelectric
sensors

-
•Relatively efficient SHM
•Vibration signals are mistaken
for noise when using MEMS

[52] •Current-voltage curves
interpretation •FBG -

•Allowing structural damage
detection and evaluation by
analyzing the sensor’s ohmic
behavior curve

[53]

•Structural Analysis and design Vi8
Pro (finite element calculation
program used for structural analysis
in buildings, plants, and other
structures)

•ADXL345 accelerometer •STAAD Vi8 Pro •Effective information
synchronization and analysis

[54] •Signal reconstruction using
complex algorithms - •Compressed sensing

technique

•Energy saving
•The vibration signals can be
compressed to a large extent
without intruding on the quality
of the reconstructed structural
parameters when the Peak SNR
remains above 20 dB

[55] •Design of a cost-effective three-axis
accelerometer for SHM

•SDI 1521 accelerometer
•PCB 301A11 accelerometer

•ADS1258 A/D converter
• Data logger and internet
connection for remote
monitoring and diagnostic
access

•Effective operation
•Minimization of costs by 64.3%
compared to other systems

[56] •Fast Fourier transform
•Subwoofer method for calibration •ADXL345 accelerometer •Raspberry Pi 3

•The subwoofer method
effectively calibrates the
accelerometer
•Presents measurements with an
error of 3.65%

[57] - •Geophone •Arduino Uno
•Efficient system
•Low-cost system
•Low-energy consumption system

[58] •Vertical and horizontal vibration
computation method •FBG sensor arrays •FPGA

•JAVA Cosmos

• Real-time vibration monitoring
•Sending alerts to users
•Sensor location analysis
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Table 2. Cont.

Reference Data Processing Sensors Technologies Results

[59]

•Fast Fourier transform
•Wavelet transform
•Cross correlation
•Orthogonal Transform

•Piezoelectric sensors

•IoT
• Raspberry Pi controller with
MCP3008 A/D module and
Wi-Fi module
•ThingWorx for cloud data
storage
•Wireless

•Sending notification of danger to
the user
•Information recorded in the
cloud
•Remote monitoring

[60] -
•ADXL345 accelerometer
•BF350 3AA pressure sensor
•Humidity sensor

•ThingSpeak
•IoT
•Matlab
•C#
•Wireless

•Cost-efficient
•An early solution to structures at
risk of collapse

[61] •Standing wave method •A-1637 accelerometer •GPS synchronization

•Determining the dynamic state of
buildings
and structures based on
microseismic vibrations

[62] •Power spectral density •24-bit Reftek accelerometers
model 130 SMA -

•Low-energy consumption system
•Key points such as floor plate
joints and joints between floors
and columns were determined

[82] • Mark, Class, Time sampling
process •Smart transducers •IEEE1451 standard

•Detecting the arrival of a
destructive earthquake in
real-time
•Broadcasting a warning signal

[65]

•Baseline correction
•Butterworth filter
•Chebyshev filter
•Riffle filter
•Bessel filter

•MEMS • Standard energy efficiency
data

• Analysis of various filters for
data processing

[66]

•Fast Fourier transform
•Auto-correlation functions
•Time-varying spectral analysis
techniques

- •Matlab
•REC_MIDS toolbox

•Sending notification of danger to
the user
•Real-time system identification
and damage detection
•Allows estimating of modal
displacements at
non-instrumented floors

[67]
•Fast Fourier transform
•Infinite impulse response filtering
algorithm

- -

•Elimination of noise and
intrusive component frequencies
using IIR filters
•Dynamic identification of the
natural frequencies

[68]

•Power spectral density
•Frequency domain decomposition
(FDD)
•Stochastic subspace identification
•Fast Fourier transform
•Peak-picking
•Eigen-system realization algorithm
•Blind source separation
•Empirical mode decomposition
•Singular value decomposition

•Piezoelectric sensors
•Triaxial MEMS

•Matlab
•ARTeMIS software
•MACEC software
•PULSE software
•IoT

•Trend of wireless SHM systems
•Highlights data handling
techniques such as FDD and SSI

[69]

•Wavelet transform
•Statistical models
•Hilbert–Huang transform
•Fast Fourier transform
•Cohen’s class
•Kalman filter
•S transform
•Short FFT

- -

•Highlights the wavelet transform
and the Hilbert–Huang transform
to remove signal noise and detect
damage to structures

[70] •Unscented Kalman filter - •OpenSees software

•Identifies the properties of the
structure with different levels of
elasticity and seismic loading in a
building
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Table 2. Cont.

Reference Data Processing Sensors Technologies Results

[72] •Extended Kalman filter -
•Estimation of ground
movement with digital
techniques

•Provides satisfactory ground
motion estimation under realistic
levels of measurement noise and
partial measurements

[73] •Fast Fourier transform
•ANN •Accelerometers •ASCE Benchmark •High-precision identification

algorithm for frequency detection

[74] •Synchronized wavelet transform - -

•The synchronized wavelet
transform outperforms damage
detection compared to other
methods, obtaining a minimum
error of 0.12%

[75] •Fast Fourier transform •MEMS -
•An efficient noise removal
system
•Efficient SHM of bridges

[76]

•Decision trees
•Neural network
•Ensemble methods
•Support vector machines
•Back propagation neural network
•K-nearest neighbors
•Gaussian mixture •Hidden Markov
model

- •Machine learning
•Highlights the increase in
Machine Learning-based studies
for SHM

[77]

•Fuzzy neural network
•Multilayer feedforward ANN
•Multi-stage ANN
•Probabilistic ANN
•Bayesian decision tree

- •Machine learning
•ANN

•Presents various methods of
identifying damage to structures
using machine learning, artificial
intelligence, and deep learning

[78] •Transfer Bayesian learning - -
•Allows a probabilistic
identification of damage to the
structure

[79] •Singular spectrum analysis (SSA) - -

•SSA is a non-parametric spectral
estimation method
•Enables efficient damage
assessment after earthquakes

[80] •Convolutional neural network •TROMINO accelerometrer
•MS Visual Studio C++
•Matlab
•Wireless

•Wireless and decentralized SHM
system
•Low-cost system
•Computational cost optimization

3. The Usage of SHM Systems in Ecuador

Ecuador is characterized by its high seismicity and critical economic losses and death
toll after severe earthquakes [1,83] that have forced the authorities to keep strengthening
the construction standards through advanced theories and technologies. Indeed, since the
beginning of 2021, several chapters of the structural area from the Ecuadorian Construction
Standard have undergone improvements whose evidence will be reflected in 2023. One of
these new approaches is to include a section in the Seismic Risk, Evaluation, and Structural
Retrofit Chapter [84] regarding the regularization of SHM systems, especially for critical
buildings such as schools, hospitals, and emergency response infrastructure. The primary
purpose is to guide the construction professionals on how, when, and where to install
different sensors and distinguish the various responses from the buildings to alert the users
or officials and act accordingly to the warning message.

In this context, a research project has been proposed at Universidad de las Fuerzas
Armadas ESPE in the mountain region of Ecuador, characterized by its high seismicity.
The first stage of this project aims to develop a system capable of collecting vibration
information through a network of sensors located on the first, third, and sixth stories in
the university’s main administrative building; see Figure 3. The sensor node comprises a
three-axial accelerometer in charge of collecting information in the building and a devel-
opment board which is used to obtain and transmit data through the MQTT protocol to a
broker-server.
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Figure 3. Location of the sensor nodes in the main administrative building of Universidad de las
Fuerzas Armadas ESPE, Sangolquí, Ecuador.

In detail, the sensor node comprises a three-axial MPU6050 accelerometer with MEMS
(micro-electro-mechanical systems) technology, a micro-machined structure built on a
silicon wafer. In addition, it features a NodeMCU v3 ESP8266 microcontroller, an Arduino-
compatible WiFi development module usually used for IoT applications. It presents
recharging and power circuits made up of a Tp4056 charger with overload, over-discharge,
and short-circuit protection for batteries, followed by an MT3608 voltage regulator for a
constant voltage supply to the microcontroller. In addition, the sensor node has a 6800 mAh
18,650 rechargeable battery to keep it working in case the main power supply is interrupted,
as shown in Figure 4.
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Furthermore, the server has an application divided into two sections: Acquisition
and processing.

The acquisition software interface has four windows. The first three windows allow
real-time monitoring of the three three-axial sensor nodes. It has a cursor tool for each axis
of the sensor node. It has an alarm window, which provides real-time data history detailing
the sensor, axis, value, and date/time that exceeded the offset established by the user. The
processing software interface will report corrected data for the accelerations and calculated
velocities and displacements. Indeed, the software has a window with correction tools. The
baseline correction seeks to correct the distortion generated by the digitization of the signal
and the introduction of low-frequency components, which create non-null or oscillatory
resulting graphs around zero. Filter correction allows applying a Butterworth filter of the
high-pass, low-pass, or band-pass type as the user deems necessary. Filtering removes
noise caused by external equipment or ambient noise in the environment. By applying the
tools, the resulting acceleration, velocity, and displacement graphs will be similar to those
in Figure 5.
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Figure 5. Acceleration, velocity, and displacement display window with baseline correction and filtering.

In addition, the software allows obtaining the Fourier transform of the acceleration
signal, which is used to determine the sensor oscillation frequency; see Figure 6. Finally,
another window will show the wavelet transform, a power graph as a function of frequency
and time used to analyze the frequency content and released energy contained in the
earthquake records. During an important earthquake, the processed data will trigger warn-
ing signals if the seismic building response exceeds standardized engineering parameters
such as interstory drifts to take immediate action. Further experience will contribute to
standardizing the implementation and usage of SHM systems in strategic buildings and
consequently increase the available data to improve the Ecuadorian Construction Standard.
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4. Discussion and Conclusions

This work has reviewed technologies, architectures, data processing techniques, iden-
tification techniques, and challenges faced in SHM systems. In addition, this work has
distinctively approached collection of information that may be useful for future standard-
ized applications of SHM systems in Ecuador or more advanced research on these issues.

It should be noted that the advancement of technology has dramatically benefited SHM
systems, providing architectures that especially involve the IoT for wireless measurement
and communication devices. These, in turn, send information to the cloud or a database,
which characterizes the use of large volumes of information that are used for real-time
diagnosis or the evaluation of damage and records that are of value for future experiences
that include the use of historical data. These systems, having the characteristic of a wireless
communication network, significantly exceed the classic designs that use wiring, both in
data collection and in their cost, due to the need to have reliable communication that does
not collapse along with the structures they are to monitor.

Essentially, in this work, it has been identified that SHM systems comprise a data
acquisition system or measurement system through sensors located in the structure’s
strategic positions that are being monitored and a data processing algorithm that filters
and interprets the information the sensors acquired to initiate action plans such as sending
notifications or alarms to users to avoid more significant damage that the earthquake
may cause. Similarly, the feature to note is the cloud information storage with which an
evaluation of the state of health and identification of damage to the structure can be carried
out. This work has presented an architecture that can be considered the most complete by
adopting the best characteristics of several analyzed architectures.

The technological approach presented in the reviewed studies points to cost-efficient
and autonomous systems which should have lower energy consumption but without
reducing monitoring quality. Most research has used MEMS accelerometers to fulfill this
characteristic where specifically the ADXL345 sensor stands out for being commonly used
in SHM applications. However, novel technologies such as FBG and piezoelectric sensors
have also shown exciting solutions.

Since this review has presented several technologies, it is necessary to point out their
advantages and disadvantages. The usage of technologies that ensure a low-cost system
can increment the accessibility to them. Technology such as a three-axis accelerometer
using three one-axis accelerometers can benefit this purpose, overcoming the classical
wired systems. However, problems such as data synchronization and the sensor precision
can be a drawback. In addition, the algorithms used for synchronization can increase the
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computational cost as they would need a certain complexity to overcome the standard
systems. In addition, wireless accelerometers present several weaknesses such as the
synchronization of the signals to extract the mode shapes, and commonly the energy
consumption of these devices is another limitation.

On the other hand, using methods to determine the number and positioning of sensors
can significantly help optimize the system, providing a low-cost and more dynamic ap-
proach. Still, this drawback is the uncertainties that arise with experimental testing which
can complicate the process. These uncertainties have to be noted to obtain a long-term and
reliable system. However, artificial intelligence or machine learning in these systems has
shown an improvement in the identification and damage assessment field. An apparent
limitation of this technology could be that it involves high computational processing, which
could be solved using cloud computing. However, it has recently been demonstrated that
tiny machine learning (TinyML) solutions, characterized by low computational effort and
memory/time consumption since the inference is made on embedded systems, could be
effective for vibration-based SHM.

In addition, even though the requirements of heavy computational processing can be
done all in the cloud, saving space and money, this kind of system stills has a drawback
since working on the cloud means that the data can be compromised or modified if it is not
well guarded with cybersecurity.

On the other hand, filtering the accelerometer signal is necessary for eliminating both
high- and low-frequency noise. In addition, the baseline correction is vital since when
analyzing the signal, if it is not filtered, results can lead to an erroneous interpretation
and, therefore, inadequate monitoring of the structural health status. Consequently, it has
been found that filters and data processing methods are required. The standard processing
techniques from the literature for SHM applications are the wavelet transform, the fast
Fourier transform, the Kalman filter (KF), and combinations of these methods with more
sophisticated techniques where statistical analysis is available to remove noise and polish
the signal for proper interpretation. In the same way, the identification and detection
of damage in a structure have involved methods with machine learning and artificial
intelligence in general, where an overview of the optimization of these algorithms shows
to save computational consumption.

Moreover, the applications of SHM systems present a future with several limitations
and challenges to overcome, such as minimum energy consumption, higher precision
sensors, and greater accuracy in damage identification algorithms with less computational
consumption. Research development and technological advancement in this field collabo-
rate to mitigate these limitations, which contribute to the optimization and improvement
which means an increase in the safety of people facing the devastating consequences and
effects of an earthquake.

Finally, this work has presented the first attempt at an SHM system in Ecuador. This
system acquires acceleration data in the first, third, and sixth stories of a building through
a sensor network. The SHM system prototype comprises three sensor nodes with an
MPU6050 three-axial accelerometer with capacitive MEMS technology, a NodeMCU v3
ESP8266 microcontroller developed with WiFi, and a power and recharge circuits for a 6800
mAh 18,650 rechargeable battery. The sensor node transmits the collected data using the
MQTT protocol. In addition, the software has been developed for real-time monitoring of
the acceleration transmitted by the sensor node and processing of the collected data, which
will be used to determine engineering demand parameters to trigger alerts in the case of
an earthquake.

Author Contributions: Conceptualization B.L.-C., A.G.H.-B. and D.A.-A.; formal analysis A.G.H.-B.
and D.A.-A.; investigation B.L.-C., M.B.-R., B.L.-A., A.G.H.-B. and D.A.-A.; methodology D.A.-A.;
supervision A.G.H.-B. and D.A.-A.; visualization B.L.-C., M.B.-R. and B.L.-A.; writing—original draft
preparation B.L.-C., A.G.H.-B. and D.A.-A.; writing—review and editing B.L.-C., M.B.-R., B.L.-A.,
A.G.H.-B. and D.A.-A. All authors have read and agreed to the published version of the manuscript.



Sensors 2022, 22, 9206 18 of 21

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work is part of the projects entitled “Structural response monitoring and
warning system for seismic performance assessment of strategic buildings: Towards resilient commu-
nities” from the Research Groupes Structures and Constructions (GIEC) and Propagation, Electronic
Control, and Networking (PROCONET) of Universidad de las Fuerzas Armadas ESPE.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lanning, F.; Haro, A.G.; Liu, M.K.; Monzón, A.; Monzón-Despang, H.; Schultz, A.; Tola, A. EERI Earthquake Reconnaissance Team Report:

M7.8 Muisne, Ecuador Earthquake on April 16, 2016; Earthquake Engineering Research Institute (EERI): Oakland, CA, USA, 2016.
2. Shabani, A.; Alinejad, A.; Teymouri, M.; Costa, A.N.; Shabani, M.; Kioumarsi, M. Seismic Vulnerability Assessment and

Strengthening of Heritage Timber Buildings: A Review. Buildings 2021, 11, 661. [CrossRef]
3. Giurgiutiu, V. Structural Health Monitoring; Elsevier: Amsterdam, The Netherlands, 2008. [CrossRef]
4. Yeow, T.Z.; Kusunoki, K. Unbiased rank selection for automatic hysteretic response extraction of RC frame buildings using

acceleration recordings for post-earthquake safety evaluations. Earthq. Eng. Struct. Dyn. 2022, 51, 515–536. [CrossRef]
5. Komec Mutlu, A.; Tugsal, U.M.; Dindar, A.A. Utilizing an Arduino-Based Accelerometer in Civil Engineering Applications in

Undergraduate Education. Seismol. Res. Lett. 2022, 93, 1037–1045. [CrossRef]
6. Cardoni, A.; Borlera, S.L.; Malandrino, F.; Cimellaro, G.P. Seismic vulnerability and resilience assessment of urban telecommuni-

cation networks. Sustain. Cities Soc. 2022, 77, 103540. [CrossRef]
7. Lin, J.-F.; Li, X.-Y.; Wang, J.; Wang, L.-X.; Hu, X.-X.; Liu, J.-X. Study of Building Safety Monitoring by Using Cost-Effective MEMS

Accelerometers for Rapid After-Earthquake Assessment with Missing Data. Sensors 2021, 21, 7327. [CrossRef]
8. Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A

Review. IEEE Sens. J. 2017, 17, 226–235. [CrossRef]
9. Tsuchimoto, K.; Narazaki, Y.; Hoskere, V.; Spencer, B.F. Rapid postearthquake safety evaluation of buildings using sparse

acceleration measurements. Struct. Health Monit. 2021, 20, 1822–1840. [CrossRef]
10. Davis, A.M.; Mirsayar, M.; Hartl, D.J. A novel structural health monitoring approach in concrete structures using embedded

magnetic shape memory alloy components. Constr. Build. Mater. 2021, 311, 125212. [CrossRef]
11. Marasco, S.; Cimellaro, G.P. A new evolutionary polynomial regression technique to assess the fundamental periods of irregular

buildings. Earthq. Eng. Struct. Dyn. 2021, 50, 2195–2211. [CrossRef]
12. Chieffo, N.; Formisano, A.; Mochi, G.; Mosoarca, M. Seismic Vulnerability Assessment and Simplified Empirical Formulation for

Predicting the Vibration Periods of Structural Units in Aggregate Configuration. Geosciences 2021, 11, 287. [CrossRef]
13. Gopinath, V.K.; Ramadoss, R. Review on structural health monitoring for restoration of heritage buildings. Mater. Today Proc.

2021, 43, 1534–1538. [CrossRef]
14. Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of

things: A review. J. Build. Eng. 2022, 48, 103954. [CrossRef]
15. Sofi, A.; Jane Regita, J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network—An overview.

Mech. Syst. Signal Process. 2022, 163, 108113. [CrossRef]
16. Lin, C.-H.; Chen, S.-Y.; Yang, C.-C.; Wu, C.-M.; Huang, C.-M.; Kuo, C.-T.; Huang, Y.-D. Structural health monitoring of bridges

using cost-effective 1-axis accelerometers. In Proceedings of the IEEE Sensors Applications Symposium, Queenstown, New
Zealand, 18–20 February 2014; pp. 24–27. [CrossRef]

17. Lin, C.-H.; Chen, S.-Y.; Kuo, C.-T.; Sung, G.-N.; Yang, C.-C.; Wu, C.-M.; Huang, C.M. A real-time bridge structural health
monitoring device using cost-effective one-axis accelerometers. In Proceedings of the IEEE Tenth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing, Singapore, 7–9 April 2015; pp. 1–2. [CrossRef]

18. Valenti, S.; Conti, M.; Pierleoni, P.; Zappelli, L.; Belli, A.; Gara, F.; Carbonari, S.; Regni, M. A low cost wireless sensor node for
building monitoring. In Proceedings of the IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems,
Salerno, Italy, 21–22 June 2018; pp. 1–6. [CrossRef]

19. Jayawardana, D.; Kharkovsky, S.; Liyanapathirana, R.; Zhu, X. Measurement System with Accelerometer Integrated RFID Tag for
Infrastructure Health Monitoring. IEEE Trans. Instrum. Meas. 2016, 65, 1163–1171. [CrossRef]

20. Abdullahi, S.I.; Che Mustapha, N.A.; Habaebi, M.H.; Islam, M.R. Accelerometer Based Structural Health Monitoring System on
the Go: Developing Monitoring Systems with NI LabVIEW. Int. J. Online Biomed. Eng. 2019, 15, 32. [CrossRef]

21. Barsocchi, P.; Bartoli, G.; Betti, M.; Girardi, M.; Mammolito, S.; Pellegrini, D.; Zini, G. Wireless Sensor Networks for Continuous
Structural Health Monitoring of Historic Masonry Towers. Int. J. Archit. Herit. 2021, 15, 22–44. [CrossRef]

22. Zini, G.; Bartoli, G.; Betti, M.; Marafini, F. A quality-based framework for data-driven SHM of heritage buildings. In Proceedings
of the IEEE Workshop on Complexity in Engineering (COMPENG), Florence, Italy, 18–20 July 2022; pp. 1–4. [CrossRef]

http://doi.org/10.3390/buildings11120661
http://doi.org/10.1016/B978-0-12-088760-6.X5001-6
http://doi.org/10.1002/eqe.3577
http://doi.org/10.1785/0220210137
http://doi.org/10.1016/j.scs.2021.103540
http://doi.org/10.3390/s21217327
http://doi.org/10.1109/JSEN.2016.2630008
http://doi.org/10.1177/1475921720936296
http://doi.org/10.1016/j.conbuildmat.2021.125212
http://doi.org/10.1002/eqe.3441
http://doi.org/10.3390/geosciences11070287
http://doi.org/10.1016/j.matpr.2020.09.318
http://doi.org/10.1016/j.jobe.2021.103954
http://doi.org/10.1016/j.ymssp.2021.108113
http://doi.org/10.1109/SAS.2014.6798910
http://doi.org/10.1109/ISSNIP.2015.7106970
http://doi.org/10.1109/EESMS.2018.8405827
http://doi.org/10.1109/TIM.2015.2507406
http://doi.org/10.3991/ijoe.v15i07.10427
http://doi.org/10.1080/15583058.2020.1719229
http://doi.org/10.1109/COMPENG50184.2022.9905472


Sensors 2022, 22, 9206 19 of 21

23. Bartoli, G.; Betti, M.; Girardi, M.; Padovani, C.; Pellegrini, D.; Zini, G. Dynamic monitoring of a tunnel-like masonry structure
using wireless sensor networks. In Proceedings of the Institution of Civil Engineers—Structures and Buildings; Thomas Telford Ltd.:
London, UK, 2022; pp. 1–12. [CrossRef]

24. Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Automated long-term dynamic monitoring using hierarchical clustering and
adaptive modal tracking: Validation and applications. J. Civ. Struct. Health Monit. 2018, 8, 791–808. [CrossRef]

25. Kita, A.; Cavalagli, N.; Venanzi, I.; Ubertini, F. A new method for earthquake-induced damage identification in historic masonry
towers combining OMA and IDA. Bull. Earthq. Eng. 2021, 19, 5307–5337. [CrossRef]

26. Betti, M.; Castelli, P.; Galano, L.; Spadaccini, O.; Zini, G. Long-Term Structural Monitoring of a Steel Jacket Offshore Platform.
Validation of Meteo-Marine Data and Implications for Maintenance. In European Workshop on Structural Health Monitoring;
Springer: Cham, Switzerland, 2022; pp. 1038–1047. [CrossRef]

27. Brincker, R.; Ventura, C.E. Introduction to Operational Modal Analysis; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [CrossRef]
28. Kotsovos, M.D. Finite-Element Modelling of Structural Concrete; CRC Press: Boca Raton, FL, USA, 2015. [CrossRef]
29. Forrester, A.I.J.; Sóbester, A.; Keane, A.J. Engineering Design via Surrogate Modelling; Wiley: Hoboken, NJ, USA, 2008. [CrossRef]
30. Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [CrossRef]
31. Sindhuja, S.; Kevildon, J.S.J. MEMS-based wireless sensors network system for post-seismic tremor harm evaluation and building

monitoring. In Proceedings of the International Conference Circuits, Power Computing Technologies, Nagercoil, India, 19–20
March 2015; pp. 1–4. [CrossRef]

32. Morello, R.; De Capua, C.; Meduri, A. Remote monitoring of building structural integrity by a smart wireless sensor network. In
Proceedings of the IEEE Instrumentation & Measurement Technology Conference Proceedings, Austin, TX, USA, 3–6 May 2010;
pp. 1150–1154. [CrossRef]

33. Muñoz, J.; González, R.; Otero, A.; Gazca, L.; Huerta, M.; Sagbay, G. A flooding routing algorithm for a wireless sensor network
for seismic events. In Proceedings of the International Conference on Computing Systems and Telematics, Xalapa, Mexico, 28–30
October 2015; pp. 1–6. [CrossRef]

34. Jornet-Monteverde, J.A.; Galiana-Merino, J.J.; Soler-Llorens, J.L. Design and Implementation of a Wireless Sensor Network for
Seismic Monitoring of Buildings. Sensors 2021, 21, 3875. [CrossRef] [PubMed]

35. Chintalapudi, K.; Fu, T.; Paek, J.; Kothari, N.; Rangwala, S.; Caffrey, J.; Govindan, R.; Johnson, E.; Masri, S. Monitoring civil
structures with a wireless sensor network. IEEE Internet Comput. 2006, 10, 26–34. [CrossRef]

36. Wu, D.; Peng, B.; Xu, Q. A building structure health monitoring system based on the characteristic of TFBG. In Proceedings of the
9th International Conference on Optical Communications and Networks (ICOCN 2010), Nanjing, China, 24–27 October 2010;
pp. 95–98. [CrossRef]
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